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Abstract

Observation structures considered for Petri net generators usually assume that the firing of transitions may be

observed through a static mask and that the marking of some places may be measurable. These observation structures,

however, are rather limited, namely they do not cover all cases of practical interest where complex observations

are possible. We consider in this paper more general ones, by correspondingly defining two new classes of Petri

net generators: labeled Petri nets with outputs (LPNOs) and adaptive labeled Petri nets (ALPNs). To compare the

modeling power of different Petri net generators, the notion of observation equivalence is proposed. ALPNs are

shown to be the class of bounded generators possessing the highest modeling power. Looking for bridges between the

different formalisms, we first present a general procedure to convert a bounded LPNO into an equivalent ALPN or

even into an equivalent labeled Petri net (if any exists). Finally, we discuss the possibility of converting an unbounded

LPNO into an equivalent ALPN.
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I. INTRODUCTION

Discrete event systems (DESs) are processes whose state space is discrete and whose evolution is driven by the

occurrence of events. The behavior of a logical, i.e., untimed, DES can be described in terms of sequences that

specify the order of event occurrences. Such behavior can be represented by means of a formal language whose

alphabet is the event set of a DES and the event sequences are words in that language. The issue of representing

languages using appropriate modeling formalisms is a key issue for performing analysis and control of DESs [1].

It is often assumed that the initial state of a system is known but the system dynamics is not perfectly known due

to partial observations provided by sensors. The set of events is partitioned into two disjoint sets: observable events

whose occurrences can be detected by sensors and unobservable ones whose occurrences cannot be detected. In this

paper, Petri net generators are considered, where the state is given by token distribution on places, and events are

represented by transitions. A classical Petri net generator to model systems with the aforementioned observation

structure is the so called labeled Petri net (LPN). LPNs have been adopted by many researchers to analyze and

control a DES [2]–[6]. In [7]–[11] a more general model where state information may also be provided by sensors

is considered: in particular they assume that some places of a Petri net may be observable, i.e., the number of

tokens that they contain can be measured. In this case, there are two types of observations: labels of transitions and

components of markings. Such a class of Petri net generators is usually called partially observed Petri nets (POPNs)

[10], [11]. This class of generators has been extend in [12] considering observations that are linear functions of

the marking and thus can model sensors that are not able to provide precise measurements of the state components

but only information such as the total amount of available resources regardless of their distribution. However, this

type of observation cannot describe affine or general nonlinear functions of the marking.

In this paper we aim to better formalize and generalize current Petri net observation structures. We show how

different structures can be used to naturally model different types of sensing devices, we compare them and present

algorithms to convert one structure into another one if possible. Two more general classes of Petri net generators

are considered: labeled Petri nets with outputs (LPNOs) and adaptive labeled Petri nets (ALPNs) [13], [14].

• An LPNO can be thought of as a labeled Petri net endowed with additional state sensors: an output function

provides an observation that is an arbitrary function of the current net marking. Therefore, in an LPNO there

are two types of observations: event observations generated by the labeling function and state observations

generated by the output function.

• An ALPN can be regarded as a labeled Petri net whose labeling function depends on the current marking, i.e.,

the observation produced by a transition firing may change as the net evolves.

We believe that each of these two classes of generators represents a useful modeling formalism in the system design

stage providing an intuitive way to capture the logical observation structure (in terms of event and state sensors)

needed to solve a control or optimization problem. Examples are given in Section III. When a physical system

must be equipped with available commercial sensors it may be convenient to substitute a state sensor (possibly

too expensive or unreliable or difficult to implement if the state is not accessible) with additional event sensors
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that provide an equivalent observation, or vice versa. For this reason it may be useful to study procedures for

transforming between models.

In the first part of this paper, to compare the modeling power among different classes of Petri net generators, the

notion of observation equivalence is proposed. Two Petri net generators are said to be observation equivalent if i)

they have the same net structure and, ii) for an arbitrary firing sequence that occurs in the two generators, the state

and sequence estimations reconstructed the two observations are identical (we refer to Definition 11 for a precise

definition). We point out that the notion of observation equivalence proposed in this paper is not related to what the

observer sees (e.g., the observed language) but rather to what the observer can infer about the system’s dynamical

evolution. Thus the results presented herein are relevant to addressing a wide range of problems that are currently

investigated in the DES literature, such as state estimation, failure diagnosis or opacity [4], [5], [15], [16].

Ru and Hadjicostis [10] showed that for any POPN there exists an observation equivalent LPN. In the paper, we

generalize this result to the larger class of LPNOs whose output function is an affine function, called labeled Petri

nets with an affine output function (LPNAFs). We also show that LPNOs and ALPNs have higher modeling power

than LPNs and are not comparable between them.

Finally, we restrict our attention to bounded Petri net generators that describe systems with a finite state space. In

this case we prove that any bounded LPNO can be converted into an observation equivalent ALPN. This implies that

ALPNs are the class of bounded generators with higher modeling power. This motivates us to study the conversion

from bounded LPNOs into ALPNs. In particular, an algorithm to convert a bounded LPNO into an observation

equivalent ALPN is proposed. The algorithm relies on the vertex coloring of a special graph and can be used to

determine the ALPN with a minimal alphabet or, if it exists, an LPN observation equivalent to the given bounded

LPNO. A sufficient and necessary condition for the existence of an LPN equivalent to a given bounded LPNO is

also developed. Finally, we show that in some cases the conversion is applicable to unbounded LPNOs.

We believe the aforementioned conversion procedure to have several merits.

• First, finding a conversion procedure between two different formalisms has a theoretical interest per se

and in the literature several approaches of this type have been proposed for models of concurrent systems

(e.g., communicating sequential processes, place/transition nets, process algebra) or performance models (e.g.,

stochastic Petri nets, queueing networks).

• Second, if an automatic conversion procedure from LPNOs to ALPNs is available, it is sufficient to derive

approaches for analysis and design of the most general class ALPNs rather than for each model. As a particular

case, in this conversion an LPN may be obtained and several results concerning this model have already been

presented in the literature [2]–[6].

This paper is organized as follows. Section II recalls the notions of Petri nets and existing Petri net generators.

Formal definitions of labeled Petri nets with outputs and adaptive labeled Petri nets are presented in Section III. In

Section IV we formally state the notion of observation equivalence based on which the modeling power between

different classes of Petri net generators is compared. An algorithm that converts a bounded LPNO into an observation

equivalent ALPN is developed in Section V where the number of labels of the observation equivalent ALPN is also
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discussed. Then in Section VI, a sufficient and necessary condition for the existence of the observation equivalent

LPN to a bounded LPNO is reported, and the corresponding conversion algorithm is presented. In Section VII the

conversion of unbounded LPNOs is studied. Finally, conclusions and future work are presented.

II. BACKGROUND

In this section the formalism used in the paper is introduced. For more details on Petri nets, we refer readers to

[17].

A. Petri Nets

A Petri net is a structure N = (P, T, Pre, Post), where P is a set of m places graphically represented by circles;

T is a set of n transitions graphically represented by bars; Pre : P × T → N and Post : P × T → N are the pre-

and post-incidence functions that specify the arcs directed from places to transitions, and vice versa, where N is

the set of non-negative integers. We also denote by C = Post− Pre the incidence matrix of a net.

A marking is a vector M : P → N that assigns to each place a non-negative integer number of tokens, represented

by black dots. We denote by M(p) the marking of place p. For economy of space, a marking can also be denoted

as M =
∑

p∈P M(p) · p. A Petri net system 〈N,M0〉 is a net N with an initial marking M0.

A transition t is enabled at marking M if M ≥ Pre(·, t) and may fire yielding a new marking M ′ = M+C(·, t).

We use M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉M ′ to denote

that the firing of σ yields M ′. The set of all transition sequences that can fire in a net system 〈N,M0〉 is denoted

by L(N,M0) = {σ ∈ T ∗|M0[σ〉}, where T ∗ denotes the Kleene closure of T , i.e., the set of all sequences over T

including the empty sequence ε.

A marking M is reachable in 〈N,M0〉 if there exists a firable sequence σ ∈ L(N,M0) such that M0[σ〉M . The

set of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted by R(N,M0). A

Petri net system is bounded if there exists a non-negative integer K ∈ N such that for any place p ∈ P and for

any reachable marking M ∈ R(N,M0), M(p) ≤ K holds.

B. Labeled Petri Nets

We consider the case in which an external agent (e.g. the supervisor in a supervisory control problem, or the

intruder in an opacity problem) that knows the initial marking and the structure of the PN but observes the firing

of transitions through a mask. A common assumption is that of considering the mask as a projection from the set

of transitions T to an alphabet Σ which represents available sensors readings [5], [15], [18]. The mask is possibly

evasive, i.e., the output label assigned to a transition may either be a symbol from the alphabet or the empty string

ε to denote that the firing of the transition does not produce an observable reading. A transition of the latter type

is said to be unobservable (or silent). Such an observation structure can be formalized as follows.

Definition 1: A labeled Petri net (LPN) is a generator GL = (N,M0,Σ, `), where 〈N,M0〉 is a Petri net system,

Σ is an alphabet (a set of labels), and ` : T → Σ ∪ {ε} is a labeling function that assigns to each transition t ∈ T

either a symbol from Σ or the empty word ε. �
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Fig. 1. Petri net system

The labeling function used in this work and defined above is called an arbitrary labeling function, i.e., different

transitions may share the same label and also a transition may be labeled with the empty word.

Given a firing sequence σ, the corresponding observation generated by the observation function is defined as

follows.

Definition 2: Given an LPN GL = (N,M0,Σ, `), the observation function of GL is defined as a mapping LL :

T ∗ → Σ∗ that associates a firing sequence σ = t1t2 · · · tk with the observation w = LL(σ) = `(t1)`(t2) · · · `(tk).

�

Example 1: Consider an LPN GL = (N,M0,Σ, `), where 〈N,M0〉 is shown in Fig. 1, Σ = {a} and `(t1) = a.

Let σ = t1t1. Then the observation produced is w = LL(σ) = aa. �

C. Partially Observed Petri Nets

In addition to sensors that detect the firing of transitions, it may also be possible to have sensors that provide

information on the markings of a net. Several researchers studied Petri nets where some places are observable, i.e.,

their token content [7]–[10], or even more general, a linear combination of their token contents [12] is known. Such

observation structures can be formalized as follows.

Definition 3: A partially observed Petri net (POPN) is a generator GP = (N,M0,Σ, `, V ), where (N,M0,Σ, `)

is an LPN, PO ⊂ P is a set of observable places and V ∈ R|PO|×|P | is a place sensor configuration, where R

denotes the set of real numbers. �

The observations in a POPN are strings of triple (observation of the start state, label of the transition, observation

of the reached state).

Definition 4: Let GP = (N,M0,Σ, `, V ) be a POPN and σ = t1 · · · tk be a firing sequence with M0[t1〉M1 · · ·

Mk−1[tk〉Mk. The observation function of GP is defined as a mapping LP : T ∗ → N|Po|×Σ×N|Po| that associates

sequence σ with the observation

sP = LP (σ) = (MV 0, `(t1),MV 1) · · · (MV k−1, `(tk),MV k),

where MV i = V ·Mi and i ∈ {0, 1, 2, · · · , k}.

As a particular case, (MV i, `(t),MV j) is defined as the null observation, if `(t) = ε and MV i = MV j . �

Example 2: Consider a POPN GP = (N,M0,Σ, `, V ), where 〈N,M0〉 is shown in Fig. 1, Σ = ∅, `(t1) = ε,

and V = [0 1]. Let σ = t1t1. Then we have M0[t1〉M1[t1〉M2, where M1 = [1 1]T and M2 = [0 2]T . Therefore,

MV 0 = V ·M0 = 0, MV 1 = V ·M1 = 1 and MV 2 = V ·M2 = 2. The corresponding observation is sP = LP (σ) =

(0, ε, 1)(1, ε, 2). �
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III. GENERAL PETRI NET GENERATORS

The two classes of generators defined in the previous section, namely labeled Petri nets and partially observed

Petri nets, have been studied by several authors and are by now well understood. However, they do not cover all

cases of practical interest where more complex observations are possible. This has motivated us to define in [13],

[14] two new more general classes of generators that are called labeled Petri nets with outputs and adaptive labeled

Petri nets, respectively. In this section these new classes are proposed and we also define a new type of generators

that is an interesting special class of labeled Petri nets with outputs. Furthermore, a discussion about modeling

using different generators and the motivation of this work are developed. At the end of the section the structural

relationships between all these generators are presented, while in the next section we will formalize and discuss

the notion of equivalence between generators in terms of observations.

A. Labeled Petri Nets with Outputs

Partially observed Petri nets consider a very particular class of state observations where the exact marking of

some places, or a linear combination of the markings, is measured. However, in many cases a sensor may provide

more general information about the state: consider, as an example, the case of a buffer where a sensor only detects

if the buffer is empty or not. This motivated us in [13] to define a class of labeled Petri nets endowed with a general

observation function associated to state sensors.

Definition 5: A labeled Petri net with outputs (LPNO) is a generator GO = (N,M0,Σ, `, f), where (N,M0,Σ, `)

is an LPN and f : R(N,M0)→ Rk is an output function associated with k ∈ N state sensors. �

In an LPNO there are two types of observations: transition labels and marking information.

Definition 6: Given an LPNO GO = (N,M0,Σ, `, f), let σ = t1 · · · tk be a firing sequence producing the

trajectory M0[t1〉M1 · · ·Mk−1[tk〉Mk. The observation function of GO is defined as a mapping LO : T ∗ →

(Σ× Rk)∗ that associates σ with the observation

s = LO(σ) = (`(t1),∆f(M0, t1)) · · · (`(tk),∆f(Mk−1, tk)),

where ∆f(Mi−1, ti) = f(Mi)− f(Mi−1) ∈ Rk, i = 1, 2, · · · , k.

If `(ti) = ε and ∆f(Mi−1, ti) = 0, the observation (ε, 0) is the null observation as no transition firing is detected.

�

Remark: since the initial marking is assumed to be known, the initial observation f(M0) provides no additional

information. In this case the two sequences f(M0), f(M1), . . . and ∆f(M0, t1),∆f(M1, t2), . . . contain the same

information. This also implies that the observation sP in a POPN (see Definition 4) contains the same information

as the observation (`(t1), V ·M1 − V ·M0) · · · (`(tk), V ·Mk − V ·Mk−1) and we can conclude that POPNs are a

special subclass of LPNOs whose output function is f(M) = V ·M .

Example 3: Consider an LPNO GO = (N,M0,Σ, `, f), where 〈N,M0〉 is shown in Fig. 1, Σ = ∅, `(t1) = ε,

and the output function is f(M) = min{M(p2), 1}. Let the firing sequence be σ = t1t1. Based on the result in

Example 2, we have f(M0) = 0, f(M1) = 1 and f(M2) = 1. Therefore, ∆f(M0, t1) = 1 and ∆f(M1, t1) = 0.
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Fig. 2. LPNO model of a manufacturing cell
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The corresponding observation would be s = (ε, 1), since the second firing of t1 produces the null observation

(ε, 0). �

The following example shows that LPNOs provide an intuitive way to model systems with arbitrary state sensors.

Example 4: Consider the net in Fig. 2 describing a manufacturing cell: there is a buffer modeled by places p,

and a robot modeled by transition t that moves products. The action of the robot is not detectable, i.e., transitions

t is labeled with the empty string. However, on the buffer there is a counter whose measuring range is from 0 to

3: if the content is lower than three, the device counts the products in p; otherwise a saturation will be reached.

Therefore, the output function is

f(M) =

 3 if M(p) ≥ 3;

M(p) otherwise.

We note that it may also be possible to use LPNs to describe this system since place p is 5-bounded, i.e., for all

reachable markings M it holds M(p) ≤ 5. The corresponding LPN is the much less intuitive net shown in Fig. 3.

Here place p is the complementary place of p (i.e., M(p) +M(p) = 5) and t′ is a duplicate of t. If M(p) ≥ 3, t

is activated; otherwise, t′ is activated. The LPN has a larger size and, moreover, if the bound of p or the range of

the counter changes, the LPN structure has to be changed. In addition, if p is unbounded, no LPN can model the

system, since no complementary place can be defined.

We next define a particular subclass of LPNOs called labeled Petri nets with an affine output function.

Definition 7: A labeled Petri net with an affine output function (LPNAF) is an LPNO GO = (N,M0,Σ, `, f)

whose output function is an affine function f(M) = A ·M +B with constant matrices A ∈ Rk×m and B ∈ Rk. �

Note that the POPNs considered in [7]–[10], [12] are all subclasses of LPNAF where matrix B = 0.

Example 5: Consider an LPNAF GO = (N,M0,Σ, `, f), where 〈N,M0〉 is shown in Fig. 1, Σ = ∅, `(t1) = ε

and f(M) = A ·M + B with A = [1 − 1.5] and B = 2. Let σ = t1t1. The corresponding observation would be

s = (ε,−2.5)(ε,−2.5). �
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Fig. 4. ALPN model of the system with sensors switched on/off.

B. Adaptive Labeled Petri Nets

In the framework of DESs with partial event observations, it is usually assumed that the observation corresponding

to an event is static, i.e., it does not change as the system evolves. However, there are some situations where the

observation produced by the occurrence of an event also depends on the states. Let us consider, as an example, the

case of a sensor that may be turned off in some states or where communication failures change the observation.

Some studies have considered this paradigm in DESs modeled by automata [19]–[22]. To the best of our knowledge,

it has never been defined in the framework of Petri nets, which motivated us to define a Petri net generator where

the labeling function depends on the state: we call it an adaptive labeled Petri net.

Definition 8: An adaptive labeled Petri net (ALPN) is a generator GA = (N,M0,ΣA, `A), where 〈N,M0〉 is a

Petri net system, ΣA is an alphabet and `A : R(N,M0)× T → ΣA ∪ {ε} is an adaptive labeling function. �

According to the definition of ALPNs, the label assigned to a transition need not be fixed but may depend on

the states. However, the observation corresponding to a firing sequence is a string of labels the same as the one in

an LPN.

Definition 9: Given an ALPN GA = (N,M0,ΣA, `A), let σ = t1 · · · tk be a firing sequence producing the

trajectory M0[t1〉M1 · · ·Mk−1[tk〉Mk. The observation function of GA is defined as a mapping LA : T ∗ → Σ∗A

that associates sequence σ with the observation

wA = LA(σ) = `A(M0, t1) · · · `A(Mk−1, tk).

�

Example 6: Consider an ALPN GA = (N,M0,ΣA, `A), where 〈N,M0〉 is shown in Fig. 1, ΣA = {a}, and the

adaptive labeling function is `A(M0, t1) = a and ∀M ∈ {[1 1]T , [0 2]T }, `A(M, t1) = ε. Let the firing sequence

still be σ = t1t1. The observation would be wA = a. �

The following example shows that ALPNs provide an intuitive way to model systems with state dependent event

labels.

Example 7: Consider the manufacturing cell modeled by the ALPN in Fig. 4, where transition t1 represents the

operation of a robot moving products from an upstream buffer (p1) to a downstream buffer (p2). A sensor on the
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Fig. 5. LPN model of the system with sensors switched on/off.
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Fig. 6. Structural relationships between generators.

robot may be turned on (place p3 is marked) and off (place p3 is empty) by suitable commands (transitions t2 and

t3). When the sensor is on, the operation of the robot is detected, otherwise it is unobservable. We model this with

a state dependent label

`(t1) =

 a if M(p3) ≥ 0;

ε otherwise.

Note that in this particular case the system can also be modeled by the LPN in Fig. 5, where t′1 is a duplicate

of t1. However, such an LPN model has a larger size and is less intuitive.

From a structural point of view, the relationships between the classes of generators previously defined can be

summarized in Fig. 6. For each arc, the class corresponding to the head node is more general than that corresponding

to the tail node.

IV. OBSERVATION EQUIVALENCE

In the previous section we have compared the different generators introduced in this paper in terms of structural

relationships. Here we address the problem of comparing them in terms of modeling power by introducing an

appropriate notion of observation equivalence.

We point out a fact: if a model is structurally more general than another, it does not necessarily mean that it

has greater modeling power. As an example, it is well known that nondeterministic automata are a generalization

of deterministic automata but as far as the languages are concerned, the two models have the same power. In fact,

there exists a well known procedure [1] to convert a nondeterministic automaton into an equivalent deterministic

one that accepts the same language.

We assume that the purpose of observing a system is that of reconstructing both the sequence of events that

has occurred and the current state of the system. To this end, we propose a notion of observation equivalence that
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TABLE I

FIRING ESTIMATES IN GO AND GA

σ = ε σ = t1 σ = t1t1

GO

s ε (ε, 1) (ε, 1)

S(s) {ε} {t1, t1t1} {t1, t1t1}

GA

wA ε a a

S(wA) {ε} {t1, t1t1} {t1, t1t1}

applies to generators having the same underlying net structure but a different observation structure: two generators

are observation equivalent if their observation structures provide the same information on the transition firings and

on the markings.

In the following let

G = {LPN,POPN,LPNAF,LPNO,ALPN}

denote the set of all these classes of generators.

Definition 10: Consider a generator G in class X ∈ G, whose underlying net system 〈N,M0〉 is assumed to be

known. Let L be its observation function, and x an observation. We define:

• the set of firing sequences consistent with x as

S(x) = {σ ∈ L(N,M0) | L(σ) = x};

• the set of markings consistent with x as

C(x) = {M ∈ Nm | ∃σ ∈ S(x) : M0[σ〉M}.

�

Using these sets we define the notion of observation equivalence between generators.

Definition 11: A generator G in class X is said to be observation equivalent to a generator G′ in class X ′ if

the following two conditions hold:

i) G and G′ have the same net system 〈N,M0〉,

ii) for any sequence σ ∈ L(N,M0) that produces an observation x in G and an observation x′ in G′, S(x) = S(x′)

holds.

Note that in Definition 11, S(x) = S(x′), together with condition i), implies C(x) = C(x′). In this paper,

“equivalence” always refers to “observation equivalence”. The notion of observation equivalence between generators

induces a meaningful relationship between classes of generators.

Example 8: Consider the LPNO GO in Example 3 and the ALPN GA in Example 6. These two generators are

observation equivalent, since they have the same net system and according to Table I, for all σ ∈ T ∗ it holds

S(LO(σ)) = S(LA(σ)). �
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Definition 12: Given two classes of Petri net generators X ,X ′ ∈ G, class X is said to be observation weaker

than X ′ if for any generator G in class X there exists an observation equivalent generator G′ in class X ′. This

relation is denoted by

X 4 X ′.

We also write:

• X ≈ X ′ if X 4 X ′ and X ′ 4 X : in this case we say that the two classes are observation equivalent;

• X � X ′ if X 4 X ′ and X ′ 64 X hold1: in this case we say that class X is strictly observation weaker than

X ′;

• X � X ′ if X 64 X ′ and X ′ 64 X hold: in this case we say that the two classes are not observation comparable.

�

Obviously if class X ′ is structurally more general than X (see Fig. 6), then X 4 X ′ holds; here we complete

the analysis by discussing when two classes are observation equivalent or not comparable.

A. LPNs, POPNs and LPNAFs

In this section we show that LPNs, POPNs and LPNAFs are observation equivalent. This generalizes a result by

Ru and Hadjicostis [10] who proved the equivalence between LPNs and POPNs.

Proposition 1: LPNs, POPNs and LPNAFs are observation equivalent, i.e., LPN ≈ POPN ≈ LPNAF .

Proof: The relationship LPN 4 POPN 4 LPNAF immediately follows from the structural relationship

in Fig. 6. We now complete the proof by showing that LPNAF 4 LPN . To do this we provide a constructive

procedure that, given an arbitrary LPNAF GO = (N,M0,Σ, `, f) with f = A ·M + B, determines an equivalent

LPN GL = (N,M0,Σ
′, `′).

Given an LPNAF GO, let Te = {t ∈ T |`(t) = e} with e ∈ Σ∪{ε} be the set of transitions that have the same label

e and Ce be the incidence matrix restricted to Te. For any e ∈ Σ, set Te is further divided into Te = Te1 ∪ · · · ∪Tel
such that ∀t ∈ Tei (i ∈ {1, 2, · · · , l}) the corresponding columns CA

e (·, t) of matrix CA
e = A ·Ce are identical. For

e = ε, set Tε is divided into Tε = Tε0∪Tε1∪ · · · ∪Tεl such that ∀t ∈ Tε0, the corresponding columns CA
ε (·, t) = ~0

and ∀t ∈ Tei (i ∈ {1, 2, · · · , l}), the corresponding columns CA
ε (·, t) are identical. Then the equivalent LPN

GL = (N,M0,Σ
′, `′) has labeling: ∀e ∈ Σ∪ {ε}, ∀t ∈ Tei with i ∈ {1, · · · , l}, `′(t) = ei and ∀t ∈ Tε0, `′(t) = ε.

In the following, we prove that GL is equivalent to GO.

1Here X ′ 64 X denotes that the relation X ′ 4 X does not hold, i.e., there exists at least one generator in X ′ such that there is no generator

in X observation equivalent to it.
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Let transition t′ ∈ T fire at marking M ∈ R(N,M0) with M [t′〉M ′. The corresponding observation in GO would

be s = (`(t′),∆f), where `(t′) = e and

∆f = f(M ′)− f(M)

= A ·M ′ +B − (A ·M +B)

= A · (M ′ −M)

= A · C(·, t′)

= CA
e (·, t′).

Therefore, for GO the set of firing transitions consistent with s from marking M is S(s) = {t ∈ Te|M [t〉 ∧

CA
e (·, t) = ∆f}. Assume that the observation in GL is w = ej. For GL the set of firing transitions consistent with

w from marking M is S(w) = {t ∈ Tej |M [t〉}. According to the definition of Tej , we have ∀t ∈ S(w), CA
e (·, t) =

CA
e (·, t′) = ∆f . Namely, S(w) = S(s). Furthermore, it also indicates that, given a transition t, at every marking

where transition t is enabled, the firing of t will cause the same observation (`(t), f(M ′)− f(M)). Thus the proof

can be easily extended to firing sequences.

Example 9: Consider the LPNAF GO = (N,M0,Σ, `, f) in Example 5, whose incidence matrix is C = [−1 1]T .

Based on the constructive procedure in the proof of Proposition 1, for transition t1, we have that ∆f = A·C(·, t1) =

−2.5, different from 0. Therefore, the equivalent LPN is GL = (N,M0,Σ
′, `′), where `′(t) = a and Σ′ = {a}. �

B. LPNs and LPNOs

In this section we discuss the observation relationship between LPNs and LPNOs.

Proposition 2: LPNs are strictly observation weaker than LPNOs, i.e., LPN � LPNO.

Proof: Fig. 6 shows that LPNOs are structurally more general than LPNs, which implies LPN 4 LPNO.

According to Definition 12, it is sufficient to prove LPNO 64 LPN by giving an LPNO whose equivalent LPN

does not exist.

Consider the LPNO GO in Example 3. Assume that there is an LPN GL = (N,M0,Σ
′, `′) equivalent to GO.

Since the labeling function in GL is static, the labeling function only could be `′(t1) = ε or `′(t1) = a, i.e.,

transition t1 in GL is either observable or not.

• Assume that the labeling function in GL is `′(t1) = ε. At the initial marking, the firing of t1 will produce

the observation w = ε in GL. The set of firing sequences consistent with w is S(w) = {ε, t1, t1t1}. On the

other hand, in GO the corresponding observation is s = (ε, 1), and thus the set of possible firing sequences is

S(s) = {t1, t1t1}. According to Definition 11, these two generators are not equivalent.

• Assume the labeling function in GL is `′(t1) = a. At the initial marking, the firing of t1 will produce the

observation w = a in GL and S(w) = {t1}, while in GO, the observation is s = (ε, 1) and S(s) = {t1, t1t1}.

Therefore, GO and GL are still not equivalent. In conclusion, there is no LPN equivalent to GO.
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Fig. 7. ALPN that cannot be converted into an LPNO.

From the equivalence between LPNs, POPNs and LPNAFs, a result also follows.

Corollary 1: POPNs and LPNAFs are strictly observation weaker than LPNOs. �

C. LPNs and ALPNs

Now we consider the observation relation between LPNs and ALPNs, two classes of generators where only event

occurrences are observed.

Proposition 3: LPNs are strictly observation weaker than ALPNs, i.e., LPN � ALPN .

Proof: The relationship LPN 4 ALPN trivially follows from the structural relationship in Fig. 6. Now we

prove ALPN 64 LPN by giving an ALPN whose equivalent LPN does not exist.

Consider the ALPN GA in Example 6. Assume that there is an LPN GL = (N,M0,Σ, `) equivalent to GA.

GL has the same net system 〈N,M0〉 with GA. The possible labeling function of GL is either `(t1) = ε or

`(t1) = b ∈ Σ. Namely, in GL transition t1 is either unobservable or observable. Let `(t1) = b (the case that

transition t1 is unobservable can be proved in the same way) and a firing sequence be σ = t1t1. Then, the

corresponding observations in GA and GL are wA = a and w = bb, respectively. Therefore, in GA, the set of

firing sequences consistent with wA is S(wA) = {t1, t1t1}; in GL, the set of firing sequences consistent with w is

S(w) = {t1t1}, i.e., S(wA) 6= S(w). We conclude that GL is not equivalent to GA. There is no LPN equivalent

to GO.

From the equivalence between LPNs, POPNs and LPNAFs, the following result is drived.

Corollary 2: POPNs and LPNAFs are strictly observation weaker than ALPNs. �

D. LPNOs and ALPNs

Fig. 6 shows that there is no specific structural relation between LPNOs and ALPNs. In this section, we will

show that these classes are not comparable either with respect to the observation equivalence relation.

Proposition 4: ALPNs and LPNOs are not observation comparable, i.e., ALPN � LPNO.

Proof: a) First, we prove that ALPN 64 LPNO is true by means of an example. Let us consider the ALPN

in Fig. 7 with initial marking M0 = [1 1 0]T and the adaptive labeling function given by Table II.

For observed words wA = aa and wA = b, the sets S(aa) and S(b) can be iteratively computed as shown in

Fig. 8, where M1 = [0 2 0]T , M2 = [0 1 1]T and M3 = [1 0 1]T .

We claim that there does not exist an LPNO equivalent to this ALPN. We prove this by contradiction. If we assume

that such a generator exists, then its output function necessarily satisfies f(M0) = f(M1) = f(M2) = f(M3) since
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Fig. 8. Computation of sets C(aa) and C(b) for the ALPN.
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Fig. 9. LPNO whose equivalent ALPN has an infinite number of labels.

otherwise we would be able to distinguish between the three firing sequences σ1 = t1t1, σ2 = t1t2 and σ3 = t2t3

after the firing of two a’s or between the two firing sequences σ4 = t3 and σ5 = t4 after the firing of b. In addition,

all transitions necessarily have the same label, say a. However such an LPNO after a would produce a set of

consistent firing sequences S((a, 0)) = {t1, t2, t3, t4} 6= S(a) = {t1, t2}, which contradicts the assumption.

b) Now we show that LPNO 64 ALPN is true by means of another example. Consider the LPNO in Fig. 9,

where the output function is

f(M)

 0 if M(p3) = 0;

M(p2) otherwise.

TABLE II

ADAPTIVE LABELING FUNCTION OF THE ALPN

`A(M, t) t1 t2 t3 t4

M0 a a b b

M 6=M0 b b a a
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Fig. 10. Observation relationships between generators.

If the observation is s = (a, 0)(a, 0) · · · (a, 0)︸ ︷︷ ︸
k

(b, x), x could be any number from 0 to k. To find the equivalent

ALPN we have to assign infinite labels to transition t3: `A(Mi, t3) = [b, i], where Mi = [0 1 i]T for i ∈ N. In that

case the equivalent ALPN needs an infinite alphabet, a condition that is not consistent with Definition 8.

Even though LPNOs and ALPNs are not observation comparable, when generators whose underlying net system

is bounded are considered, bounded LPNOs are strictly observation weaker than bounded ALPNs.

Proposition 5: Bounded LPNOs (LPNObound) are strictly observation weaker than bounded ALPNs (ALPNbound),

i.e., LPNObound � ALPNbound.

Proof: The relation ALPNbound 64 LPNObound follows from part a) of the proof of Proposition 4. Thus

we are left to prove LPNObound 4 ALPNbound. To show this, we present a brute force approach that determines

the equivalent ALPN GA = (N,M0,ΣA, `A) of a bounded LPNO GO = (N,M0,Σ, `, f). Given a bounded GO,

the adaptive labeling function of its equivalent ALPN GA = (N,M0,ΣA, `A) can be determined by the following

rule: for any t ∈ T and M ∈ R(N,M0) with M [t〉M ′, `A(t) = [`(t), f(M ′) − f(M)], i.e., the corresponding

observation in GO is assigned as a label to the transition in GA. The alphabet of GA is a finite set ΣA =

{[`(t), f(M ′)−f(M)]|t ∈ T,M ∈ R(N,M0),M [t〉M ′}, since GO is bounded. Once the transition fires in GA, the

new label exactly describes the observation of GO and the sets of firing sequences consistent with the observations

in GA and GO must be identical. Thus the two generators are equivalent.

In conclusion, equivalence relations between all classes of Petri net generators discussed in this work are illustrated

in Fig. 10. A double arrowed arc↔ connects two classes that are observation equivalent while an arrow→ denotes

that the class at the tail is strictly observation weaker than the one at the head. The arrow tagged “bounded” denotes

that bounded LPNOs are strictly observation weaker than bounded ALPNs.

V. CONVERSION OF BOUNDED LPNOS INTO ALPNS

As mentioned in the introduction, bridges between different formalisms have both theoretical significance and

practical relevance. The conversion between LPNs, POPNs, and LPNAFs was discussed in the proof of Proposition 1.

According to the structural relations shown in Fig. 6, POPNs and LPNAFs are both subclasses of LPNOs, and LPNs

is a subclass of both ALPNs and LPNOs. Therefore, the procedure to convert LPNOs to ALPNs can be also applied

to convert generators of all those subclasses to an equivalent ALPNs. Moreover, ALPNs are the class that has the
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highest modeling power among bounded Petri net generators. For this reason, in the rest of this work we focus on

the conversion from LPNOs to ALPNs.

In this section we present an algorithm, that improves the procedure of [14], to convert a bounded LPNO into

an equivalent ALPN with a minimal number of labels. The interest for finding a minimal alphabet relies on the

following observations: i) applying the brute force approach (in Proposition 5) may introduce unnecessary labels;

if we consider the cardinality of the alphabet corresponding to the number of event sensors in the system, reducing

the cardinality of the alphabet leads to a cost reduction in the implementation of an observation structure; ii) it

may allow us to determine an equivalent net with a finite alphabet even when the brute-force procedure generates

an infinite number of labels (we will give such an example in Section VII); and iii) this procedure may allow us

to verify that a given LPNO cannot be converted into an LPN, which will be discussed in Section VI.

The proposed conversion algorithm reduces the computation of the adaptive labeling function of the equivalent

ALPN to solving the vertex coloring problem [23] of a graph called a conflict graph. A running example illustrates

the algorithm. We assume that LPNOs discussed in this section and the following two are bounded.

A. Problem Reduction

According to Definition 11, two equivalent generators have the same net system. Thus, given an LPNO GO =

(N,M0,Σ, `, f), to compute its equivalent ALPN GA = (N,M0,ΣA, `A), we only need to determine the adaptive

labeling function. We show that this issue can be reduced to solving a vertex coloring. The proposed procedure

requires three main steps.

Step 1 Since observation equivalence requires the set of consistent markings of the two generators to be identical

for all observations, we first determine which pairs of markings are confusable, i.e., belong to the same consistent

set for some observations.

Step 2 Using this information, we determine which pairs [M, t] ∈ R(N,M0) × T should have the same label in

the ALPN constructing the agreement graph A. We also determine which pairs [M, t] should have a different label

in the ALPN constructing the conflict graph Â.

Step 3 Finally, the problem of finding the label assignment that determines the equivalent ALPN is reduced to

solving the vertex coloring of graph Â.

B. Computation of the Confusion Relation

Given an observation in an LPNO, there may be more than one marking consistent with the observation. First,

we define the confusable relation between two markings.

Definition 13: Given an LPNO GO, a marking M is said to be confusable with M ′, denoted by M ∼ M ′, if

there exists an observation s ∈ L(N,M0) s.t. M,M ′ ∈ C(s). �

One can readily verify that M ∼ M ′ is a symmetric, reflexive but not transitive relation. An intuitive way to

compute the confusion relation among all markings is to construct an observer [1]. First, since the net is bounded,

its reachability graph (RG) can be constructed. This is a graph where each node is a marking M and each arc
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Fig. 11. LPNO with a nonlinear output function.
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Fig. 12. The RG (a) and the observer of the LPNO (b).

corresponds to a transition t. We tag each arc t exiting node M with the label (`(t),∆f(M, t)), thus constructing a

nondeterministic finite automaton (NFA). Then, the corresponding observer, i.e., the equivalent deterministic finite

automaton (DFA), can be constructed. Each state of the DFA corresponds to a set C(s) and all markings in C(s)

are confusable with each other.

Example 10: Let us consider the LPNO GO in Fig. 11, where M0 = [3 0]T and the output function is

f(M) =

 1 if M(p2) is an even number;

−1 otherwise.

Its RG2 and the observer are shown in Fig. 12. Hence, the confusion relations between reachable markings are:

M0 ∼M2, M1 ∼M3, M4 ∼M6 and M5 ∼M7. �

It is known that the worst-case complexity of computing a DFA equivalent to an NFA is exponential with respect

to the number of states of the NFA. Therefore, the complexity to determine the confusion relation is exponential

with respect to the number of markings.

Remark: there may exist more efficient ways to determine the confusion relation. Such a case is discussed in

Section VII.

2For clarity, the corresponding transition is also labeled on the arcs.
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C. Construction of the Agreement and Conflict Graphs

If two transitions t and t′ of an LPNO may fire at two confusable markings M and M ′, respectively, and produce

the same non-null observation (e,∆f), then the two labels `A(M, t) and `A(M ′, t′) must coincide in the equivalent

ALPN. Furthermore, any transition t that may fire at a marking M producing the null observation (ε, 0) should

receive a label `A(M, t) = ε in the equivalent ALPN. These two types of constraints can be captured by a graph

whose nodes are marking-transition pairs [M, t] and whose edges connect nodes that should have the same label

in the equivalent ALPN.

Definition 14: Given an LPNO GO, its agreement graph is an undirected graph A = (V,E) whose set of vertexes

is V = {[M, t] ∈ R(N,M0)× T |M [t〉} and whose set of edges is E = E′ ∪ E′′ where

E′ ={([M, t], [M ′, t′]) ∈ V × V |[M, t] 6= [M ′, t′],

(`(t),∆f(M, t)) = (`(t′),∆f(M ′, t′)) = (ε, 0)}

and

E′′ ={([M, t], [M ′, t′]) ∈ V × V |

[M, t] 6= [M ′, t′],M ∼M ′,

(`(t),∆f(M, t)) = (`(t′),∆f(M ′, t′)) 6= (ε, 0)}.

�

In an agreement graph there are two types of arcs E′ and E′′. Arcs in E′ connect all pairs [M, t] that produce

the null observation; arcs in E′′ connect pairs [M, t] where markings are confusable and the firings of transitions

produce the same non-null observation. Note that there is no self-loop in an agreement graph. After the confusion

relation has been determined, the complexity of constructing the agreement graph is O(|V |2), since in the worst

case, computing the set of edges requires checking |V |2 pairs of nodes [M, t] and [M ′t′].

Example 11: Consider Example 10 again. In order to clearly illustrate all possible observations, Table III is built.

Based on the confusion relations obtained in Example 10 and Table III, the agreement graph in Fig. 13 is constructed.

To give an example of its construction consider M0 and M2. From Example 10, M0 and M2 are confusable. From

Table III, [M0, t1], [M2, t1] and [M2, t2] produce the same observation. Therefore, by Definition 14, these three

nodes in the agreement graph are connected by arcs in E′′. Markings M4 and M5 are not confusable, however,

nodes [M4, t4] and [M5, t4] are connected by arcs in E′ since they produce the null observation (ε, 0). �

We now consider the connected components of the agreement graph and partition its set of nodes as

V = v̂0 ∪̇ v̂1 ∪̇ v̂2 ∪̇ · · · ∪̇ v̂l

where for i ∈ {0, 1, 2, · · · , l}, the v̂i-induced subgraph is a component of A and in particular

v̂0 = {[M, t] ∈ V |`(t) = ε,∆f(M, t) = 0}
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TABLE III

ALL POSSIBLE OBSERVATIONS AT EACH MARKING

(e,∆) {[M, t]|`(t) = e,∆f(M, t) = ∆}

(a,−2) [M0, t1], [M2, t1], [M2, t2], [M4, t1], [M6, t1]

(a, 2) [M1, t1], [M1, t2], [M3, t2], [M5, t2], [M7, t2]

(a, 0) [M2, t3], [M3, t3]

(ε, 0) [M4, t4], [M5, t4]

[M t ][M t ]
[M0,t1]

[M1,t1]

[M1,t2]

[M2,t1]

[M2,t2]
[M3,t2]

[ 1 2][ 2 2]
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[M t ]

[M4,t1]

[M0,t1] [M3,t2]
[M2,t3] 

[M4,t4]
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Fig. 13. Agreement graph A.

is the (possibly empty) set of pairs [M, t] that produce the null observation. Correspondingly we define the partition

V̂ = {v̂0, v̂1, v̂2, · · · , v̂l}. (1)

Example 12: Consider Example 10 again. Based on the agreement graph, we have V̂ = {v̂0, v̂1, v̂2, v̂3, v̂4, v̂5, v̂6},

where v̂0 = {[M4, t4], [M5, t4]}, v̂1 = {[M0, t1], [M2, t1], [M2, t2]}, v̂2 = {[M1, t1], [M1, t2], [M3, t2]}, v̂3 =

{[M2, t3]}, v̂4 = {[M3, t3]}, v̂5 = {[M4, t1], [M6, t1]}, and v̂6 = {[M5, t2], [M7, t2]}. �

By means of the agreement graph, we have determined the classes of pairs [M, t] that produce the same

observation. We now determine, by means of the conflict graph, which classes must be assigned a different label

in the ALPN.

Definition 15: Given an LPNO GO, the conflict graph Â = (V̂ , Ê) is an undirected graph whose set of vertexes

is V̂ as defined in Eq. (1) and whose set of edges is Ê = Ê′ ∪ Ê′′ where

Ê′ = {(v̂0, v̂i)|v̂i ∈ V̂ , i ∈ {1, 2, · · · , l}}

and

Ê′′ ={(v̂i, v̂j) ∈ V̂ × V̂ |i, j ∈ {1, 2, · · · , l},

∃[M, t] ∈ v̂i,∃[M ′, t′] ∈ v̂j :

M ∼M ′, (`(t),∆f(M, t)) 6= (`(t′),∆f(M ′, t′))}

�
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Note that v̂0 may not exist, i.e., v̂0 = ∅. In this case, Ê′ = ∅ and Ê = Ê′′. The nodes of graph Â are classes

of nodes [M, t] ∈ V that produce the same observation. There are also two types of arcs in a conflict graph: Ê′

and Ê′′. Since pairs [M, t] ∈ v̂0 must be assigned the empty word different from any label from the alphabet, arcs

from Ê′ connect node v̂0 with every other node; if there exist [M, t] ∈ v̂i and [M ′, t′] ∈ v̂j such that M and M ′

are confusable but t and t′ will produce different observations (e,∆f(M, t)), (e′,∆f(M ′, t′)), then in the ALPN,

different labels must be assigned to them, i.e., `A(M, t) 6= `A(M ′, t′). Thus arcs from Ê′′ connect such two nodes

v̂i and v̂j .

The complexity of computing the connected components of a graph is known to be linear with respect to the

number of edges of a graph using either breadth-first search (BFS) or depth-first search (DFS), i.e., the computation

of V̂ is O(|E|). In the worst case, computing the set of edges requires checking |V̂ |2 pairs of nodes v̂i and v̂j .

Therefore, based on the agreement graph, the complexity of constructing the conflict graph is O(|V̂ |2).

D. Solving the Vertex Coloring Problem

The conflict graph Â of an LPNO exactly describes the relabeling rule following which an equivalent ALPN can

be obtained. We will show that given a bounded LPNO GO, a vertex coloring of its conflict graph determines an

equivalent ALPN and vice versa. Let us first formally define the notion of a vertex coloring.

Definition 16: Given a graph Â = (V̂ , Ê), a vertex coloring is a pair (Σcol, `col) where Σcol is a finite set of

colors and `col : V̂ → Σcol is a coloring function that assigns to each vertex a color and satisfies the constraint that

if (v̂, v̂′) ∈ Ê then `col(v̂) 6= `col(v̂
′), i.e., two adjacent vertexes cannot be assigned the same color.

The vertex coloring problem is the problem of finding a vertex coloring with a minimal number of colors, which

is called the chromatic number of Â, denoted by χ(Â). A graph is called k-chromatic, if its chromatic number is

k. �

Proposition 6: Let GO = (N,M0,Σ, `, f) be a bounded LPNO with conflict graph Â = (V̂ , Ê). An ALPN

GA = (N,M0,ΣA, `A) is equivalent to GO if and only if there exists a vertex coloring (Σcol, `col) of Â such that

ΣA = Σcol \ {ε} and [M, t] ∈ v̂ with v̂ ∈ V̂ ⇒ `A(M, t) = `col(v̂) holds.

Proof: (⇒) To prove the sufficiency of the statement, we show that an ALPN GA whose adaptive labeling

function is defined by a vertex coloring of Â is equivalent to GO, namely ∀σ ∈ L(N,M0), S(LO(σ)) = S(LA(σ)).

This is done by induction on the length of firing sequences.

(Basis step) For any σ ∈ L(N,M0) of length 0, observations in GO and GA are s = LO(σ) = (ε, 0) and

wA = LA(σ) = ε, respectively. Let σ′ = t1t2 · · · tk with M0[t1〉M1[t2〉M2 · · ·Mk−1[tk〉Mk.

• First we prove S(s) ⊆ S(wA). Assume σ′ ∈ S(s). It satisfies `(ti) = ε and f(Mi) = f(M0), i = 1, 2, · · · , k.

According to the definition of v̂0 and the obtained vertex coloring, we have [Mi−1, ti] ∈ v̂0 and `col(v̂0) = ε,

i.e., `A(Mi−1, ti) = ε. Thus, LA(σ′) = ε, i.e., σ′ ∈ S(ε), and S(s) ⊆ S(wA).

• Next we prove S(wA) ⊆ S(s). Let σ′ ∈ S(wA). Then we have `A(Mi−1, ti) = ε and [Mi−1, ti] ∈ v̂0.

Therefore, in GO, `(ti) = ε and ∆f(Mi−1, ti) = 0 that implies LO(σ′) = (ε, 0), i.e., σ′ ∈ S(s).

As a result, S(s) = S(wA).
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(Inductive step) Assume that for any σ ∈ L(N,M0) of length k, S(LO(σ)) = S(LA(σ)) holds. In the following,

we prove that this is also true for firing sequences of length k + 1.

Let σ = σ0t with M0[σ0〉M1[t〉M2, where |σ0| = k, s = LO(σ) = LO(σ0t) = s0(e1,∆) and wA = LA(σ) =

LA(σ0t) = w0e2. In other words, LO(σ0) = s0, `(t) = e1, ∆f(M1, t) = ∆, LA(σ0) = w0 and `A(M1, t) = e2.

Let σ′ = σ′0σ
′
1 with σ′1 = t′1t

′
2 · · · t′k and M0[σ′0〉M ′0[t′1〉M ′1 · · ·M ′k−1[t′k〉M ′k.

• Assume σ′ ∈ S(s) and σ′0 ∈ S(s0). Then there exists j ∈ {1, 2, · · · , k} such that `(t′j) = e1 and ∆f(M ′j−1, t
′
j) =

∆. However, ∀i ∈ {1, 2, · · · , k} with i 6= j, `(ti) = ε and ∆(M ′i−1, t
′
i) = 0. According to the defi-

nition of v̂0 and the coloring rule, [M ′i−1, t
′
i] ∈ v̂0 and in the obtained ALPN `A(M ′i−1, t

′
i) = ε. Since

σ0, σ
′
0t
′
1t
′
2 · · · t′j−1 ∈ S(s0), M1 and M ′j−1 are confusable, i.e., M1 ∼M ′j−1. Meanwhile, (`(t),∆f(M1, t)) =

(`(t′j),∆f(M ′j−1, t
′
j)) = (e1,∆) and hence [M1, t] and [M ′j−1, t

′
j ] are in a same node of the conflict graph

of GO that indicates in the obtained ALPN `A(M ′j−1, t
′
j) = `A(M1, t) = e2. By induction, σ′0 ∈ S(w0), and

therefore, LA(σ′0σ
′
1) = w0e2 and σ′ ∈ S(wA), i.e., S(s) ⊆ S(wA).

• Analogously, it can be proved S(wA) ⊆ S(s). Assume σ′ ∈ S(wA) and σ′0 ∈ S(w0). Then there exists

j ∈ {1, 2, · · · , k} such that `A(M ′j−1, t
′
j) = e2 and ∀i ∈ {1, 2, · · · , k} with i 6= j, `A(M ′i−1, t

′
i) = ε. Based

on the vertex coloring, in the LPNO we have `(ti) = ε and ∆f(M ′i−1, t
′
i) = 0. Since `A(M ′j−1, t

′
j) = e2, by

induction σ′0 ∈ S(s0) which means that σ0, σ′0t
′
1t
′
2 · · · t′j−1 ∈ S(s0) and M1 ∼ M ′j−1, [M1, t] and [M ′j−1, t

′
j ]

are in a same node of the conflict graph of GO. Therefore, `(t′j) = `(t) = e1, ∆f(M ′j−1, t
′
j) = ∆f(M1, t) = ∆

and LO(σ′0σ
′
1) = LO(σ′) = s0(e1,∆), i.e., σ′ ∈ S(s).

The result follows by induction.

(⇐) We prove by contradiction the necessity of the statement. Let GA = (N,M0,ΣA, `A) be an ALPN equivalent

to GO. Assume that the adaptive labeling function of GA is not defined by a vertex coloring to Â, i.e., there exist

[M, t] ∈ v̂i and [M ′, t′] ∈ v̂j such that `A(M, t) = `A(M ′, t′) and (v̂i, v̂j) ∈ Ê. Since v̂i and v̂j are adjacent,

according to the definition of conflict graphs, there are two possibilities in GO: i) M ∼M ′ and (`(t),∆f(M, t)) 6=

(`(t′),∆f(M ′, t′)); and ii) (`(t),∆f(M, t)) = (ε, 0) and (`(t′),∆f(M ′, t′)) 6= (ε, 0) (or (`(t′),∆f(M ′, t′)) =

(ε, 0) and (`(t),∆f(M, t)) 6= (ε, 0)). For case i), since M and M ′ are confusable, there exist firing sequences

σ and σ′ such that M0[σ〉M , M0[σ′〉M ′ and LO(σ) = LO(σ′) = s. Therefore, we have σt ∈ S(LO(σt)) but

σt /∈ S(LO(σ′t′)). Assume that the corresponding observation of σ in GA is wA. Since GA is equivalent to GO,

σt ∈ S(LA(σ′t′)) holds, which implies that, however, S(LA(σ′t′)) 6= S(LO(σ′t′)) and GA is not equivalent to

GO. Then, we reach a contradiction. Case ii) can be proved analogously.

Based on the previous results, the ALPN with a minimal alphabet equivalent to a given LPNO can be obtained

by solving a vertex coloring problem, i.e, finding a vertex coloring such that the number of colors is minimal. The

general procedure to convert a bounded LPNO into an equivalent ALPN with a minimal alphabet is summarized

in Algorithm 1.

Since Steps 2 and 3 have polynomial complexity O(|V |2) and O(|V̂ |2), respectively, as we have discussed in the

previous sections, the complexity to convert a bounded LPNO into an equivalent ALPN with a minimal alphabet
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Algorithm 1 Conversion of a bounded LPNO into an equivalent ALPN with a minimal alphabet
Input: a bounded LPNO GO = (N,M0,Σ, `, f)

Output: an equivalent ALPN GA = (N,M0,ΣA, `A)

1: Compute the confusion relation.

2: Construct A according to Definition 14.

3: Construct Â according to Definition 15.

4: Solve the vertex coloring problem of Â.

5: ΣA := Σcol \ {ε}, `A := `col.

6: Output GA.

[M t ][M t ]
[M0,t1]

[M1,t1]

[M1,t2]

[M2,t1]

[M2,t2]
[M3,t2]

[ 1 2][ 2 2]
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[M t ]
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Fig. 14. Colored conflict graph Â.

mainly depends on the computation of the confusion relation and on solving the vertex coloring problem, which

is known to be in general NP-complete. In the worst case, the RG and the corresponding observer have to be

constructed. Note that in general there is no obvious relation between the size of a net (i.e., the number of places,

transitions and tokens that the initial marking assigned to the places) and that of its RG. Therefore, the size of

the RG cannot be a priori determined based on the structure of the net. However, in Section VII we show that

in some cases without computing the RG the conflict graph can be constructed by just characterizing the output

function. Meanwhile, for some special classes of graphs, for example, perfect graphs, the vertex coloring problem

can be solved in polynomial time with respect to the number of nodes of the graph (see more results in [24]).

Solving the vertex coloring is needed only if one aims to find an equivalent ALPN with a minimal alphabet. On the

contrary, the computation of a vertex coloring — not necessarily minimal — is polynomial: one trivial solution is

to color every vertex of the conflict graph in different colors and there exist suboptimal solutions with polynomial

complexity [24], the greedy algorithm for instance.

Example 13: The colored conflict graph of the LPNO in Example 10 is shown in Fig. 14 (different colors are

denoted by different boxes around the nodes), which is a trivial way to color the graph. The equivalent ALPN

is `A(M0, t1) = `A(M2, t1) = `A(M2, t2) = a, `A(M2, t3) = b, `A(M1, t1) = `A(M1, t2) = `A(M3, t2) = c,

`A(M3, t3) = d, `A(M4, t1) = `A(M6, t1) = e, `A(M5, t2) = `(M7, t2) = f and `A(M4, t4) = `A(M5, t4) = ε;

the alphabet is ΣA = {a, b, c, d, e, f}.

Nevertheless, the coloring problem of graph Â can be solved by using three colors. Thus, the equivalent ALPN
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with a minimal alphabet is ∀M ∈ R(N,M0), `A(M, t1) = `A(M, t2) = a, `A(M, t3) = b and `A(M, t4) = ε. This

ALPN is also an LPN.

If we apply the brute-force approach, according to Table III, the equivalent ALPN is `A(M0, t1) = `A(M2, t1) =

`A(M2, t2) = `A(M4, t1) = `A(M6, t1) = [a,−2], `A(M1, t1) = `A(M1, t2) = `A(M3, t2) = `A(M5, t2) =

`A(M7, t2) = [a, 2], `A(M2, t3) = `A(M3, t3) = [a, 0], `A(M4, t4) = `A(M5, t4) = ε and the alphabet is ΣA =

{[a,−2], [a, 2], [a, 0]}. �

Note that Algorithm 1 is a general procedure that can be applied to any arbitrary bounded LPNO. For some special

subclasses, e.g., LPNAFs, the conversion from LPNOs to ALPNs has polynomial complexity (trivially follows from

the proof of Proposition 1). However, this method cannot assure a minimal alphabet for the LPN. In some cases,

even the brute-force approach may provide a fast way to compute the equivalent ALPN, especially for LPNOs with

very simple output functions. However, the alphabet of the obtained ALPN is not necessarily minimal and many

redundant labels may be introduced. To eliminate redundant labels, further analysis on the confusion relation is

required, i.e., the vertex-coloring-based approach is needed.

VI. CONVERSION OF BOUNDED LPNOS INTO LPNS

The results in the previous section show that how any bounded LPNO can be converted into an equivalent ALPN

not only with a finite alphabet, but with a minimal alphabet. This however does not ensure the existence of an

equivalent LPN. In this section, for bounded LPNOs, a sufficient and necessary condition for the existence of an

equivalent LPN is proposed. If the condition is satisfied, the LPNO can be converted into an equivalent LPN by

applying the algorithm presented in this section.

Considering that LPNs are a special case of ALPNs, a necessary condition for the existence of an equivalent

LPN is obtained.

Proposition 7: Let GO = (N,M0,Σ, `, f) be a bounded LPNO whose conflict graph is k-chromatic. If |T | < k,

there is no LPN equivalent to GO.

Proof: Assume that there is an LPN GL = (N,M0,Σ, `) equivalent to GO. Then the maximal number of

labels of GL is |T |, i.e., |Σ| ≤ |T |. Since the conflict graph of GL is k-chromatic, there is an equivalent ALPN

GA = (N,M0,ΣA, `A) with |ΣA| = k. Considering LPNs are a special class of ALPNs, we have |ΣA| ≤ |Σ| ≤ |T |.

Then the proposition holds.

The following counter example shows that the condition is not sufficient.

Example 14: Consider the LPNO and the corresponding RG in Fig. 15. By applying Algorithm 1 and solving

the vertex coloring problem, the colored conflict graph is shown in Fig. 16. The equivalent ALPN with a minimal

alphabet is `A(M1, t1) = `A(M2, t2) = ε, `A(M0, t1) = `A(M1, t2) = `A(M3, t1) = `A(M4, t2) = α and

ΣA = {α}. It satisfies |ΣA| < |T | but there is no LPN equivalent to the LPNO, since all vertex colorings of Â

correspond to ALPNs. �

By characterizing the conflict graph, a sufficient and necessary condition that verifies the existence of an equivalent

LPN is proposed. First, we introduce some new notations for the conflict graph Â = (V̂ , Ê) of a given LPNO GO.
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For a transition t ∈ T , the notation [·, t] denotes a marking-transition pair [M, t] without specifying marking M .

The set Tc(t) of a given transition t is defined as

Tc(t) = {t′ ∈ T |∃v̂ ∈ V̂ : [·, t], [·, t′] ∈ v̂)};

If a transition t′ ∈ Tc(t), there exists a node v̂ ∈ V̂ to which both [·, t] and [·, t′] belong. The set Tc(t) of t is a

nonempty set as t ∈ Tc(t). According to the analysis in the previous section, in the equivalent ALPN, transitions

t′ ∈ Tc(t) will be assigned the same label of transition t at some markings. The set Tl(t) of a given transition t is

defined as
Tl(t) = { t′ ∈ T |∃v̂i, v̂j ∈ V̂ :

[·, t] ∈ v̂i, [·, t′] ∈ v̂j , (v̂i, v̂j) ∈ Ê}.

If t′ ∈ Tl(t), in Â there are two adjacent nodes v̂i and v̂j that contain [·, t] and [·, t′], respectively. Therefore, there

are markings at which transitions t′ and t are assigned different labels in the equivalent ALPN.

Now we discuss the complexity of computing sets Tc(t) and Tl(t) of a given transition t. To compute Tc(t), we

first compute the set of nodes v̂i ∈ V̂ such that [·, t] ∈ v̂i. The transitions t′ of which [·, t′] ∈ v̂i, belong to Tc(t).

Therefore, the complexity of computing Tc(t) is O(|V̂ |). On the other hand, to compute Tl(t), first we select a

node v̂i ∈ V̂ : ∃[·, t] ∈ v̂i and then compute a set of nodes v̂j ∈ V̂ such that there is a edge between v̂i and v̂j .

Finally, the transitions t′ of which [·, t′] ∈ v̂j , belong to Tl(t). Therefore, the complexity of computing Tl(t) is

O(|V̂ |2).

Example 15: Consider the conflict graph in Fig. 14. We have Tc(t1) = Tc(t2) = {t1, t2}, Tc(t3) = {t3},

Tc(t4) = {t4}, Tl(t1) = Tl(t2) = {t3, t4}, Tl(t3) = {t1, t2, t4} and Tl(t4) = {t1, t2, t3} . �
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Proposition 8: Given an LPNO GO and its conflict graph Â = (V̂ , Ê), there exists an LPN equivalent to GO if

and only if Tc(t) ∩ Tl(t) = ∅ holds, ∀t ∈ T .

Proof: If the LPNO GO satisfies Tc(t)∩Tl(t) = ∅, then no transition has to be assigned to different labels at

different markings. Thus there is a vertex coloring that corresponds to an equivalent LPN. Suppose Tc(t)∩Tl(t) 6= ∅.

Let t′ ∈ Tc(t)∩Tl(t). There is a node v̂i ∈ V̂ that includes [Ma, t] and [Mb, t
′]. Therefore `A(Ma, t) = `A(Mb, t

′).

Since t′ ∈ Tl(t), there are adjacent nodes v̂j and v̂k in Â where [Mc, t] ∈ v̂j and [Md, t
′] ∈ v̂k. We have

`A(Mc, t) 6= `A(Md, t
′). Hence there exists no vertex coloring corresponding to an LPN and based on Proposition 6,

there is no equivalent LPN.

Note that ∀t′ ∈ Tc(t)∩Tl(t), t′ is adaptively labeled in the equivalent ALPN. If an LPNO satisfies Proposition 8,

there exists a vertex coloring by which the equivalent LPN can be computed. Given a transition t ∈ T , the nodes

in Â containing [·, t] can be merged as one, since [·, t] can be in the same label. To obtain a vertex coloring

that corresponds to an LPN, the set of vertexes V̂ needs to be reconstructed and Algorithm 2 realizes such a

reconstruction.

Algorithm 2 Reconstruction of V̂

Input: the set V̂ of Â

Output: a new set V̂new

1: V̂new := V̂

2: for all v̂i ∈ V̂new, do

3: for all v̂j ∈ V̂new \ {v̂i}, do

4: if ∃[·, t] ∈ v̂i : [·, t] ∈ v̂j , then

5: v̂i = v̂i ∪ v̂j ;

6: V̂new = V̂new \ {v̂j};

7: end if

8: end for

9: end for

10: Output V̂new.

To obtain the final set V̂new, first we select a node v̂i in V̂ and find another node v̂j ∈ V̂ such that v̂i and v̂j

contain the same transition t. Then we merge v̂i and v̂j and remove v̂j from V̂ . Note that the obtained node v̂i

will not be treated as a new node. Therefore, the complexity of Algorithm 2 is O(|V̂ |2). As soon as the set V̂ is

rebuilt as V̂new, the conflict graph Â should also be reconstructed by Definition 15 (in order to avoid confusion,

the reconstructed conflict graph is denoted as Ânew). Then, by computing a vertex coloring of Ânew the equivalent

LPN is obtained. In conclusion, the procedure of finding an equivalent LPN of a bounded LPNO is stated as follows:

Step 1 Construct the conflict graph Â.

Step 2 Check if Proposition 8 is verified:
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“Yes” — go to Step 3;

“No” — stop, as there is no equivalent LPN.

Step 3 Apply Algorithm 2.

Step 4 Construct the new conflict graph Ânew by Defini-

tion 15.

Step 5 Compute a vertex coloring of Ânew.

Example 16: Example 15 shows that ∀t ∈ T, Tc(t)∩ Tl(t) = ∅, i.e., the LPNO in Fig. 11 satisfies Proposition 8

and thus there is an LPN equivalent to the LPNO. The conflict graph is reconstructed by applying Algorithm 2 and

the colored one is shown in Fig. 17. Therefore, the equivalent LPN is `(t1) = `(t2) = a, `(t3) = b, `(t4) = ε and

Σ = {a, b}.

Consider the LPNO in Example 14. According to the conflict graph in Fig. 16, there is no LPN equivalent to it

since ∀t ∈ T, Tc(t) ∩ Tl(t) = T . Results in Example 14 also verify this. �

A. Further Discussion on the Number of Labels

It is known that the number of colors that can be used to color a graph is not unique, as well as the way of

coloring it. If the conflict graph Â = (V̂ , Ê) of an LPNO GO is k-chromatic, and |V̂ | = λ, the bound of labels of

the equivalent ALPN is k ≤ |ΣA| ≤ λ. Then, it is important to answer the question whether the lower bound of

labels necessarily increases/decreases when an equivalent LPN is required.

Proposition 9: Given an LPNO satisfying Proposition 8, the minimal number of labels in equivalent LPNs is k

if and only if the conflict graph Â = (V̂ , Ê) of GO is k-chromatic.

Proof: Since the LPNO satisfies Proposition 8, there is an equivalent LPN and its conflict graph Â = (V̂ , Ê)

can be reconstructed into Ânew by applying Algorithm 2 and Definition 15. The reconstruction of V̂ does not change

the coloring relation between [M, t] pairs. That is to say, even though some [M, t] pairs that are not necessarily

in the same node in Â are absorbed into the same node of Ânew, this does not violate the coloring rule since the

nodes that belong to Â are not connected. Therefore, if Â is k-chromatic, so is Ânew, i.e., the minimal number of

labels of equivalent LPNs is k.

Proposition 6 shows that the vertex colorings of the conflict graph characterize all equivalent ALPNs. Since LPNs

are a special class of ALPNs, if the minimal number of labels of equivalent LPNs is k, then Â = (V̂ , Ê) of GO
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Fig. 18. Unbounded LPNO (a) and its conflict graph Â (b).

is k-chromatic.

Therefore, the bound of labels of the equivalent LPN is k ≤ |Σ| ≤ |T |. The requirement of equivalent LPNs

does not change the minimal number of labels. Proposition 9 also implies that if there is no vertex coloring with

the chromatic number of labels corresponding to an LPN, then there is no LPN equivalent to the LPNO.

VII. CONVERSION OF UNBOUNDED LPNOS

The conversion algorithms and propositions proposed in the previous sections are applicable to bounded LPNOs.

For unbounded LPNOs, the conflict graph may not be feasible to be constructed and analyzed because of the infinite

number of markings. Although we lack general results, we give an example to show that in some cases it is possible

to convert an unbounded LPNO into an equivalent ALPN by using the same technique.

Example 17: Consider the LPNO in Fig. 18(a). Since at each marking, the firings of t1, t2 and t3 produce

different observations, no marking is confusable with others. The conflict graph Â is shown in Fig. 18(b), where

Mi = [i], i = 0, 1, 2, · · · . For any t ∈ T , Tc(t) = {t} and Tl(t) = T \ {t}. Therefore, the LPNO satisfies

Proposition 8. By applying Algorithms 1 and 2, the colored conflict graph Ânew is shown in Fig. 19 and the

equivalent LPN is `(t1) = a1, `(t2) = a2, `(t3) = a3 and Σ = {a1, a2, a3}. If we apply the brute force approach

to obtain the equivalent ALPN, we need an infinite number of labels. �

Example 17 shows that even though the conflict graph is infinite, the alphabet of the equivalent ALPN could be

finite. This result can be explained by the following theorem concerning the coloring problem in infinite graphs.

Theorem 1: [De Bruijin-Erdős theorem (1951)] If and only if all finite subgraphs of an infinite graph Â can be

colored by ρ colors, then χ(Â) ≤ ρ.
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VIII. CONCLUSION AND FUTURE WORK

In the paper different observation structures for Petri net generators are developed. In particular two classes of

Petri net generators are defined: labeled Petri nets with outputs (LPNOs) and adaptive labeled Petri nets (ALPNs).

The two classes are proper generalizations of labeled Petri nets (LPNs) usually considered in the literature. The

notion of observation equivalence is formulated and used to compare the modeling power of different classes of

Petri net generators. It is shown that LPNOs and ALPNs have the highest modeling power. Algorithms converting

bounded LPNOs to equivalent ALPNs and LPNs with a minimal alphabet are proposed, whose complexity mainly

depends on the computation of confusion relations and solving the vertex coloring problem of a particular graph

that is called a conflict graph. In the case of unbounded LPNOs, the algorithms may also be applicable.

We believe that LPNOs provide an intuitive way to model systems with various kinds of sensors. However, it

may be difficult to analyze the system behavior according to the information provided by the labeling function

and output functions in a systematic way. This work addressing the conversion from LPNOs to equivalent LPNs

provides some useful tools to analyze LPNOs.

The future work will focus on characterizing a class of LPNOs whose LPNs or ALPNs can be obtained with

polynomial complexity, using the basis reachability graph introduced in [15] to reduce the conversion complexity,

and finding a systematic way to analyze ALPNs.
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