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Abstract

Determining the state of a system when one does not know its current initial state is a very important

problem in many practical applications as checking communication protocols, part orienteers, digital

circuit reset, etc. Synchronizing sequences have been proposed in the 60’s to solve the problem on

systems modeled by finite state machines.

This paper presents a first investigation of the synchronizing problem on unbounded systems, using

synchronized Petri nets, i.e., nets whose evolution is driven by external input events. The proposed

approach suffers from the fact that no finite space representation can exhaustively answer to the

reachability problem but we show that synchronizing sequences may be computed for a particular

class of unbounded synchronized Petri nets.
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I. INTRODUCTION

Testing problems have assumed an important role in the area of discrete event systems due to

the increasing need for performance monitoring and verification of complex man-made systems.

Several testing problems have been defined: see [14] for a comprehensive survey. In this work

we focus in particular on thesynchronization problem. It consists in finding an input sequence

that drives a system to a known state having no (or at best partial) information on its current state

and without observing the system’s output. Such an input is called a synchronizing sequence

(SS). Interesting and practical applications in this setting can be found in robotics [1], [18], bio-

computing [3], [2], network theory [12], theory of codes [11] and testing synchronous circuits

with no reset [5].

Typical models used for testing areinput/output automatasuch as Mealy machines [16].

Recently, however, in a series of papers [21], [20] we have investigated the problem of de-

termining a SS in the setting of Petri nets (PNs). In particular, we have shown how several

approaches developed for automata can be easily applied to the class of bounded deterministic

synchronized Petri nets using thereachability graph(RG) of a net. Such a graph is an automaton

whose behavior is equivalent to that of the net and whose states are vectors inNm representing

reachable markings. Furthermore we have shown that for special classes of nets a SS can be

computed without exploring the complete reachability set but simply analyzing the net structure.

This paper is an extended version of our previous work in [22]on synchronizing sequences’

construction where we further extend our investigation to the case ofunboundedPetri nets, i.e.,

nets whose reachability set is infinite. Note that, to the best of our knowledge, the synchronizing

problem for unbounded models (automata or Petri nets) has never been investigated before.

The behavior of an unbounded Petri net can be approximated bya finite coverability graph

(CG) [13]. Such a graph is an automaton where each state is a vector in (N∪{ω})m representing

a set of markings. Anω component denotes a place whose token content may be arbitrarily large.

The coverability graph is not unique and usually not minimal. A minimal CG has been pro-

posed by Finkel [9], using reduction rules based on comparison between computed markings. The

approach has been demonstrated to be incorrect and more efficient techniques have been proposed

to correctly determine minimal coverability sets by constructing handle sets by Geeraertset al.

[10] or by pruning technics by Reynier and Servais [23]. However, the CG entails loss of

February 1, 2016 DRAFT



3

information in terms of reachable markings and firing sequences, that can somehow prevent one

to use it for systematically investigating the net properties. Recently, some efficient algorithms

based on a modified CG have been proposed by Zhou and coauthors[8], [24] for the particular

purpose of testing if an unbounded PN net has deadlocks or not.

Unfortunately, as pointed out by [7], synchronized PNs havea non-necessarily monotonic

evolution. This is why, as explained by [6], for such nets no algorithmic CG construction has

been given yet.

This paper contains two distinct contributions.

We first propose a procedure to construct a finite graph, called modified coverability graph

(MCG), to describe the behavior of unbounded synchronized PNs. This procedure is adapted by

Karp and Miller algorithm but requires a new definition ofincreasing sequenceto capture those

evolutions that lead to arbitrarily large markings. Unfortunately, we show that a MCG may fail

to capture some transitions steps that are firable in the net and also some reachable markings:

we call themvanishing stepsand vanishing markings, respectively. This motivates us to look

for a sufficient condition (called Assumption III.10 in the paper) that rules out these undesirable

features. For unbounded synchronized nets satisfying thiscondition the MCG provides a faithful

representation of the net behavior — analogously to the coverability graph of an unbounded

Petri net — and as such is a suitable tool to determine synchronizing sequences. For this reason,

in the rest of the paper we focus on the class of nets that satisfy this assumption.

Second, we extend to the unbounded case the technique we havepresented in [21] for com-

puting SS in the case of bounded synchronized nets. However,theω symbol that is necessarily

introduced in the MCG to keep the graph finite, entails (as is the case for the coverability graph

of Petri nets) some loss of information. This is why, in the case of unbounded nets, the graph can

only give precise information about the marking of bounded places and we consider a weaker

notion of SS as a sequence that yields a marking where only thetoken content of bounded places

must be exactly known. This concept of partial synchronization of the state has been suggested

in the context of sequential machines by [4], where if a SS is prohibitively long or non existent,

a selected subset of all flip-flops could be electrically reset. The analysis of the MCG gives a set

of sequences — calledpotentially synchronizing sequences— and we provide a finite procedure

to verify it they are also synchronizing sequences.

The paper is organized as follows. Section II provides background on Petri nets formalisms.
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In section III an algorithmic construction of the coverability set of unbounded synchronized Petri

nets is provided. Section IV presents our approach for SS construction. Finally, in section V

conclusions are drawn and future work presented.

II. PETRI NET FORMALISMS

In this section, the Petri net formalism used in this paper isrecalled. First the basic notions of

Petri nets are presented. Then the class of synchronized Petri nets, a non-autonomous Discrete

Event System model is presented. For more details on Petri nets the reader is referred to [17],

[6].

A. Petri nets

A Petri net1 (PN) is a structureN = (P, T, Pre, Post) , whereP is a set ofm places, T

is a set ofn transitions, Pre : P × T → N and Post : P × T → N are, respectively, the

pre-incidenceandpost-incidencematrixes that specify the weights of directed arcs from places

to transitions and from transitions to places.C = Post− Pre is the incidence matrix.

A marking is an applicationM : P → N that assigns to each place of a net a nonnegative

integer. A marking will be represented by a vector

M = [ M(p1) M(p2) . . .M(pm) ]
T

whereM(p) denotes the number of tokens contained in placep. A marked PN〈N,M0〉 is a net

N with an initial markingM0.

A transition t is enabled atM iff M ≥ Pre(· , t). An enabled transitiont at M may be

fired yielding the markingM ′ = M + C(· , t). The set of enabled transitions atM is denoted

E(M). We writeM [σ〉 to denote that the sequence of transitionsσ = t1 . . . tk is enabled atM .

MoreoverM [σ〉M ′ denotes the fact that the firing ofσ from M leads toM ′.

A markingM is reachablein 〈N,M0〉 iff there exists a firing sequenceσ such thatM0 [σ〉 M .

The set of all markings reachable fromM0 defines thereachability setof 〈N,M0〉 and is denoted

R(N,M0).

A place is bounded if there existsk > 0 s.t. ∀M ∈ R(N,M0), M(p) ≤ k. A marked

PN 〈N,M0〉 is said to bek-boundedif there exists a positive constantk such that for all

1Properly speaking, the model we describe here is called aplace/transition net.
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M ∈ R(N,M0), M(p) ≤ k, ∀p ∈ P . A place is calledk-bounded if it does not contain more

thank tokens in all reachable markings, including the initial marking.

We conclude this sub-section by introducing some notationsand concepts that are used in this

paper.

The preset and postset of a placep, denoted•p and p• are, respectively:•p = {t ∈ T |

Post(p, t) > 0} and p• = {t ∈ T | Pre(p, t) > 0}. The set of input transitions and the set

of output transitions for a set of placêP are defined as:•P̂ = {t ∈ T | (∃p ∈ P̂ ) t ∈ •p}

and P̂ • = {t ∈ T | (∃p ∈ P̂ ) t ∈ p•}. Analogously, thepreset and postset of a transition

t are respectively•t = {p ∈ P | Pre(p, t) > 0} and t• = {p ∈ P | Post(p, t) > 0}. Also,

the set of input places and the set of output places for a set oftransitionsT̂ are defined as:
•T̂ = {p ∈ P | (∃t ∈ T̂ ) p ∈ •t} and T̂ • = {p ∈ P | (∃t ∈ T̂ ) p ∈ t•}.

Let Pu and Iu (resp.Pb and Ib) denote the set of unbounded (resp. bounded) places and the

corresponding indexes s.t.Iu = {i | pi ∈ Pu} (resp.Ib = {i | pi ∈ Pb}). Let mu = |Pu| and

mb = |Pb|. We denoteM ↑b (resp.M ↑u) the projection of the markingM onto the set of

bounded (resp. unbounded) placesPb (resp.Pu).

The characteristic vector or Parikh vector of a transition sequence,σ = t1 . . . tk, is a vector

π(σ) ∈ Nn, where its componentπj represents the number of firing of transitiontj in the given

sequenceσ.

A graphG is decomposable in its maximal strongly connected components [19], classified as:

i) ergodic, if its set of output transitions is included in its set of input transitions ; ii)transient,

otherwise.

B. Coverability graph

A bounded PN has a finite reachability set. In this case, its behavior can be represented by a

reachability graph(RG), i.e., a directed graph whose vertices correspond to reachable markings

and whose edges correspond to enabled transitions.

The set of reachable markings of an unbounded PN, on the contrary, is not finite. Karp and

Miller [13] have proposed a procedure to compute a finite representation of the state-space of

unbounded PNs. The procedure requires to identifyincreasing sequencesat a markingM , i.e.,
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firing sequencesσ that produces an infinitely long evolutionM = M1[σ〉M2[σ〉M3 · · · where2

Mi � Mi+1 for i = 1, 2, . . .. These sequences strictly increase the number of tokens in certain

places and their final behavior is approximated using an acceleration technique, that works

because PNs are monotonic, i.e. a sequence of transitions which is firable from a markingM is

also firable from all markingsM ′ such thatM ′≥M .

In a coverability graph, each node is labeled with anm dimensional row vector whose entries

may either be an integer number or may be equal to the special symbolω, while arcs are elements

in T . In particular, its nodes are labeled with anω-marking, defined as follows.

Definition II.1. (ω-marking) Let Nω = N ∪ {ω}. An ω-marking of a PNN with m places is a

column vectorMω ∈ Nm
ω , whose components may either be an integer number or be equalto

ω. �

Symbolω denotes that the marking of the corresponding place may growindefinitely. Note

that for all n ∈ N it holdsω > n andω ± n = ω.

The following example illustrates the coverability graph of an unbounded PN, obtained by

the classic Karp-Miller algorithm [13].

Example II.2. Consider the PN in Figure 1a whereP = {p1, p2, p3}, T = {t1, t2, t3} and

M0 = [1 0 0]T . Its reachability graph, depicted in Figure 1b, shows that the firing sequence

σ = t1 increases the marking of placep2. The repeated firing ofσ makes unbounded the same

place. For this reason,σ is an increasing sequence. The corresponding coverabilitygraph is

shown in Figure 1c. �

We now introduce the notion of covering set that provides a larger approximation of the

reachability set.

Definition II.3. (Covering set) Given a marked PN〈N,M0〉, let V be the set of nodes of its

CG. The covering set of〈N,M0〉 is

CS(N,M0) =
⋃

Mω∈V

cov(Mω),

2Given two vectorsx, y ∈ Rn we write x � y to denote thatx ≤ y, i.e., each component ofx is smaller than or equal to

the corresponding component ofy, and thatx 6= y, i.e., the two vectors are not identical.
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t1p1

p3

p2

t2t3

2

(a)

t1 t2

t3

t1
[1,0,0] [1,1,0] [1,2,0] [0,0,1]

[1,3,0]
t1 t2

t1

[0,1,1]
t3

(b)

t1
t2

t3

t1
[1,0,0] [1,ω,0] [0,ω,1]

(c)

Fig. 1: An unbounded PN (a), its partial RG (b) and its CG (c).

wherecov(Mω) = {M ∈ Nm | M(p) = Mω(p) if Mω(p) 6= ω}.

A markingMω is called acovering markingfor M if M ∈ cov(Mω). In this case, we write

Mω ≥ω M . �

We finally recall a classical result, showing that the coverability graph captures all evolutions

of a net (but may also contain some evolutions that the net cannot generate).

Proposition II.4 ([17]). Consider a marked PN〈N,M0〉 and its CG.

1) Marking M is reachable in the net=⇒ in the CG there exists a nodeMw such that

M ∈ cov(Mω), i.e.,R(N,M0) ⊆ CS(N,M0).

2) Sequenceσ = tj1tj2 · · · tjk is firable fromM ∈ R(N,M0) with the evolutionM [tj1〉M1[tj2〉M2 · · · [tjk〉M

=⇒ in the CG from all nodesMw such thatM ∈ cov(Mω) there exists a directed path

Mωtj1Mω,1tj2Mω,2 · · · tjkMω,k such thatMi ∈ cov(Mω,i) for i = 1, 2, . . . , k.
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C. Synchronized Petri nets

A synchronized Petri net[6] is a structure〈N,E, f〉 such that: i)N is a PN; ii)E is an alphabet

of input events; iii)f : T → E is a labeling function that associates with each transitiont an

input eventf(t). A marked synchronized PN〈N,M,E, f〉 is a synchronized PN with a marking

M .

We denote the set of transitions associated with the input evente by: Te = {t ∈ T | f(t) = e}

and the set of enabled transitions associated with evente as:Ee(M) = Te ∩ E(M).

The evolution of a synchronized net is driven by the occurrence of an input event sequence

that produces a sequence of transition firings. At markingM , transitiont ∈ T is fired only if:

1) transitiont is enabled, i.e.,t ∈ E(M);

2) the evente = f(t) occurs.

Note that the occurrence of an input evente ∈ E at markingM forces the simultaneous firing

of all transitions inEe(M) provided there are no conflicts among them. On the contrary, the

occurrence of an evente does not produce the firing of a non enabled transitiont ∈ Te.

We say that there exists aneffective conflictat markingM between two enabled transitions

sharing the same labelt, t′ ∈ Ee(M) if the following condition holds: there exist a placep

such thatt, t′ ∈ p• andM(p) < Pre(p, t) + Pre(p, t′). Moreover, a synchronized PN is said

to be deterministic if for all reachable markings there is noeffective conflict between enabled

transitions sharing the same event.

Definition II.5. (Deterministic synchronized PN) A marked synchronized PN〈N,M0, E, f〉 is

said to bedeterministicif the following condition holds:

(∀M ∈ R(N,M0)) (∀e ∈ E) M ≥
∑

t∈Ee(M)

Pre(·, t). �

Remark II.6. A sufficient structural condition for a synchronized PN〈N,E, f〉 to be determin-

istic is that there does not exist a placep such thatt, t′ ∈ p• and f(t) = f(t′). �

Example II.7. Based on the Petri net in Fig. 1a, consider the synchronized PN in Fig. 2, with

E = {e1, e2}, f(t1) = f(t3) = e1 andf(t2) = e2. This net is deterministic ast1 and t2 (the only

transitions in conflict) do not share the same input event. �
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t1

e1

p1

p3

p2

t2 e2t3 e1

2

Fig. 2: An unbounded deterministic synchronized Petri net.

In the rest of the paper we will focus on deterministic synchronized PNs: all presented results

apply to this class of nets. Furthermore in all examples we will consider nets that satisfy the

structural condition mentioned in Remark II.6 so that one may verify by inspection that they are

deterministic.

We conclude this section presenting the formal semantics (i.e., the evolution rule) of deter-

ministic synchronized PNs.

Definition II.8 (Evolution of a deterministic synchronized PN). In a deterministic synchronized

PN, when an input evente occurs at a markingM , all enabled transitions receptive to this event

Ee(M) = Te ∩ E(M) fire simultaneously in a singlestep

M [e|τ〉M ′, with τ = Ee(M) andM ′ = M +
∑

t∈τ

C(·, t). (1)

HereM [e|τ〉M ′ denotes that the occurrence of the input evente at M yields markingM ′ by the

firing of stepτ . When there is no need to specify the firing step corresponding to e we simply

write M [e|·〉M ′. �

According to this definition, an input event sequence3 w = e1e2 · · · ek ∈ E∗ drives the net

along the evolution

M0[e1|τ1〉M1[e2|τ2〉M2[e3|τ3〉 · · · [ek|τk〉Mk (2)

where the steps areτi = Eei(Mi−1) for i = 1, . . . , k, M0 is the initial marking and

Mi = Mi−1 +
∑

t∈τi

C(·, t).

3Here, * denotes the Kleene star operator andE∗ represents the set of all sequences on alphabetE.
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Note that firing stepτi is empty if no transition receptive to eventei is enabled atMi−1 and in

this caseMi = Mi−1.

Finally we denote evolution (2) byM0[w|σ〉Mk, whereσ = τ1 · · · τk is a sequence of steps.

When there is no need to specify the firing step sequence corresponding tow we simply write

M [w|·〉M ′.

D. Synchronization problem

Consider a system with aninitial state uncertainty, i.e., the initial state is not perfectly known

but is only known to belong to a set of initial statesM0. In the worst case, the set of initial

states may coincide with the entire state space. In a synchronization problem, the goal is to find

an input event sequence that, regardless of the initial state, drives the system to a known target

stateM̄ . In the case of a synchronized PN〈N,E, f〉, we assume that astarting markingM0,

i.e., a marking where the net has certainly been in the past, is known. Thus the initial state

uncertainty is usually given byM0 = R(N,M0).

In a previous work [21], we have studied the existence of a synchronizing sequence (SS) on

bounded synchronized PNs. It has been proved that a bounded deterministic synchronized PN

〈N,E, f〉, can be synchronized to a markinḡM only if its reachability graphG has a single

ergodic component and̄M belongs to it.

The objective of this paper is to study under which conditions similar approaches can be

derived for the class of unbounded synchronized PNs.

III. A MODIFIED COVERABILITY GRAPH FOR UNBOUNDED SYNCHRONIZEDPNS

In this section we show how the behavior of unbounded synchronized PNs can be described

by a finite graph that we callmodified coverability graph(MCG) because it derives from the

classical construction of Karp and Miller [13]. There are however several issues to be considered

in this setting. The first challenge is due to the fact that synchronized PNs do not satisfy the

monotonicity property of PN mentioned in Section II-B hencea new definition of increasing

sequence is required. This new definition is used to modify the procedure of Karp and Miller so

that a MCG can be defined for synchronized net. We also show, however, that this representation

may fail to capture all evolutions of a synchronized net. This will motivate the definition of

a special class of nets for which the modified coverability graph is ensured to describe all
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evolutions: in the subsequent sections we will derive a procedure to compute synchronizing

sequences for this class of net.

A. Monotonicity property of synchronized nets

In a PN from the definition of transition enabling, it followsthat if M ′ ≥ M thenE(M ′) ⊇

E(M), i.e., a transition enabled by a markingM is also enabled by any other markingM ′ that

covers it. From this, a well know property follows.

Proposition III.1 ([17]). (Monotonicity of Petri nets) In a PN, if a transitiont may fire from

a markingM it can also fire any other markingM ′ that covers it, i.e.,

M [t〉 and M ′ ≥ M =⇒ M ′[t〉.

�

However, for synchronized PNs a weaker property holds.

Proposition III.2. (Weak monotonicity of synchronized Petri nets) In a synchronized PN, let

e ∈ E be an input event andTe be the set of transitions receptive to this event. If input event

e produces from markingM a firing stepτ ⊆ Te then the occurrence ofe from a markingM ′

that coversM produces a stepτ ′ that is a superset ofτ , i.e.,

M [e|τ〉 and M ′ ≥ M =⇒ M ′[e|τ ′〉 with τ ′ ⊇ τ.

Proof. Follows from (1), becauseτ ′ = Ee(M
′) = Te ∩ E(M ′) ⊇ Te ∩ E(M) = Ee(M) = τ .

�

This property implies that in a synchronized PN an evolutionstep [e|τ〉 that occurs from a

given marking, may not be possible from a larger marking. Themain consequence of this is that

the notion of increasing sequences for PNs — that follows from the monotonicity property —

must be suitably redefined for synchronized PN, as discussedin the following example.

Example III.3. Consider the net Fig. 3a: this is a synchronized PN where input evente is

associated with both transitionst1 and t2. We look first at the underlying PN, i.e., we ignore

the input event and consider the autonomous behavior where an enabled transition may fire.

We observe that from the initial markingM0 = [0], source transitiont1 is enabled and can fire
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t2

e

pt1

e

(a)

t2

[1][0]
t1 t1

[2]
t1

t2 t2

(b)

t1

[ω][0]
t1

t2

(c)

e|{t1,t2}

[1][0]
e|{t1}

(d)

Fig. 3: An unbounded synchronized PN (a), the RG of the underlying PN (b), the CG of the

underlying PN (c) and the RG of the synchronized PN (d).

reaching markingM1 = [1]. We have thus identified an increasing transition sequenceσ = t1

that can fire indefinitely — since by monotonicity it is also enabled by any marking greater than

M0 — increasing the token content of placep, as shown by the reachability graph of the PN in

Fig. 3b. The procedure of Karp and Miller recognizes this increasing sequence and produces the

finite coverability graph of the PN shown in Fig. 3c, where onecan observe that the unbounded

placep is marked withω.

Consider, however, the evolution of the synchronized PN. When input evente is applied at

the initial markingM0 = [0], only transitiont1 fires, because transitiont2, although receptive

to this event, is not enabled; thus one obtains the evolutionM0[e|{t1}〉M1. However, although

M1 > M0 step{t1} cannot fire fromM1 (hence the non monotonicity) according to the evolution

rule presented in Definition II.8. In fact, from this markingthe application of the input event

produces the evolutionM1[e|{t1, t2}〉M1, i.e., both enabled transitions fire simultaneously and

the marking does not change, as shown by the reachability graph in Fig. 3d. We point out that

placep is bounded in the synchronized net although it is unbounded in the underlying PN.�

B. An algorithmic construction of the MCG

In the construction of the coverability graph for PNs, a sequence is identified as increasing

if it yields a larger marking. This condition, however, fails to identify increasing sequences in

the case of synchronized PNs, as discussed in the previous subsection. In this subsection we
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propose a new notion of increasing sequence for synchronized nets that will allow us to derive

a procedure for constructing a modified coverability graph.

We first introduce the notion of increasing input event sequences.

Definition III.4. (Increasing input sequence) Consider a marked synchronized PN〈N,M0,

E, f〉. An input sequencew ∈ E∗ is called increasingat markingM1 ∈ R(N,M0) if:






M1[w|σ〉M2[w|σ〉M3[w|σ〉 · · ·

Mi�Mi+1 ∀i = 1, 2, . . . �

In other words, an increasing input sequence applied repetitively starting fromM1, always

produces the same firing step sequenceσ leading to a greater marking.

The following proposition provides a sufficient condition for a sequence to be increasing.

Proposition III.5. Consider a synchronized PN〈N,E, f〉 and a markingM . Let M ′ and M ′′

be respectively the marking reached after a first and a secondapplication of input sequencew,

i.e., M [w|σ〉M ′[w|σ′〉M ′′. Sequencew is an increasing input sequence atM if the following

three conditions hold:

C1) σ = σ′;

C2) M�M ′�M ′′;

C3) (∀p such thatM ′(p) > M(p)) (∀t ∈ p•) M ′(p) ≥ Pre(p, t).

Proof. Conditions C1) and C2) are necessary to ensure that input sequencew is increasing.

Condition C3) guarantees that all subsequent markings reached by repeated applications of the

input sequence will not modify the corresponding step firingsequence. �

We now present an algorithm to construct a finite graph that will be used to describe the

behavior of unbounded synchronized PNs. Such a graph is called modified coverability tree

(MCT) because it derives from the classical construction ofKarp and Miller [13].

Algorithm 1. MCT construction for deterministic synchronized PNs

Input: a deterministic marked synchronized PN〈N,M0, E, f〉.

Output: a MCT T .

1. Label the root nodeq0 with the initial markingM0 and tag it ”new”.

2. While a node tagged ”new” exists,do
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2.1. Select a nodeq tagged ”new”.

2.2. LetM be the label ofq.

2.3. For all e ∈ E such thatEe(M) 6= ∅:

2.3.1. LetM ′ = M +
∑

t∈Ee(M)

C(·, t) be the marking reached firing all enabled transitions

t ∈ Te.

2.3.2. Let Q̂ be the set of nodes met on a backward path fromq to q0 whose label is

M̂�M ′.

2.3.3. For all nodesq̂ ∈ Q̂ labeledM̂ ,

2.3.3.1. letw andσ be the input sequence and the corresponding firing step sequence s.t.

M̂ [w|σ〉M ′.

2.3.3.2. Let apply againw from M ′, obtainingM ′[w|σ′〉M ′′.

2.3.3.3. If the three following conditions hold:

C1) σ = σ′;

C2) M̂�M ′�M ′′;

C3) (∀p such thatM ′(p) > M(p)) (∀t ∈ p•) M ′(p) ≥ Pre(p, t);

then let M ′(p) = ω.

2.3.4. Add a new nodeq′ and label itM ′.

2.3.5. Add an arc labelede|Ee(M) from q to q′.

2.3.6. If there exists already in the tree a node with labelM ′, then tag nodeq′ ”duplicate”,

elsetag it ”new”.

2.4. Untag nodeq. �

The MCG is obtained from the MCT by fusing duplicate nodes with the untagged node with

the same label.

We point out that the complexity of this algorithm is comparable with that of computing the

coverability graph of a PN using the algorithm of Karp and Miller [13], which is known to be

non-primitive recursive [15]. Algorithm 1 is a reformulation of the algorithm in [13] in terms

of synchronized nets, but contains an essential difference: step 2.3.3.3 that embeds the test for

repetitive input sequences. This difference does not affect the order of computational complexity.

Example III.6. By applying Algorithm 1 to the unbounded synchronized PN in Fig. 2, the
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e1|{t1}
e2|{t2}

e1|{t3}

e1|{t1}
[1,1,0] [1,ω,0] [0,ω,1][1,0,0]

e1|{t1}

M0 M1 M2 M3

Fig. 4: The MCG of the synchronized PN of Fig. 2.

MCG depicted in Fig. 4 can be constructed. As an example of this construction, note that input

sequencee1 from M0 satisfies conditions C1) and C2) but does not satisfy condition C3). In

fact, it increases the marking of placep2 but the increased markingM1(p2) is not sufficiently

large to enable transitiont2 that outputs placep2. However, the occurrence of input sequence

e1 from M1 satisfies also condition C3) and this justifies why in the MGC in Fig. 4 the marking

of p2 is set toω in M2. �

Note that in a MCG there is a one-to-one mapping between a nodeand its label, hence in the

following we will not distinguish between a node of the graphand theω-marking that labels it.

The boundedness of the MCG is proven by the following proposition.

Proposition III.7. Consider an unbounded marked synchronized PN〈N,M0, E, f〉. Its MCG

constructed via Algorithm 1 is a finite graph.

Proof. We just provide a sketch of the proof that is based on the results presented by Karp and

Miller in [13] in the framework of PNs. These authors have shown that by recognising increasing

sequences and using the symbolω to denote the increasing components of the markings the

procedure to construct the tree halts in a finite number of steps — i.e., the constructed tree has

a finite number of vertices — even if the net has an infinite reachability set. A similar reasoning

applies to Algorithm 1 whose main difference from [13] consists in the computation of increasing

sequences. Note that in synchronized nets reaching an increased marking after the occurrence

of an input sequence — condition C2) — is only a necessary condition for the sequence to be

increasing: if the repeated application of such an input sequence produces an ever increasing

markings, then in a finite number of steps also conditions C1)and C3) will be satisfied, so that

the identification of an increasing input sequence is only postponed for a finite number of steps.
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�

C. Vanishing steps and vanishing markings

We now address the problem of determining whether the modified coverability graph provides

a faithful representation of the behavior of a synchronizednet. Unfortunately the relatively strong

results — summarized by Proposition II.4 — that hold for the coverability graph of PNs do not

hold for the MCG of synchronized nets. Next example shows that there may exist steps and

reachable markings that are not represented in the MCG.

Example III.8. Consider the synchronized PN in Fig. 5a. Its partial RG and its MCG are

depicted, respectively, in Fig. 5b and Fig. 5c. Consider theapplication of an input sequence

w = e1e3e3 at initial markingM0 = [0 0 1]T that produces the step sequence{t1}{t4}{t4}. The

net reaches markingM = [1 1 1]T from which the following increasing sequence may occur:

[1 1 1]T [e2|{t3}〉 [1 1 2]
T [e2|{t3}〉 [1 1 3]

T [e2|{t3}〉 [1 1 4]
T [e2|{t3}〉 · · ·

However in the MCG in Fig. 5c the stepe2|{t3} is not firable from theω-markingMω =

[ω ω 1]T that coversM , because the application of evente2 from Mω produces the “larger”

step e2|{t2, t3}. This in turn implies that in the MCG there exists no marking covering the

reachable markings{[ω ω k]T | k = 2, 3, . . .}. Furthermore, since the missing stepe2|{t3} in

this particular case is associated with an increasing sequence, the MCG fails to recognize that

placep3 is unbounded. �

We formalize the steps and marking that are not represented in the MCG with the following

definition.

Definition III.9. (Vanishing steps and vanishing markings) Consider an unbounded marked

synchronized PN〈N,M0, E, f〉 and letG be its MCG, constructed by means of Algorithm 1.

Suppose that there exists inG anω-markingMω and there exists in the net a reachable marking

M ∈ cov(Mω) such that for some input evente ∈ E:

i) M [e|τ〉, i.e., stepe|τ is firable fromM , with τ 6= ∅;

ii) Mω[e|τ
′〉 with τ ′ ) τ , i.e., a “larger” stepe|τ ′ is firable fromMω.

Then stepe|τ is called avanishing step. A marking that can only be reached in the net by firing

a sequence containing a vanishing step is called avanishing marking. �
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t1

t2p1

t3

p2

p3

e1

e2

e2
3

3

2

t4 e3

2

(a)

[0,0,1]
e1|{t1}

[3,3,1]
e3|{t4}

[2,2,1]
e3|{t4}

[1,1,1]
e2|{t3}

[1,1,2]
e2|{t3}

[1,1,3]

(b)

[0,0,1]
e1|{t1}

[ω,ω,1]

e2|{t2,t3}

e3|{t4}
e1|{t1}

(c)

Fig. 5: An unbounded synchronized PN with vanishing markings (a), and its RG (b) and its

MCG (c).

The proposed MCG lacks in representing vanishing steps and markings and as such does

not always provide a faithful representation of the net behavior (this was the case of the net

in Example III.8). For this reason we now propose a restricted class of synchronized nets for

which we can ensure that the MCG does not contain vanishing steps and markings.

assum III.10. Given a marked synchronized PN〈N,M0, E, f〉, letPu ⊆ P be the set of markings

that are unbounded according to the MCGG constructed by means of Algorithm 1, i.e.,

Pu = {p ∈ P | (there existsMω in G) Mω(p) = ω}. (3)

We assume that for every transitiont ∈ P •
u does not existst′ ∈ T such thatt 6= t′∧f(t) = f(t′).

�

The previous assumption ensures that any transition outputting a place detected as unbounded

by the MCG is associated with an input event which is not shared with any other transition.

Obviously the net studied in Example III.8 does not satisfy this assumption because, say,
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transitiont2, outputting placep1 — that is detected as unbounded by inspection of the MCG —

shares labele2 with transitiont3.

Proposition III.11. There exists no vanishing step or vanishing marking in the MCG of an

unbounded synchronized PNs〈N,M0, E, f〉 satisfying Assumption III.10, henceR(N,M0) ⊆

CS(N,M0).

Proof. Consider the MCGG of an unbounded synchronized PN, constructed by Algorithm 1,

and letMω be anω-marking inG. Assume that from a reachable markingM ∈ cov(Mω) step

e|τ may occur (withτ 6= ∅) and letPu be the set defined in (3). Then two cases are possible.

Case 1)τ ∩ P •
u = ∅. Then stepe|τ is also firable fromMω becauseEe(M) = Ee(Mω), since

Mω(p) = M(p) for all placesp 6∈ Pu.

Case 2)τ ∩ P •
u 6= ∅. In this case, by Assumption III.10, setτ = Te = {t} is a singleton set.

This implies thatEe(Mω) = Te ∩ E(Mω) = {t} hence stepe|t is also firable fromMω.

This shows that there exists no vanishing step, and as a consequence, no vanishing marking.

�

Thus for unbounded synchronized PNs satisfying AssumptionIII.10 the MCG provides a faith-

ful representation of the net behavior — analogously to the coverability graph of an unbounded

PN — and as such can be used to determine synchronizing sequences by the procedure that will

be presented in the following section.

We point out that Assumption III.10 is only a sufficient (but not necessary) condition to rule

out the existence of vanishing steps and markings. For this reason the procedure presented in

the next section can be used with a larger class of synchronized nets, although currently we lack

a general characterization of this class.

IV. SYNCHRONIZING SEQUENCES OF UNBOUNDED DETERMINISTIC SYNCHRONIZED PNS

The objective of this section is first to define synchronizingsequences (SSs) for unbounded

PNs. Next we discuss the computation of potentially synchronizing sequences from the MCG

of a given net. We finally use these sequences to compute SSs for the net itself.

First of all, note that theω symbol, used to obtain a finite coverability graph, entails loss of

information in terms of reachable markings and of firing sequences. Next example shows what

kind of problems we may encounter in determining SSs.
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p2

t1

e1 p3

t2

e2

p1

t3

e3

(a)

[1 0 0]

e1|{t1}

[0 1 1]

e3|{t3}
[1 0 1]

[0 1 2]

[1 0 2]

[0 1 3]

e3|{t3} e3|{t3}

e3|{t3}e3|{t3}e3|{t3}
[0 1 1]

e1|{t1} e1|{t1} e2|{t2}e2|{t2} e2|{t2} e2|{t2}

(b)

Fig. 6: A unbounded synchronized PN (a) and its RG (b).

Example IV.1. Consider the synchronized Petri net in Fig. 6a (without the dashed transitiont3)

with an initial marking[1 0 0]T and its infinite reachability graph in Fig. 6b (without the dashed

arc corresponding to stepe3|{t3}). Here the set of bounded places and the set of unbounded

places are respectivelyPb = {p1, p2} and Pu = {p3}. This graph does not have an ergodic

component, because all the nodes are transient components (such a case cannot occur in bounded

nets) hence no SS exists.

Consider now the unbounded PN in Fig. 6a (including dashed transition t3) with an initial

marking [1 0 0]T and its infinite reachability graph in Fig. 6b (including thedashed arcs corre-

sponding to stepe3|{t3}). Also in this casePb = {p1, p2} and Pu = {p3}. Suppose we want to

reach target markingM̄ = [1 0 0]T .

For such a marked net, it holds thatR(N,M0) = {M ∈ N3 | M(p1) +M(p2) = 1, M(p3) =

k ∈ N}.

Obviously, the input sequencew = e2{e3}
k drives the net toM̄ from any markingM = [1 0 u]T

andM = [0 1 u]T with u ≤ k. However, sinceu can be arbitrarily large, properly speaking no

SS toM̄ exists for this net.

Finally, note that in both cases we have discussed, it is always possible to reach a marking

where the token content of placesp1 and p2 is known. In fact, from any reachable marking the

input sequencew = e2 drives the net toM(p1) = 1 andM(p2) = 0. �

The previous example shows that in an unbounded net one cannot find a SS that leads from

any reachable marking to a marking where the token content ofan unbounded place is known.

This motivates the following extended definition of SS that only takes into account the set of

bounded placesPb.
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Definition IV.2. (Synchronizing Sequence on unbounded synchronized PNs) Consider a marked

unbounded synchronized PN〈N,M0, E, f〉 with set of bounded placesPb. An input sequence

w ∈ E∗ is called a Synchronizing Sequence (SS) for a target markingM̄ ∈ R(N,M0) if for all

M ∈ R(N,M0) it holdsM [w|·〉M̄ ′ with M̄ ′ ↑b= M̄ ↑b. �

The set of all synchronizing sequences for a given markingM̄ is denotedSS(N,M0, M̄).

According to the previous definition a SS for a target markingM̄ drives the net from any

(unknown) reachable marking to a marking identical toM̄ in terms of bounded places. Clearly

here we are assuming that a target marking implicitly definesa target set of markings.

Definition IV.3. (Synchronization target marking set) Consider a marked unbounded synchro-

nized PN〈N,M0, E, f〉 with set of bounded placesPb. The target marking setfor a given

markingM̄ ∈ R(N,M0) is4

TM(M̄) = {M ∈ Nm
ω | M ↑b= M̄ ↑b}.

�

The approach we propose to search for SS for unbounded nets isinspired by approach

developed in [21] for bounded nets. It requires three main steps.

i) computation of the MCGG;

ii) computation of a potentially SS from the analysis of the MCG G;

iii) validation of a potentially SS.

Step i), i.e., the computation of the MCG, is done by Algorithm 1, so in the rest of this section

we focus on the last two steps of the procedure.

A. Potentially synchronizing sequences

The MCG generated by Algorithm 1 is an automaton where each transition is labeled by a

pair e|τ with e ∈ E and τ ⊆ T ; hence it can be seen as an automaton with input alphabetE

and output alphabet2T .

4We are assuming that target marking set can also includeω-markings.
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Given a target marking of the net, we want to determine an input sequence that synchronizes

the MCG to a node corresponding to the target marking, and call this apotentially synchronizing

sequence(PSS).

Definition IV.4. (Set of potentially synchronizing sequence) Given the MCGG of a marked

synchronized PN with input alphabetE and set of bounded placedPb, theset of all potentially

synchronizing sequencesfor a target markingM̄ is defined by:

PSS(G, M̄) = {w ∈ E∗ | (∀M ∈ G) M
w
−→ M ′ ∧M ′ ↑b= M̄ ↑b}. �

Note that in the previous definition we are denoting the reachability relation on the MCG by

M
w
−→ M ′, as opposed to the reachability relation on the net denotedM [w|·〉M ′.

To compute a PSS, i.e., a SS for the MCG, we propose to extend the approach presented in

[21] for bounded nets that we briefly summarize in the following. Details can be found in [21].

We start by completing the MCGG (see [21]) to make sure that from any state all input event

occurrences are considered. Hence for any reachable marking M and for every inpute such that

Ee(M) = ∅, we add toG a self loop labellede|∅. The completed MCG is denoted̃G.

Secondly, we construct theauxiliary graph(AG) A(G̃) from the completely specified MCG̃G.

This auxiliary graph is a new graph whose nodes are the unordered pairs(Mi,Mj) of markings

of G, including pairs(Mi,Mi) of identical markings and such that there is an edge from(Mi,Mj)

to (Mp,Mq) labeled with an input evente ∈ E if in G there exists an arc fromMi to Mp and

an arc fromMj to Mq, both associated to input evente.

The two preliminary steps mentioned above are reviewed by means of the following example.

Example IV.5. Consider the synchronized PN in Fig. 2. Its completely specified MCG and its

AG are respectively depicted in Fig. 7a and in Fig. 7b. For thelatter, self-loop are omitted since

useless for the synchronization scope. �

Every path from(Mi,Mj) to (M̄, M̄) determines an input sequence that certainly drives the

MCG to markingM̄ if the previous marking was eitherMi or Mj . Hence the PSS is constructed

concatenating the input sequences determined by synchronizing two markings at time.

The following algorithm allows one to construct a PSSw, which is not necessarily the shortest

one but leads the MCG to a target marking.
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e1|{t1}
e2|{t2}

e1|{t3}

e1|{t1}
[1,1,0] [1,ω,0] [0,ω,1][1,0,0]

e1|{t1}

M0 M1 M2 M3

e2|ø e2|ø e2|ø

(a)

M0, M0 M2, M2
e1 e2e1 M1, M1 M3, M3

M0, M1 M1, M3
e1 M1, M2 M2, M3

e2

e1

e1 e2e1 e1

M0, M2M0, M3
e2

e1e1

(b)

Fig. 7: Completely specified MCG̃G (a) and AGA(G̃) (b) of the unbounded synchronized PN

in Fig. 2.

Algorithm 2. (Computing a PSS for a marking M̄ )

Input: A marked unbounded synchronized PN〈N,M0, E, f〉 satisfying Assumption III.10 and a

bounded target markinḡM ∈ R(N,M0).

Ouput: A PSSw.

1. Let G andA(G̃) be respectively the MCG and the AG of the completely specifiedMCG.

2. Let w = ε, the empty initial input sequence.

3. Let φ(w) = {M | M ∈ V }, the initial current marking uncertainty, whereV is the set of

nodes ofG.

4. While φ(w) 6⊆ TM(M̄), do

4.1. pick two markingsMi,Mj ∈ φ(w) such that the two following conditions hold: i)

Mi 6= Mj , ii) Mi 6∈ T M(M̄) or Mj 6∈ T M(M̄);

4.2. find a shortest path inA(G̃) from (Mi,Mj) to (M̄ ′, M̄ ′′), whereM̄ ′, M̄ ′′ ∈ T M(M̄).

4.3. If no such a path exists, stop the computation, there exists no PSS forM̄ .

Else, let w′ be the input sequence along this path,do

4.3.1. φ(ww′) = {M ′|∀M ∈ φ(w),M
w
−→ M ′};

4.3.2. w = ww′.

end if
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end while �

We point out that the above procedure is based on the standardalgorithm for automata based

on the construction of the auxiliary graph as presented in [14] and redefined for PNs in [21]. At

each step the cardinality of the current state uncertainty decreases by at least one unit, thus it is

ensured to halt in a finite number of steps. The complexity of this procedure isO(n3+n2×|E|),

wheren is the number of nodes of the MCG and|E| denotes the cardinality of the input event

set.

There are, however, two main differences with respect to [21], that do not modify the order

of complexity of the algorithm. First, the current state uncertainty — used as halting criterion

at step 4. — is not required to be singleton, but just to be included in the synchronization target

marking set, according to Definition IV.2. Second, the algorithm searches the shortest path in the

AG from node(Mi,Mj) to a node(M̄ ′, M̄ ′′), whereM̄ ′ andM̄ ′′ may be different provided they

belong to the set of target markings.Mi andMj are selected from the current state uncertainty

to be synchronized into the target but should not belong bothto the target set, accordingly to

conditions i) and ii) of step 4.1., otherwise the current state uncertainty would not change.

Example IV.6. Consider again the synchronized PN in Fig. 2, its completelyspecified MCG

(see Fig. 7a ) and its AG (cf. Fig. 7b). HerePu = {p2} andP •
u = {t2}, wheref(t2) = e2 (this

net clearly satisfies Assumption III.10, since no other transition is associated withe2). Given

M̄ = [0 3 1]T , sincePb = {p1, p3} only nodeM3 belongs toT M(M̄). A possible execution of

Algorithm 2 is described by the following steps. Let the initial marking uncertainty beφ(ε) =

{M0, M1, M2, M3}. If at step 4.1 markingsM0 and M1 are selected, path(M0,M1)
e1e1e2−−−→

(M3,M3) will be obtained. The corresponding current state uncertainty is updated toφ(e1e1e2) =

{M3}, so that the computation ends returningw = e1e1e2 as the searched PSS. �

B. Validation of a PSS

In this section we discuss the relation between SSs and PSSs.

We first show by means of an example that a PSS synchronizing the MCG to a target set

T M(M̄) may fail to be a SS for the synchronized PN.

Example IV.7. Consider the synchronized PN shown in Fig. 8 with its MCG, andlet M̄ =
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e1|{t1} e1|{t1}

(b)

Fig. 8: Unbounded synchronized PN (a) and its MCG (b) in Example IV.7.

[1 0 0 0 0]T be a target marking. The net satisfies Assumption III.10 and has set of bounded places

Pb = {p1, p3, p4, p5}, hence the set of target marking isT M(M̄) = {[1 x 0 0 0]T | x ∈ Nω}.

One can verify that in the MCG the input sequencew = e1e2e2e1 synchronizes to the marking

M4 = [1ω 0 0 0]T ∈ TM(M̄). However, in the net from the initial marking this input sequence

produces the evolution

M0 =
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which does not yield a marking in the target set. �

To characterize those PSSs that are also SSs, we need to introduce some additional definitions.

Definition IV.8. Given the completed MCĜG of a marked synchronized PN with input alphabet

E, let Mj ∈ Nm
ω be one of its nodes and letw ∈ E∗ be an input sequence. We define:

• σj,w ∈ (2T )∗ the step sequence produced inĜ by the input sequencew starting fromMj ,

i.e., the sequence of steps such that:

Mj

w|σj,w

−−−→ .

Note that such a sequence exists and is unique.
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• Mmin
j ∈ Nm the minimal marking incov(Mj). This marking is

Mmin
j (p) =







Mj(p) if Mj(p) 6= ω

0 if Mj(p) = ω

i.e., it is obtained fromMj setting to 0 all itsω components.

�

Example IV.9. Consider again the synchronized PN shown in Fig. 8 with its MCG5. Consider the

markingM1 = [1ω 0 1 2]T in the graph and letw = e1e2e2e1. Thenσ1,w = {t1}{t2}{t2}{t1, t3}

andMmin
1 = [1 0 0 1 2]T . If w′ = e2e1e2e2 thenσ1,w′ = {t2}{t1}{t2}∅. �

Based on these new concepts, we can derive a sufficient condition for a PSS to be a SS. Let

us first present a lemma that will be used in the following derivation.

Lemma IV.10. Consider an unbounded marked synchronized PN〈N,M0, E, f〉. Let G be its

MCG andw ∈ E∗ be an input sequence. Given a nodeMj ∈ Nm
ω in the graph, letσj,w be the

sequence described in Definition IV.8. Consider a markingM ∈ cov(Mj). Then6

M [w|σj,w〉 =⇒ (∀M ′ ∈ cov(Mj), M ′ ≥ M) M ′[w|σj,w〉.

Proof. We prove this by contradiction. Letσj,w = τ1τ2 · · · τk. Assume that input sequencew

produces fromM ′ the evolutionM ′[w|σ′〉 with σ′ = τ ′1τ
′
2 · · · τ

′
k. If σ′ 6= σj,w then letr be the

smallest index in{1, 2, . . . , k} such thatτ ′r 6= τr. SinceM ′ ≥ M then τ ′r ) τr. However, since

M ′ ∈ cov(Mj) andMj [w|σj,w〉 it also follows thatτ ′r ⊂ τr, clearly a contradiction. �

This lemma states a simple monotonicity property. In plain words, if starting from a reachable

markingM ∈ cov(Mj) an input sequencew produces a firing step sequenceσj,w (the same that

is produced in the MCG fromMj) then starting from any other marking greater thanM and

still in cov(Mj) input sequencew will also produce firing step sequenceσj,w.

5The completed graph is not shown in figure for sake of simplicity, but can be easily obtained adding selfloop labelede|∅ as

discussed in the previous subsection.

6HereM [w|σj,w〉 denotes that in the synchronized PN starting from markingM the input sequencew determines the firing

of the step sequenceσj,w.
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Proposition IV.11. Consider an unbounded marked synchronized PN〈N,M0, E, f〉 satisfying

Assumption III.10. LetG be its MCG with set of nodesV . Given an input sequencew ∈ E∗,

for each nodeMj ∈ V let σj,w and Mmin
j be the step sequence and marking described in

Definition IV.8. It holds:

w ∈ PSS(G, M̄) ∧ (∀Mj ∈ V ) Mmin
j [w|σj,w〉 =⇒ w ∈ SS(N,M0, M̄). (4)

Proof. First we recall an elementary property of the coverability graph, that holds for both PNs

and synchronized PNs. If in the coverability graph of a PN (resp., MCG of a synchronized PN)

the firing of a sequence of transitions (resp. of transition steps)σ yields from a markingMω a

markingM̄ω, then the firing of the same sequence — assuming it is possible— in the net starting

from any markingM ∈ cov(Mω) yields a marking that coincides with̄Mω for all components

associated to bounded places. Thus if the condition in eq. (4) holds, by Lemma IV.10 it follows

that from any marking inCS(N,M0) the input sequencew yields a marking in the target set

T M(M̄). Finally, since the net satisfies Assumption III.10, we knowby Proposition III.11 that

R(N,M0) ⊆ CS(N,M0) which concludes the proof. �

Example IV.12. Consider again the synchronized PN shown in Fig. 8 with its MCG. Consider

the input sequencew = e1e1e2e2e1. One can verify that this input sequence is a PSS forM̄ =

[1 0 0 0 0]T . We want to check if the sequence satisfies the sufficient condition in Proposition IV.11.

We observe that

M0 = [1 0 0 1 2]T , σ0,w = {t1}{t1}{t2}{t2}{t1, t3}, Mmin
0 = [1 0 0 1 2]T

M1 = [1ω 0 1 2]T , σ1,w = {t1}{t1}{t2}{t2}{t1, t3}, Mmin
1 = [1 0 0 1 2]T

M2 = [1ω 1 1 1]T , σ2,w = {t1}{t1}{t2}∅{t1, t3}, Mmin
2 = [1 0 1 1 1]T

M3 = [1ω 2 1 0]T , σ3,w = {t1, t3}{t1}∅∅{t1}, Mmin
3 = [1 0 2 1 0]T

M4 = [1ω 0 0 0]T , σ4,w = {t1}{t1}∅∅{t1}, Mmin
4 = [1 0 0 0 0]T

Now one can readily verify that in the synchronized Petri net, for j = 0, 1, 2, 3, 4, it holds

Mmin
j [w|σmin

j,w 〉 whereσmin
j,w = σj,w hence the PSSw is a SS. �

If a PSS does not satisfy Proposition IV.11, one should look for different PSSs possibly of

increasing length. We note, however, that the testing of thecondition in eq. (4) may provide

some intuition on why the PSS fails to be a SS and possibly how it should be modified to obtain
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a SS. We do not provide a formal procedure to do this, but discuss such a case in the next

example.

Example IV.13. Consider again the synchronized PN shown in Fig. 8 with its MCG. Consider

the PSSw = e1e2e2e1 for M̄ = [1 0 0 0 0]T that, as discussed in Example 8, is not a SS. We

observe that it holds:

M0 = [1 0 0 1 2]T , σ0,w = {t1}{t2}{t2}{t1, t3}, Mmin
0 = [1 0 0 1 2]T

M1 = [1ω 0 1 2]T , σ1,w = {t1}{t2}{t2}{t1, t3}, Mmin
1 = [1 0 0 1 2]T

M2 = [1ω 1 1 1]T , σ2,w = {t1}{t2}∅{t1, t3}, Mmin
2 = [1 0 1 1 1]T

M3 = [1ω 2 1 0]T , σ3,w = {t1, t3}∅∅{t1}, Mmin
3 = [1 0 2 1 0]T

M4 = [1ω 0 0 0]T , σ4,w = {t1}∅∅{t1}, Mmin
4 = [1 0 0 0 0]T

Now one can readily verify that:

Mmin
0 [w|σmin

0,w 〉 with σmin
0,w = {t1}{t2}∅{t1} 6= σ0,w,

Mmin
1 [w|σmin

1,w 〉 with σmin
1,w = {t1}{t2}∅{t1} 6= σ1,w,

Mmin
2 [w|σmin

2,w 〉 with σmin
2,w = {t1}{t2}∅{t1, t3} = σ2,w,

Mmin
3 [w|σmin

3,w 〉 with σmin
3,w = {t1}∅∅{t1, t3} 6= σ3,w,

Mmin
4 [w|σmin

4,w 〉 with σmin
4,w = {t1}∅∅{t1} = σ4,w,

This difference betweenσmin
0,w and σ0,w is due to a lacking token inp2 after the evolution

e1e2|{t1}{t2}. This lacking token can be produced by previously firing the repetitive sequence

e1 twice (as opposed to once). This leads to the longer input sequencesw′ = e1e2e1e2e1 or

equivalentlyw′′ = e1e1e2e2e1 which can both be shown to be SSs (the latter was studied in the

previous example). �

V. CONCLUSION

The problem of determining synchronizing sequences for unbounded systems is here investi-

gated. We consider deterministic synchronized PNs, for which we first propose an algorithmic

construction of a finite coverability graph that describes its behavior. Unfortunately we show

that this graph does not always cover all evolutions of the net, due to the presence of van-

ishing steps and vanishing markings. A condition to rule outthis undesirable situation, called

Assumption III.10, is introduced.
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Second, we propose a simple approach, that builds on the results we have previously derived

for bounded nets, to compute synchronizing sequences for unbounded nets. The idea is to use the

coverability graph to compute potentially synchronizing sequences and then to test if a sufficient

condition for such a sequence for being a synchronizing one is verified.

We point out that Assumption III.10 is only a sufficient (but not necessary) condition to rule

out the existence of vanishing steps and markings. For this reasons, the procedure presented in

this paper can be used with a larger class of synchronized nets, although currently we lack a

general characterization of this class and will address this problem in future works.
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