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Abstract

In this paper a Wireless Sensor Network (WSN) where the nodes are equipped with a programmable middleware

that allows the quick deployment of different applications is considered. We propose a distributed method to extend

the network lifetime by managing how tasks are assigned to different nodes. A detailed model of energy consumption

of the wireless sensor nodes is provided and a gossip-based algorithm which exploits only iterative and asynchronous

optimizations involving local information between neighboring nodes to maximize the global network lifetime is

proposed. Experimental results and simulations performed on embedded hardware show that our framework can

provide a significant lifetime extension, particularly for networks with high node densities and non-uniform energy

consumption or initial battery charge.
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I. INTRODUCTION

Thanks to their increasing processing and transmission power, nodes in Wireless Sensor Networks (WSNs) have

become capable of taking decisions and acting upon the information gathered about the monitored environment.

This programmable middleware allows the deployment of applications composed of several tasks running on top

of it so as to follow the changing ambient needs. This introduces the issue of assigning tasks to the network nodes

to distribute evenly the workload and to maximize the network lifetime.

WSNs lifetime improvement has been approached from different points of view. The authors of [1] introduce

an energy aware opportunistic routing protocol aimed at keeping balance between Quality of Service (QoS) and

energy efficiency. The work in [2] proposes to balance the transmission burden on mobile nodes by predicting their

position and using a cluster routing strategy. In [3] the problem of maximizing energy saving in wireless ad-hoc

networks was addressed by proposing a collision-free MAC protocol while in Boggia [4] power saving is achieved

with a feedback based dynamic scheduler by trading off QoS and providing bounded delays.

These works do not analyze the energy consumption of a WSN with respect to the application assigned to it.

The optimal task allocation to network nodes has been investigated in [5] and [6]. However, in these works the

objective is to reduce the energy consumption at node or cluster level rather than maximizing the network lifetime.

In [7] a distributed approach to maximize a sensor network utility function for the whole lifetime of the network,

which may be defined in terms of energy consumption, is proposed. It is designed to optimize the scheduling of the

modes of operation of sensor nodes such as sensing, communication and sleeping. Differently, we aim to extend the

network lifetime of the network by dynamically reassigning processing tasks to be performed on sensed data among

nodes. In this way, the data rate of the sensed data flows travelling from sources to sink is adjusted according to a

distributed approach.

In [8], a centralized method based on mixed integer programming (MIP) was proposed to deploy applications in

a WSN and minimize its energy consumption. This paper exploits the detailed modeling of the energy consumption

of sensor nodes presented in [8] and proposes a distributed and scalable method to extend the WSN lifetime for

large networks based on iterative and asynchronous local optimizations of the task allocations between neighboring

nodes, i.e., gossip-based.

There is a significant literature regarding gossip-based algorithms in several applications. In [9] a gossip-based

distributed optimization scheme is exploited to solve a multi-vehicle routing problem with heterogeneous vehicles

which have to serve requests distributed in space. In [10] the heterogeneous multi-robot routing problem was

augmented with requests that are distributed in space but occur at specified time instants. In [11] the authors solve

a distributed task assignment problem with asynchronous and gossip-like local state updates and show improved

convergence speed with respect to the state of the art. In [12] gossip algorithms were presented in the context of

distributed averaging exploiting pairwise averaging between random pairs of nodes. In [13] gossiping is exploited

to solve the distributed averaging problem on digraphs with quantized state variables. In [14] the consensus on the

average problem in directed graphs is addressed in the case of unreliable communications. Finally, in [15] a gossip
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scheme for distributed averaging that exploits geographic information is proposed and shown to provide greater

convergence performance.

Our contribution consists in a distributed and scalable approach to the distributed task allocation problem to

maximize the lifetime of a large WSN coupled with a careful modeling and analysis of the energy consumption

processes of sensor nodes. Furthermore, simulations and experimental results with embedded hardware on a realistic

application scenario are presented.

First, we propose a distributed algorithm which estimates the network lifetime. Second, we propose a distributed

algorithm which exploits the estimated lifetime to improve the global network lifetime without exploiting knowledge

of network topology or global state information.

One advantage of the proposed distributed approach consists in the capability to deal with large sensor networks

due to a computational complexity that does not grow with network size.

This paper is organized as follows. In Section II some preliminaries and the problem statement are introduced.

In Section III the modeling of the power consumption in wireless nodes is discussed. In Section IV the proposed

distributed approach to improve the network lifetime is presented. In Section V simulation results with experimental

data obtained from embedded hardware are presented. Finally, in Section VI concluding remarks are discussed.

II. PROBLEM FORMULATION

We consider the scenario of a WSN where nodes can perform a given set of tasks, such as: data processing,

temperature measurement, video monitoring, data transmission and data storage. The set of nodes is defined as

X = {1, . . . , N}. The considered network topology is represented by a rooted acyclic graph GX = {X,EX},

where EX ⊆ (X ×X) is the set of edges that represent point-to-point communication channels between the nodes.

Edge (i, j) has its tail in node i and its head in node j, with its orientation representing the direction of the

information flow. Let D̄ be the length of the longest directed path in GX . Let N out
i = {j ∈ X : (i, j) ∈ EX} be

the set of nodes that receive information from node i and N in
i = {j ∈ X : (j, i) ∈ EX} the set of nodes that send

information to node i. Let Ni = N out
i

∪
N in

i be the neighborhood of node i. A path pij is an alternating sequence

of consecutive vertices and edges pij = {i, (i, r), r, (r, k), k, (k, j), j} without repetitions starting from node i and

ending in node j. A rooted graph contains a node, called root, which is reachable by every node in the graph by a

directed path. Fig. 1 shows an example of network topology.

 

Root node

Node

Data flow

Fig. 1: Example of network topology

The considered application is composed by a set of tasks T = {1, . . . ,Λ} divided into sensing tasks T s and

processing tasks T p, with T = T s
∪
T p. The relation among tasks is represented by the directed graph GT =
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(T,ET ), where ET = (euv) is the set of edges. Edge euv represents a unidirectional data transfer from task u

to task v. A binary state vector si ∈ {0, 1}Λ is assigned to each node. It specifies the tasks currently assigned to

the node: the state siλ is equal to 1 if node i performs task λ. Sensing task assignments are given a priori and

are not changed during the WSN operation. Since different nodes may be built with different hardware, they may

consume different amounts of power for the same task. We consider this heterogeneity of devices in the modeling

by considering different costs associated to the same task if it is executed by different nodes. Furthermore, nodes

may have different battery or initial charge. To each node i is associated a binary vector di ∈ {0, 1}Λ, which

represents the tasks that node i is allowed to execute. To simplify the notation we denote the task assignment

matrix that collects the states of all nodes as S = [s1, s2, . . . , sN ]
T and the matrix that represents all constraints

on task execution as D = [d1,d2, . . . ,dN ]
T .

Problem statement

We consider the problem of maximizing the lifetime of the network τ , intended as the time it takes for at least

one node to exhaust its energy reserve from the battery: when this happens the network topology may disconnected

and the application can not be executed [16]. The energy reserve of node i at time t is denoted by γi(t). Let Pi(S)

represent the power consumed by node i with the task assignment S, as detailed in Section III. The lifetime τi(t)

of node i corresponds to τi(t) = γi(t)/Pi(S), where it is assumed that the task assignment matrix S does not

change with time. This lifetime is to be considered in absolute terms such as the time and date when at least a

node in the network exhaust its energy reserve and disrupts the network operations. Thus, the global lifetime of

the network is

τ(t) = min
i∈X

τi(t), (1)

in the case in which all the transmission rates are constant and that the assignment defined by matrix S does not

change. A solution to this problem can be found with a centralized approach by solving the next optimization

problem

maxS mini∈X
γi(t0)

Pi(S)
,

s.t.

di ≥ si ∀i ∈ X

S ∈ {0, 1}N×Λ

(2)

The complexity of solving problem (2) grows exponentially with the number of integer variables and constraints,

therefore it is unfeasible to find an optimal solution for networks of significant size. Furthermore, full knowledge of

the state of the battery charge on the sensor nodes is needed and this requires a significant communication overhead

when considering large scale networks. In the following, the elements of the power consumption modeling that

contribute to the total consumed power Pi(S) by the generic node i are discussed.
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III. ANALYSIS OF TRAFFIC FLOWS AND POWER CONSUMPTION

In our scenario we assume that sources of traffic in the network (the sensors) generate samples of k bits at
a certain frequency f . The generic node i receives a number of incoming traffic flows represented by vector
Φin

i = (ϕin
i1 , ..., ϕ

in
ih′

i
), where each element is a traffic flow (bit/sec) and h = 1, . . . , h′

i are the labels of the traffic
flows incoming from its in-neighbors. The output traffic Φout

i ∈ Rh′
i of node i, can be modeled as

Φout
i = pi(Φ

in
i , si), (3)

where pi(·) : Rh′
i × {0, 1}Λ → Rh′

i is a look-up table that makes a correspondence between the incoming traffic
flows, the processing performed by node i on these traffic flows and the output traffic. The number of elements
in Φin

i is equal to that of Φout
i . The elements of vector Φout

i = (ϕout
i1 , ..., ϕout

ih′
i
) correspond to traffic flows with

samples of size koutih bits transmitted at frequency fout
ih . If node i is aware of the incoming traffic flows Φin

j , the
processing assignment sj and the look-up tables of its in-neighbors j ∈ N in

i , then it can compute its output traffic
flows as

Φout
i = pi

∑
j∈Ni

pj
(
Φin

j , sj

)
, si

 . (4)

For each task, the look-up table of each node pi(·) has to be experimentally identified. For our objective, this

operator is needed to figure out the traffic flows that will be traversing the network for each deployment scenario.
Power consumption in WSNs is determined by three main components: sensing, processing and transmission.

The power consumption of node i due to sensing is expressed as

P sens
i =

∑
λ∈Ts

fout
i × esens

iλ × siλ, (5)

with esensiλ representing the energy consumption to perform the sensing task λ. Variable siλ is equal to 1 if the task
is being executed, it is zero otherwise. fout

i is the frequency of generated output data. The node power consumption
due to processing is expressed as

P proc
i =

∑
λ∈Tp

h′
i∑

h=1

fout
ih × eprociλ (ϕin

ih)× siλ, (6)

where eprociλ is the processing energy consumption, which depends on the processing task λ that has to be executed
and on the input traffic ϕin

ih . Since the processing cost depends on the number of instructions per second executed
by the node, P proc

i is proportional to the frequency fout
ih of each of the h traffic flows, where h′

i is the size of
Φout

i . Power consumption due to transmission of information is

P tx
i = fi ×

∑
j∈Nout

i

etxij
(
Φout

i , δij
)
, (7)

where fi is the transmission frequency and etxij , defined in [17], is the transmission energy consumption that
depends on: the data to be transmitted Φout

i ; the characteristic parameters of node i; the characteristic parameters
of all the nodes that receive data from node i and their distance δij from node i. Given (5)-(7), the overall power
consumption of node i due to the tasks assignment S can be modeled as

Pi(S) = P sens
i + P proc

i + P tx
i . (8)

With a slight abuse of notation the power consumption of node i may also be denoted Pi(sk : k ∈ N in
i

∪
{i}) to

show that (assuming the input flows Φin
j for j ∈ N in

i are known) it depends only on the task assigned to node i

and to its in-neighbors. A detailed analysis of power consumption in WSNs can also be found in [8].
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IV. PROPOSED ALGORITHMS

We now propose two distributed algorithms which provide an approximate solution to problem (2). First, the

Minimum Lifetime Estimation (MLE) algorithm, is used to spread information about the current minimum node

lifetime in the network. It consists in a broadcast message that is updated every time it is retransmitted by the nodes

until all the nodes in the network received at least one of these messages. By the execution of this algorithm each

node estimates the minimum node lifetime in the set of nodes included in all the paths between itself and the sink.

A similar idea has been exploited for time synchronization in sensor networks [18].

Second, the Decentralized Lifetime Maximization Algorithm (DLMA), executes an iterative local optimization

between neighboring nodes exploiting information only locally available to locally reassign the processing tasks

to the nodes. The basic idea to achieve the maximization on the network lifetime through a distributed algorithm

is to use the information provided by Algorithm MLE to iteratively execute the local optimizations of Algorithm

DLMA, while guaranteeing a monotonic increase in the network lifetime.

We now introduce some preliminaries needed to describe Algorithm MLE. Let Xi = {j ∈ X : ∃piN} be the set

of all the nodes contained in the path from node i to the root. To each node i ∈ X a variable xi is assigned to it to

represent its current estimation of the minimum node lifetime of the nodes in the set Xi. Consider a set of instants

of time t1, t2, . . . tk which represents the instants of time in which local state updates are performed. The root node

i = N sends to all its in-neighbors j ∈ N in
N the value of its lifetime τN . All the other nodes, at each instant of time,

send their current estimation xj(tk) to all their in-neighbors. Whenever a node i receives an estimation update by an

out-neighbor, it updates its own minimum lifetime estimation according to xi(tk+1) = min{τi, xj(tk) : j ∈ N in
j }.

In Algorithm MLE we state our lifetime estimation method.

Algorithm: Minimum Lifetime Estimation (MLE)
1 - Each node i ∈ X initializes variable xi(t0) = τi its own lifetime and continuously executes the next

operations.

2 - Every T units of time, the root node i = N sends the value of xN (tk) to the nodes in its in-neighborhood

N in
i .

3 - Whenever a node i receives a message from its out-neighbors, it updates its local estimation according to

xi(t
+) = min{τi, xj(tk) : j ∈ N out

j } and sends its new estimation xi(t) to its in-neighborhood N in
j .

Algorithm MLE can be seen as a wave of messages triggered by the root node that propagates from the root to

the leaves of the network. As soon as the wave has completed its path, each node i becomes aware of the value of

the minimum lifetime between the nodes in the set Xi.
Proposition 4.1: Let graph GX be rooted and acyclic. If a message reception/transmission cycle is performed by

each node in at most T units of time and D̄ is the length of the longest directed path in GX , then in at most T · D̄
units of time, each node i estimates a lower bound on the minimum lifetime of the nodes in set Xi

∀i ∈ X, xi(t) = min
j∈Xi

{xj(t− T · D̄)} = min
j∈Xi

{τj(t− T · D̄)}.
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Proof: See Appendix A. �
The root node is supposed to initialize Algorithm MLE periodically each T units of time. This is necessary

to keep the information about the minimum network lifetime updated in each node. The execution of Algorithm

MLE is independent from the execution of Algorithm DLMA. On the contrary, the execution of Algorithm DLMA

requires the information about the network lifetime.
We now focus on the core of proposed technique, the Decentralized Life Maximization for WSNs Algorithm

(DLMA). It consists in a local state update rule that nodes apply to their state if triggered by an incoming request
message. In the following, let tk be the instant of time in which the local state update rule at step 2 of Algorithm
DLMA is triggered and let tk+1 be the instant of time of the next update. The execution of the proposed state
update has an energy cost. Let us define Êi as the upper bound to the energy spent by solving the local optimization
in node i. The node that is expected to execute the optimization, knows its lifetime and corresponding expected
lifetime decrement if it executes DLMA:

τi(tk+1) =
γi(tk)− Êi

Pi
, and ∆τi =

Êi

Pi
. (9)

Clearly, at each iteration of the algorithm, the lifetime of each node may change. Such local state update rule

is always triggered by a node toward its in-neighbor nodes. The dependencies of Φout
i on its input parameters is

implied.

Fig. 2 shows a flow diagram that explains the basic ideas behind the proposed method.
Remark 4.2: Note that the conditions that trigger the execution of the optimization algorithms in the local state

update rule at step 2 of Algorithm DLMA

τi > min
j∈N in

i

∪
{i}

τj +∆τi (12a)

τi >xi +∆τi (12b)

ensure that the algorithm is not triggered whenever DLMA execution on a node is not expected to improve the

network lifetime, either because its outcome cannot be better than the current one or its execution would be too

demanding for that node, it is not triggered. �
In Theorem 4.3 it is proven that at each iteration k of the Algorithm DLMA, the objective function of (2) is either

improved or does not change.

Theorem 4.3: During the execution of Algorithm DLMA, at each instant of time tk in which tasks are reassigned,

the global network lifetime may not decrease. It holds τ(t) ≥ τ(tk), ∀t > tk.

Proof: See Appendix B. �
Algorithm DLMA offers several advantages with respect to centralized algorithms. Both problems (10) and (11)

are hard to solve. However, the computational complexity of the local optimization depends only on the number

of nodes locally involved, thus despite being a MILP problem, its complexity does not grow with the size of the

network and is small in absolute terms if the number of locally executed tasks is small. Additionally, since the

allocation of processing is dynamic, the algorithm reacts to unexpected drops in battery charge by locally changing
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Each node measures its own 

lifetime and executes 

Algorithm MLE.

The node selection process 

triggers node i to execute the 

local state update. Each node 

gets the estimated network 

lifetime from the MLE 

algorithm executed in parallel.

Start

Node i solves the 

optimization 

problem (13) 

and updates its 

state and the one 

of the neighbors

Node i solves the 

optimization 

problem (14) 

and updates its 

own state.

No

Yes

No

End
Yes

Is the lifetime of node i

greater than the 

minimum lifetime of 

its neighbors plus a 

fixed margin?

 

Is “Stop criterion” 

verified?

No
Yes

Is the lifetime of node i

greater than the 

minimum lifetime 

estimated by 

algorithm MLE plus a 

fixed margin? 

No

No

Fig. 2: Flow diagram of Algorithm DLMA.

the status of the nodes involved, a centralized approach would require a full scale optimization with intractable

complexity to address this issue.

Remark on changes to network lifetime due to external causes. Theorem 4.3 states that the network lifetime

is improved continuously by the execution of Algorithm DLMA. It implies that if the network lifetime changes

abruptly, for instance due to a sudden drop in battery charge due to a fault, the proposed approach will continue to

locally reallocate tasks improving the new network lifetime seamlessly since no global information is exploited in

the optimization process. To optimize resource usage, the Algorithm DLMA exploits a stop criterion not to execute

unnecessary iterations. However, if a fault occurs, it is detected by either surrounding or faulty nodes which then

should trigger a restart procedure of the algorithm.
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Node selection processes. We now discuss two node selection strategies to be implemented at step 1 of Algorithm

DLMA to identify which node executes a local update rule. The first, a deterministic node selection process, is

defined by function v(t) : R+ → X
∪
{∅} that at each step k selects the out-neighbors of the nodes chosen at step

k− 1. The root node executes the local state update periodically with period T , this triggers an avalanche of local

state updates involving first its neighbors and then all other nodes. The period T in which the root node triggers its

neighbors controls the frequency of local optimizations in the network. Since the graph is acyclic, once leaf nodes

are triggered the local optimizations stop.

The second, a stochastic node selection process, is defined by a random stochastic process v(t) : R+ → X
∪
{∅},

which assigns to each node a probability pi (with i = 1, . . . , N ) of activating a local optimization at each instant

of time t.

The advantages of the deterministic node selection process are that it terminates in finite time, gives complete

control over frequency of local optimization to the root node and ensures that local optimizations are triggered

evenly throughout the network. The advantages of the stochastic node selection process are that it is simpler to

implement and does not require time or event synchronization in the network.

In Section V these different approaches to node selection are compared through simulations and experimental

results.

Stop criterion. We now discuss a stop criterion for Algorithm DLMA.

Definition 4.4 (Stop Criterion): Consider a deterministic node selection process such that in at most every DT

units of time every node has executed the local update according to Algorithm DLMA. Then, for each node i selected

to perform Algorithm 2, if xi(t) = xi(t
′) for t ∈

[
t′, t′ + D(D+3)

2 · T
]
, assign to node i Stop criterion := True

and stop the execution of Algorithm DLMA at node i. �
Next, it is shown that when the stop criterion in Definition 4.4 is satisfied any further execution of Algorithm

DLMA cannot improve the network lifetime.

Proposition 4.5: During the execution of Algorithm DLMA and Algorithm MLE if a deterministic node selection

process is implemented and each node verifies the conditions for the stop criterion in Definition 4.4 then Algorithm

DLMA cannot further improve the network lifetime.

Proof: See Appendix C. �

Computational complexity and optimization cost. The local state update rule at step 2 of Algorithm DLMA
involves the solution of a Mixed Integer Linear Programming (MILP) problem. It is known that to solve it is
required a number of operations that grows exponentially with respect to the number of variables. The feasibility
of solving the considered MILP problem in an embedded system such as a sensor node, depends on the number
of processing tasks to be considered. In the worst case, the number of required operations is at most equal to the
number of operations required to perform an exhaustive search between all the possible combinations of processing
assignments. Let Eo denote the energy required to evaluate one of the objective functions of the local state update
rule of DLMA for a given task assignment and verify that the constraints of the local state update rule are satisfied.
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The number of possible processing assignments (pa) in the generic in-neighborhood N in
i of node i, when it performs

the local state update, is Ni,pa = 2
1T ∑

j∈Nin
i

∪
{i}

∑
λ∈Tp djλ

. The energy cost to perform the state update on node
i is at most

Êi ≤ Eo ×Ni,pa = Eo × 2
1T ∑

j∈Nin
i

∪
{i}

∑
λ∈Tp djλ

. (13)

Remarks on packet loss, time delays and dynamic topology. Packet loss and time delays do not affect

the algorithm performance since only asynchronous local optimizations which require only local information are

exploited. The order in which optimizations are executed does not affect the end result of the algorithm. If a state

update fails due to communication failures due to significant packet loss, then the state update is simply not executed

and this does not affect the global algorithm performance as long as eventually, after a sufficiently long time, a

state update involving the same nodes is successful. Therefore, one of the advantages of our approach is that it

is robust with respect to packet loss and time delays. Furthermore, since the proposed method does not require

knowledge of network topology, if it changes during execution it does not affect the algorithm performance. This

holds true as long as the network is connected and topology changes do not occur with frequency greater than

the convergence time of Algorithms MLE which is in the order of seconds as shown in Table IV in the proposed

experimental results in Section V.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, the scenario of an urban environment, where nodes have been positioned along the streets as

shown in Fig. 3, is considered. Solid circles represent Arduino UNO [19] nodes equipped with sensors for speed

measurement of the vehicles passing through; speed measurements are sent every 2 minutes and are 64-bit long.

Empty circles are smart Arduino DUE [20] nodes not equipped with sensors but able to execute more processing

operations. We considered an application that provides to drivers information on which the best path from the

“Start” to the “Destination” point is, in terms of minimum travel time, based on the speed information collected by

sensor nodes. Nodes communicate using the XBee-PRO DigiMesh 2.4 [21] radio interfaces on the 2.4 GHz ISM

Fig. 3: Network topology. Solid circles represent sensor nodes, empty circles represent smart nodes.

frequency band. The characteristic parameters of the considered hardware can be found in [19], [20], [21]. We tested

the resulting scenario implementing the proposed algorithms on the Arduino nodes and compared the performance

of the DLMA algorithm against three alternative methods denoted as C, CH and CO in terms of network lifetime

improvement:
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• method C: All processing tasks are assigned to a Coordinator (the sink) (no intermediate processing);

• method CH: Processing tasks are given a priori to Cluster Heads found in the path towards the Coordinator

(some intermediate processing);

• method CO: Centralized optimization proposed in [8].

The considered application has been divided into 11 sensing tasks and 37 processing tasks. A speed sensing task

related to a particular stretch is assigned to a sensor node only if the sensing node is placed in that stretch.

Furthermore, since knowledge of the mean travelling time for each stretch is needed in order to compare them to

each other, 11 mean speed computing processing tasks and 11 mean travelling time computing processing tasks

have been considered, one for each stretch of street. To find the best path, we sum the mean travelling times of all

the combination of stretches that can be driven one after the other, and compare them. Therefore, the remaining

processing tasks are: 12 different summation of mean travelling times for different stretches, and 3 different choice

of the best path. With reference to Fig. 3, solid markers represent nodes that perform the speed sensing and mean

speed computing for the stretch of the street where they are placed. Empty markers are more capable nodes (with

an initial battery charge three times higher than the others) which can execute all the processing tasks.

The algorithm has been preliminarily tested on a small scale network using 5 Arduino UNO and 2 Arduino

DUE boards. To implement the DLMA algorithm, the GLPK (GNU Linear Programming Kit) library [22] has been

used. The GLPK is a set of routines, written in ANSI C, intended for solving MILP problems. In particular, the

routine to solve MIP problems based on the branch-and-bound method has been used (glp intopt, solve mip and

preprocess and solve mip functions). Starting from it, the code has been tailored to the specific DLMA problem

that a node is required to execute, taking into account only those processing tasks that it is able to perform. The

obtained performance has been used to profile the boards’ behaviour, and accordingly simulate the algorithm on

the full network, using Matlab.

Test results are shown in Table I. A significant improvement of network lifetime of 94.5% and 88.9% is observed,

which is almost twice as long, when comparing our proposed method with a deterministic node selection process,

against the CH and C methods. A similar improvement of 94.9% and 91.3% has been measured also if nodes are

selected randomly. The centralized optimization method CO performs better by roughly 30%, but as previously

discussed it requires the solution of an optimization problem whose complexity grows exponentially with the size

of the network and therefore has intractable complexity in large scale networks and furthermore a centralized

implementation may not be feasible. Indeed, while methods DLMA, C and CH were implemented on Arduino

UNO and DUE, to implement method CO a modern desktop computer was needed.

With respect to node selection, results are quite similar, but we observe that stochastic node selection slightly

outperforms the deterministic one.

Table II shows how the two algorithms affect memory availability of a node, compared to the CO algoritm [8]. An

Arduino UNO board represents a sensor node while an Arduino DUE represents a smart node. Since the amount of

resources needed by the CO method was too high for an Arduino node, it has been run on an Intel Core i7 2.40 GHz

machine with 6,00 GB RAM. Results reflect the proportionality between computational complexity and number of
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tasks that nodes are able to perform. We observe that memory is not critical for MLE and DLMA execution, with

the exception of the RAM required on sensing nodes, which are usually equipped with less memory and processing

resources. Results show that nodes need at least 2 kB RAM to perform DLMA. Fortunately, with current technology

typical WSN nodes that are able to perform simple tasks usually have more than 2 kB RAM.

In Table III results related to processing capabilities to perform DLMA compared to CO are provided. In particular,

the following results are reported:a) the probability that the algorithm is triggered on a node; b) the average number

of steps per node, i.e. the average time each node performs DLMA before it converges to a solution; c) the average

energy spent by each node per step of the algorithm execution; d) the average time needed by a node per step of

the algorithm execution. Whenever DLMA execution on a node is not expected to improve the network lifetime,

either because its outcome cannot be better than the current one or because its execution would be too demanding

for that node, it is not triggered. From test results we estimated that the probability that DLMA is triggered on

a node is more than 95%: its execution is not convenient only less than 5% of the times. The deterministic node

selection mechanism seems to lead to a lower amount of steps, and consequently it requires lower processing costs.

Even though processing capabilities are much lower on the considered sensing and smart nodes than those of the

computer used to run method CO (respectively 0.67% and 3.5%), energy cost due to processing resulted to be

much lower with DLMA rather than method CO.

In Table IV, the average convergence times tMLE and tDLMA to perform algorithms MLE and DLMA are

compared to the related average time tCO to execute method CO. These results are computed taking into account not

only execution time, but also signalling transmission and reception time due to the algorithms. Note that convergence

time depends on the optimization complexity, which depends on the number of variables, and consequently on

the number of nodes and tasks involved in the optimization. Although this number is quite high for the reference

scenario, the total amount of time for the algorithms to converge is still low, especially if compared with centralized

algorithm CO. In fact, the DLMA complexity only depends on the number of processing tasks that a node can

perform (1 for sensing nodes, 4 for smart nodes) and the number of incoming neighbors. On the other hand, the

CO complexity depends on the whole number of tasks and nodes that the network is made of.

It needs to be noticed that conditions (12a) and (12b) ensure that the local optimization algorithm is never started

if its outcome cannot be better than the current one or if its execution would be too demanding for that node.

This implies that the local optimization is not executed if it involves a significant number of nodes and tasks and

the energy reserve is low. Therefore, only local optimization which take little time to be solved are likely to be

executed thus shortening the convergence time of DLMA. The monotonic increase of lifetime is attested by the

simulation in Fig. 4(a), where an example of the network lifetime improvement for each DLMA step is shown,

with the network lifetime evaluated according to Eq. 1. Note that, for the sake of simplicity, in this figure only the

power consumption due to the tasks assigned to the nodes is taken into account, disregarding other causes of power

consumption (e.g. sleep-wake cycle). Each step corresponds to the local optimization computed on one node. The

same simulation of DLMA execution is used to compute the expected total power consumption in Fig. 4(b): we can

observe that the expected total power consumption decreases while DLMA converges, though not monotonically.
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Fig. 4: Example of expected network lifetime and total power consumption improvement during DLMA execution

VI. CONCLUSIONS

In this paper the problem of deploying distributed applications in a heterogeneous WSN has been investigated.

We proposed a distributed approach to maximize the network lifetime by distributing efficiently the workload

among sensor nodes. The proposed algorithm requires only asynchronous local state updates and exploits local

information. We provided simulations and experimental results on Arduino boards that show significant advantages

with respect to approaches where data is processed only by the Coordinator, by Cluster Heads or a centralized

off-line optimization is performed.
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APPENDIX

A. Proof of Proposition 4.1

When the root node sends the first message to its in-neighbors, after T · d units of time all the nodes whose

minimum path from the root node is less than or equal to d have performed a local state update, setting their state

to the minimum value found along the path. If GX is connected then all nodes will be triggered. If it is acyclic,

when the furthest nodes at distance D̄ from the root are reached by these messages the algorithm stops. Thus, after

T · D̄ units of time, variable xi of each node corresponds in value to the minimum node lifetime of nodes along

the path that connects node i with the root node, i.e., set Xi. �

B. Proof of Theorem 4.3

Let V (t) = 1
τ(t) = mini∈X

Pi(S)
γi(t)

be the inverse of the minimum lifetime in the network at time t, held by nodes

with the smallest ratio between power consumption and energy reserve. During the algorithm execution, at each

iteration k two cases may occur. Case 1: the state matrix S of the network does not change, then V (tk+1) = V (tk)

by definition. Case 2: the state matrix S changes according to the solution of the local optimization problem

(10)-(11). The solutions of problems (10) and (11) minimize locally the power consumption for the node with

the shortest lifetime between nodes i and j ∈ Ni only if the lifetime of the node performing the optimization

is greater than the minimum lifetime in its neighborhood by at least ∆τi. Thus, the state S is updated only if

minj∈N in
i

∪
{i}

γj

Pj(sk:k∈Ni
∪
{i}) > minj∈N in

i

∪
{i} τj(S̄) causing V (t) < V (tk) for t > tk, or τi > xi + ∆τi

causing
∑

j∈N in
i

Φout
j to be minimized. Since xi(tk) ≤ minj∈Si τj thanks to the execution of Algorithm MLE,

the constraints of the optimization ensure that locally the lifetime is not reduced to less than the minimum lifetime

among nodes in Xi. A local state update is performed only if each information flow passing from node i to nodes

in N out
i does not increase, i.e., Φout

i ≤ Φ̄out
i . The transmission cost of nodes in N in

i can only decrease as Φout
i

is decreased, as shown in (7), and their processing cost cannot increase, as shown in (6). Nodes in the downstream

path towards the sink receive a smaller information flow thus consume less power. The nodes in the upstream path
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have their information flow unchanged. Thus, after each local state update, the global network lifetime may only

improve, i.e., τ(t) ≥ τ(tk) for t > tk. �

C. Proof of Proposition 4.5

Consider the case in which the conditions for the stop criterion in Definition 4.4 are verified and the network is

executing a deterministic node selection process.

Whenever the minimum network lifetime is improved, due to Proposition 4.1 after at most TD̄ units of time

all nodes interested by the change become aware of it. Thus, if any node in the network does not change its state

nor detects a change of state of its neighbors or on its estimation of the minimum network lifetime for at least
D̄(D̄+1)

2 T+TD̄ units of time it implies that each node in the network already attempted a local state update without

changing its own state. Therefore, no further execution of Algorithm DLMA may change the state of the network

and consequently cannot improve the current minimum network lifetime. �
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Algorithm: Decentralized Life Maximization for WSNs (DLMA)
Each node i ∈ X is initialized with the residual energy of the battery γi(t0) and state siλ = {0}, ∀λ ∈ T p (no

processing assigned). Let k = 0 and t0 = 0.

while Stop criterion=False do
1 - According to the node selection process v(tk), node i is triggered at time tk. Node i, with current

state s̄i and output traffic flow Φ̄out
i enquires the state s̄j and input traffic Φ̄in

j for all j ∈ N in
i .

2 - Node i executes the following Local state update rule:

• if τi > minj∈N in
i

∪
{i}τj +∆τi, then

solve the next local MILP problem:

min α

s.t.

Pj(sk:k∈N in
i

∪
{i})

γj(tk)
< α ∀j ∈ N in

i

Pi(sk:k∈N in
i

∪
{i})

γi(tk)−Êi
< α

dj ≥ sj ∀j ∈ N in
i

∪
{i}

Φout
i ≤ Φ̄out

i

α ∈ R+

siλ ∈ {0, 1} ∀j ∈ N in
i

∪
{i}, λ ∈ T p

(10)

and denote the solution αopt, sopt,k : k ∈ N in
i

∪
{i}. Set the new assignments sj = sopt,j ,

∀j ∈ N in
i

∪
{i}.

• if τi > xi +∆τi, then
let α = maxj∈Xi

1
τj

and solve the following local MILP problem:

min Φout
i (Φin

j , sj , si) j ∈ Ni

s.t.

Pj(sk:k∈N in
i

∪
{i})

γj(tk)
< α ∀j ∈ N in

i

Pi(sk:k∈N in
i

∪
{i})

γi(tk)−Êi
< α

dj ≥ sj ∀j ∈ N in
i

∪
{i}

Φout
j ≤ Φ̄out

j , ∀j ∈ N in
i

siλ ∈ {0, 1} ∀j ∈ N in
i

∪
{i}, λ ∈ T p

(11)

and denote the solution sopt,j : j ∈ N in
i

∪
{i}. Set new assignments to sj = sopt,j , ∀j ∈ N in

i

∪
{i}.

3 - Let k = k + 1.
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TABLE I: Improvement of network lifetime due to the DLMA algorithm with respect to methods C, CH and CO

Deterministic selection Stochastic selection

DLMA-C 93.4% 94.9%

DLMA-CH 88.9% 91.3%

DLMA-CO -32.2% -27.4%

TABLE II: Memory usage per node required by MLE and DLMA algorithms, compared with CO

MLE + DLMA CO

Sensing node Smart node

Memory req. 19.3 kB (60.3%) 20.6 kB (4.0%) 0.39 MB

to store data

Max RAM req. 1.8 kB (90%) 15.6 kB (16.3%) 13.9 MB

TABLE III: Resource usage per node: DLMA compared with CO

DLMA CO

Det. sel. Sto. sel.

Trigger Probability 95.0% 95.8% –

Number of steps 2.4 3.0 –

Energy per step
Sensing node 0.25 µJ

16.3 J
Smart node 2.04 µJ

Time per step
Sensing node 158 µsec

377 sec
Smart node 239 µsec

TABLE IV: Average conv. time (sec) of MLE, DLMA and CO

Deterministic selection Stochastic selection

tMLE[s] 0.10 0.13

tDLMA[s] 0.65 0.83

tCO[s] 377
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