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Abstract

Determining the state of a system when one does not knowtitertuinitial state is a very important
problem in many practical applications as checking comgation protocols, part orienteers, digital
circuit reset, etc. Synchronizing sequences have beerogedpin the 60’s to solve the problem on
systems modeled by finite state machines.

This paper presents a first investigation of the synchrogiproblem on unbounded systems, using
synchronized Petri nets, i.e., nets whose evolution isedrilly external input events. The proposed
approach suffers from the fact that no finite space repratientcan exhaustively answer to the
reachability problem but we show that synchronizing seqasnmay be computed for a particular

class of unbounded synchronized Petri nets.
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I. INTRODUCTION

Testing problems have assumed an important role in the drdigaavete event systems due to
the increasing need for performance monitoring and vetifinaof complex man-made systems.
Several testing problems have been defined: see [14] for prat@nsive survey. In this work
we focus in particular on theynchronization problemt consists in finding an input sequence
that drives a system to a known state having no (or at besapanformation on its current state
and without observing the system’s output. Such an inputaled asynchronizing sequence
(SS). Interesting and practical applications in this sgttan be found in robotics [1], [18], bio-
computing [3], [2], network theory [12], theory of codes [ldnd testing synchronous circuits
with no reset [5].

Typical models used for testing araput/output automatasuch as Mealy machines [16].
Recently, however, in a series of papers [21], [20] we hawestigated the problem of de-
termining a SS in the setting of Petri nets (PNs). In pardcule have shown how several
approaches developed for automata can be easily applide:tolass of bounded deterministic
synchronized Petri nets using treachability graph(RG) of a net. Such a graph is an automaton
whose behavior is equivalent to that of the net and whosesstae vectors itN" representing
reachable markings. Furthermore we have shown that foridpelasses of nets a SS can be
computed without exploring the complete reachability sgtddmply analyzing the net structure.

This paper is an extended version of our previous work in [g2kynchronizing sequences’
construction where we further extend our investigationt® ¢ase ofinboundedPetri nets, i.e.,
nets whose reachability set is infinite. Note that, to theé bésur knowledge, the synchronizing
problem for unbounded models (automata or Petri nets) heasr teen investigated before.

The behavior of an unbounded Petri net can be approximatedl finjte coverability graph
(CG) [13]. Such a graph is an automaton where each state istarve (NU{w})™ representing
a set of markings. A component denotes a place whose token content may be ahpi@ege.

The coverability graph is not unique and usually not minirdaiminimal CG has been pro-
posed by Finkel [9], using reduction rules based on compatietween computed markings. The
approach has been demonstrated to be incorrect and morergftechniques have been proposed
to correctly determine minimal coverability sets by coasting handle sets by Geeraeefsal.

[10] or by pruning technics by Reynier and Servais [23]. Hosve the CG entails loss of
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information in terms of reachable markings and firing segaenthat can somehow prevent one
to use it for systematically investigating the net prog=tiRecently, some efficient algorithms
based on a modified CG have been proposed by Zhou and coa{8hd&#4] for the particular
purpose of testing if an unbounded PN net has deadlocks or not

Unfortunately, as pointed out by [7], synchronized PNs haveon-necessarily monotonic
evolution. This is why, as explained by [6], for such nets tgoathmic CG construction has
been given yet.

This paper contains two distinct contributions.

We first propose a procedure to construct a finite graph, cafledified coverability graph
(MCG), to describe the behavior of unbounded synchronizés. Fhis procedure is adapted by
Karp and Miller algorithm but requires a new definitionin€reasing sequend® capture those
evolutions that lead to arbitrarily large markings. Uniorately, we show that a MCG may fail
to capture some transitions steps that are firable in the nietalso some reachable markings:
we call themvanishing stepsnd vanishing markingsrespectively. This motivates us to look
for a sufficient condition (called Assumption 111.10 in thager) that rules out these undesirable
features. For unbounded synchronized nets satisfyingctmdition the MCG provides a faithful
representation of the net behavior — analogously to the redwiety graph of an unbounded
Petri net — and as such is a suitable tool to determine synching sequences. For this reason,
in the rest of the paper we focus on the class of nets thaffys#his assumption.

Second, we extend to the unbounded case the technique wetesented in [21] for com-
puting SS in the case of bounded synchronized nets. Howtneax; symbol that is necessarily
introduced in the MCG to keep the graph finite, entails (akésdase for the coverability graph
of Petri nets) some loss of information. This is why, in theecaf unbounded nets, the graph can
only give precise information about the marking of bound&t@s and we consider a weaker
notion of SS as a sequence that yields a marking where onlpkle® content of bounded places
must be exactly known. This concept of partial synchroimzaof the state has been suggested
in the context of sequential machines by [4], where if a SSahibitively long or non existent,

a selected subset of all flip-flops could be electrically t.eEbe analysis of the MCG gives a set
of sequences — calleggbtentially synchronizing sequencesand we provide a finite procedure
to verify it they are also synchronizing sequences.

The paper is organized as follows. Section Il provides bemkgd on Petri nets formalisms.
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In section Il an algorithmic construction of the coverdliket of unbounded synchronized Petri
nets is provided. Section IV presents our approach for SStaaction. Finally, in section V

conclusions are drawn and future work presented.

[I. PETRI NET FORMALISMS

In this section, the Petri net formalism used in this papeedslled. First the basic notions of
Petri nets are presented. Then the class of synchronizednieet, a non-autonomous Discrete

Event System model is presented. For more details on Peafrithe reader is referred to [17],

[6].

A. Petri nets

A Petri net (PN) is a structureN = (P, T, Pre, Post), where P is a set ofm places T
is a set ofn transitions Pre : P xT — N and Post : P x T — N are, respectively, the
pre-incidenceand post-incidencenatrixes that specify the weights of directed arcs from ggdac
to transitions and from transitions to placés= Post — Pre is theincidence matrix

A markingis an application)/ : P — N that assigns to each place of a net a nonnegative

integer. A marking will be represented by a vector

M = [ M(p1) M(p2) - M(pm) "

where M (p) denotes the number of tokens contained in plac& marked PN(N, M) is a net
N with an initial marking M.

A transitiont¢ is enabled atV iff M > Pre(-,t). An enabled transitiort at A/ may be
fired yielding the marking/’ = M + C(-,t). The set of enabled transitions &f is denoted
E(M). We write M o) to denote that the sequence of transitions ¢, ...t is enabled at\/.
Moreover M [o) M’ denotes the fact that the firing of from M leads to)M'.

A marking M is reachablein (N, M,) iff there exists a firing sequeneesuch that\l, [o) M.
The set of all markings reachable fraltf, defines theeachability seof (N, M,) and is denoted
R(N, My).

A place is bounded if there exists > 0 s.t. VM € R(N,M,), M(p) < k. A marked

PN (N, M,) is said to bek-boundedif there exists a positive constant such that for all

'Properly speaking, the model we describe here is callpthee/transition net

February 1, 2016 DRAFT



M € R(N, M), M(p) < k, Vp € P. A place is calledk-bounded if it does not contain more
thank tokens in all reachable markings, including the initial kiag.

We conclude this sub-section by introducing some notatmusconcepts that are used in this
paper.

The preset and postset of a placep, denoted®*p and p* are, respectively®p = {t € T |
Post(p,t) > 0} andp® = {t € T' | Pre(p,t) > 0}. The set of input transitions and the set
of output transitions for a set of place are defined astP = {t e T | (Ip € P) t € °*p}
andP* = {t € T | (3Gp € P) t € p°}. Analogously, thepreset and postset of a transition
t are respectivelyt = {p € P | Pre(p,t) > 0} andt* = {p € P | Post(p,t) > 0}. Also,
the set of input places and the set of output places for a se@psitions7 are defined as:
‘T={peP|(BteT)pe *tyandT*={pecP|(BtecT)pe t*}.

Let P, and I, (resp.P, and [,) denote the set of unbounded (resp. bounded) places and the
corresponding indexes sk, = {i | p; € P,} (resp.l, = {i | p; € B,}). Letm, = |P,| and
my, = |P,|. We denoteM 1, (resp.M 1,) the projection of the markingM onto the set of
bounded (resp. unbounded) plades(resp. P,).

The characteristic vector or Parikh vector of a transitiequenceg = t;...t;, iS a vector
7(o) € N*, where its component; represents the number of firing of transitionin the given
sequence.

A graphg is decomposable in its maximal strongly connected compisri&g], classified as:

i) ergodig if its set of output transitions is included in its set of ingransitions ; ii)transient

otherwise.

B. Coverability graph

A bounded PN has a finite reachability set. In this case, itaer can be represented by a
reachability graph(RG), i.e., a directed graph whose vertices correspondachable markings
and whose edges correspond to enabled transitions.

The set of reachable markings of an unbounded PN, on theargnis not finite. Karp and
Miller [13] have proposed a procedure to compute a finite @spntation of the state-space of

unbounded PNs. The procedure requires to idemtifyeasing sequencest a marking)/, i.e.,
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firing sequences that produces an infinitely long evolutiaW = M,[o) My[o)M; - - - wheré
M; < M, for i =1,2,.... These sequences strictly increase the number of tokensriairc
places and their final behavior is approximated using anla@®n technique, that works
because PNs are monotonic, i.e. a sequence of transitioiek vehfirable from a marking!/ is
also firable from all markingg/’ such that\/'> M.

In a coverability graph, each node is labeled withramimensional row vector whose entries
may either be an integer number or may be equal to the spgordd w, while arcs are elements

in T. In particular, its nodes are labeled with aamarking, defined as follows.

Definition 1.1. (w-marking) LetN,, = NU {w}. Anw-marking of a PNN with m places is a
column vectorM,, € N, whose components may either be an integer number or be égual
w. n

Symbolw denotes that the marking of the corresponding place may gndefinitely. Note
that for alln € N it holdsw > n andw +n = w.
The following example illustrates the coverability grapham unbounded PN, obtained by

the classic Karp-Miller algorithm [13].

Example 11.2. Consider the PN in Figure 1a wher® = {pi,ps,p3}, T = {t1,t2,t3} and
M, = [100]*. Its reachability graph, depicted in Figure 1b, shows thlaé tfiring sequence
o = t; increases the marking of plage. The repeated firing of makes unbounded the same
place. For this reasong is an increasing sequence. The corresponding coveralgligph is

shown in Figure 1c. [ |

We now introduce the notion of covering set that provides rgela approximation of the

reachability set.

Definition 11.3. (Covering set) Given a marked PNN, M,), let V' be the set of nodes of its
CG. The covering set afNV, M) is

CS(N.Mo) = | ) cov(M),

My,eV

2Given two vectorse,y € R™ we write 2 < y to denote that: < v, i.e., each component af is smaller than or equal to

the corresponding component ¢f and thatx # v, i.e., the two vectors are not identical.
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Fig. 1: An unbounded PN (a), its partial RG (b) and its CG (c).

wherecov(M,,) = {M € N™ | M(p) = M, (p) if M,(p) # w}.
A marking M, is called acovering markingor M if M € cov(M,,). In this case, we write

My, 20, M. u

We finally recall a classical result, showing that the colgitst graph captures all evolutions

of a net (but may also contain some evolutions that the natatagenerate).

Proposition 11.4 ([17]). Consider a marked PNN, M,) and its CG.
1) Marking M is reachable in the net=- in the CG there exists a nod&/, such that
M € cov(M,), i.e., R(N, My) C CS(N, M,).

2) Sequence =t t;, - - -t;, is firable fromA € R(N, My) with the evolutionV/[t;, ) M, [t;,) My - - -

= in the CG from all nodes\/,, such thatM € cov(M,,) there exists a directed path

thlethjQMw’Q s tjkaJQ such that]\JZ € CO’U(Mw,i) for i = 1, 2, ceey k.
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C. Synchronized Petri nets

A synchronized Petri nd6] is a structurg N, £, f) such that: i)V is a PN; ii) £ is an alphabet
of input events; iii)f : T"— FE is a labeling function that associates with each transiti@m
input eventf(¢). A marked synchronized PRV, M, E| f) is a synchronized PN with a marking
M.

We denote the set of transitions associated with the inpenitevby: 7, = {t € T' | f(¢t) = e}
and the set of enabled transitions associated with evestE. (M) =T, N E(M).

The evolution of a synchronized net is driven by the occureeof an input event sequence
that produces a sequence of transition firings. At markingtransitiont € 7' is fired only if:

1) transitiont is enabled, i.e.t € E(M);

2) the event = f(t) occurs.

Note that the occurrence of an input evers £ at markingM forces the simultaneous firing
of all transitions in&.(M) provided there are no conflicts among them. On the contrhey, t
occurrence of an evemtdoes not produce the firing of a non enabled transitien’..

We say that there exists affective conflicat markingM between two enabled transitions
sharing the same labelt € £ (M) if the following condition holds: there exist a plage
such thatt, ¢ € p* and M(p) < Pre(p,t) + Pre(p,t’). Moreover, a synchronized PN is said
to be deterministic if for all reachable markings there isafi@ctive conflict between enabled

transitions sharing the same event.

Definition I.5. (Deterministic synchronized PN) A marked synchronized PNV, My, E, f) is
said to bedeterministicif the following condition holds:
(VM € R(N,M)) (Ve € E) M > > Pre(-t). |
te€e (M)
Remark 11.6. A sufficient structural condition for a synchronized PN, £, f) to be determin-

istic is that there does not exist a plapesuch thatt, ¢ € p* and f(t) = f(t'). [ |
Example 11.7. Based on the Petri net in Fig. 1a, consider the synchroniz&drPFig. 2, with

E ={ey, e}, f(t1) = f(t3s) = e1 and f(t2) = ey. This net is deterministic as andt, (the only

transitions in conflict) do not share the same input event. [
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Fig. 2: An unbounded deterministic synchronized Petri net.

In the rest of the paper we will focus on deterministic syodized PNs: all presented results
apply to this class of nets. Furthermore in all examples wé aonsider nets that satisfy the
structural condition mentioned in Remark 11.6 so that ong mexify by inspection that they are
deterministic.

We conclude this section presenting the formal semanties the evolution rule) of deter-

ministic synchronized PNs.

Definition 11.8 (Evolution of a deterministic synchronized PN a deterministic synchronized
PN, when an input evemtoccurs at a markingl/, all enabled transitions receptive to this event
E(M) =T, NE(M) fire simultaneously in a singlstep

Mle|r)M',  with T =&,(M) and M’ = M + ) " C(-1). (1)

ter

Here M|e|7) M’ denotes that the occurrence of the input eveat M yields marking)/’ by the
firing of stepr. When there is no need to specify the firing step correspgnidia we simply
write Mle|-)M'. [ |

According to this definition, an input event sequehae= cie,---¢, € E* drives the net
along the evolution
Moler|m1) Miea| o) Males|Ts) - - - [ex| o) M, (2)

where the steps are = &,,(M;_,) for i =1,...,k, M, is the initial marking and

M; =M+ _C(1).

ter;
3Here, * denotes the Kleene star operator &idrepresents the set of all sequences on alphabet
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Note that firing stepr; is empty if no transition receptive to eventis enabled at\/;_; and in
this caseM; = M,_;.

Finally we denote evolution (2) by/y[w|o) M, whereo = 71 --- 75, IS a sequence of steps.
When there is no need to specify the firing step sequencespameling tow we simply write
Mwl|-)M'.

D. Synchronization problem

Consider a system with anitial state uncertaintyi.e., the initial state is not perfectly known
but is only known to belong to a set of initial statdd,. In the worst case, the set of initial
states may coincide with the entire state space. In a synidatoon problem, the goal is to find
an input event sequence that, regardless of the initiag,stiives the system to a known target
state M. In the case of a synchronized RW, E, f), we assume that starting markingM,,
i.e., a marking where the net has certainly been in the pastnown. Thus the initial state
uncertainty is usually given by, = R(N, M,).

In a previous work [21], we have studied the existence of alssonizing sequence (SS) on
bounded synchronized PNs. It has been proved that a bouretedrinistic synchronized PN
(N, E, f), can be synchronized to a markirld only if its reachability graphg has a single
ergodic component andl/ belongs to it.

The objective of this paper is to study under which condgiemilar approaches can be

derived for the class of unbounded synchronized PNs.

[1l. A MODIFIED COVERABILITY GRAPH FOR UNBOUNDED SYNCHRONIZEDPNS

In this section we show how the behavior of unbounded symibhed PNs can be described
by a finite graph that we calhodified coverability grapfMCG) because it derives from the
classical construction of Karp and Miller [13]. There areMewer several issues to be considered
in this setting. The first challenge is due to the fact thatchyonized PNs do not satisfy the
monotonicity property of PN mentioned in Section 1I-B hereaew definition of increasing
sequence is required. This new definition is used to modi#gypitocedure of Karp and Miller so
that a MCG can be defined for synchronized net. We also shomgVer, that this representation
may fail to capture all evolutions of a synchronized net.sThill motivate the definition of

a special class of nets for which the modified coverabilitgpdr is ensured to describe all
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evolutions: in the subsequent sections we will derive a guace to compute synchronizing

sequences for this class of net.

A. Monotonicity property of synchronized nets

In a PN from the definition of transition enabling, it followsat if A/’ > M then&(M') O
E(M), i.e., a transition enabled by a markiig is also enabled by any other markidg’ that

covers it. From this, a well know property follows.

Proposition 111.1 ([17]). (Monotonicity of Petri nets) In a PN, if a transitiont may fire from

a marking M it can also fire any other marking/’ that covers it, i.e.,

M[ty and M' > M = M'[t).

However, for synchronized PNs a weaker property holds.

Proposition 111.2. (Weak monotonicity of synchronized Petri nets) In a synchronized PN, let
e € F be an input event and, be the set of transitions receptive to this event. If inp@nev
e produces from markind/ a firing stepr C T, then the occurrence af from a marking)M’

that coversM produces a step’ that is a superset of, i.e.,
Mle|lry and M' > M — M'lelr’) with 7' DT

Proof. Follows from (1), because’ = E.(M') = T.NEM') D T.NEM) = E(M) = 7.

O O
This property implies that in a synchronized PN an evolustep [¢|7) that occurs from a

given marking, may not be possible from a larger marking. iftaén consequence of this is that

the notion of increasing sequences for PNs — that followmftbe monotonicity property —

must be suitably redefined for synchronized PN, as discuss#t following example.

Example [11.3. Consider the net Fig. 3a: this is a synchronized PN where tirguente is
associated with both transitions and ¢t,. We look first at the underlying PN, i.e., we ignore
the input event and consider the autonomous behavior wherenabled transition may fire.

We observe that from the initial marking, = [0], source transitior; is enabled and can fire
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Fig. 3: An unbounded synchronized PN (a), the RG of the uguohgyIPN (b), the CG of the
underlying PN (c) and the RG of the synchronized PN (d).

reaching markinglM/; = [1]. We have thus identified an increasing transition sequeneet;
that can fire indefinitely — since by monotonicity it is alsalded by any marking greater than
M, — increasing the token content of plageas shown by the reachability graph of the PN in
Fig. 3b. The procedure of Karp and Miller recognizes thisrgasing sequence and produces the
finite coverability graph of the PN shown in Fig. 3c, where cae observe that the unbounded
place p is marked withw.

Consider, however, the evolution of the synchronized PNerWWhput event is applied at
the initial marking M, = [0], only transitiont; fires, because transitioty, although receptive
to this event, is not enabled; thus one obtains the evolutire|{t,}) ;. However, although
M, > M, step{t,} cannot fire from\/; (hence the non monotonicity) according to the evolution
rule presented in Definition 11.8. In fact, from this markinige application of the input event
produces the evolutiod/; [e|{t1,t2}) M, i.e., both enabled transitions fire simultaneously and
the marking does not change, as shown by the reachabilitghgma Fig. 3d. We point out that

place p is bounded in the synchronized net although it is unbounddtie underlying PN. B

B. An algorithmic construction of the MCG

In the construction of the coverability graph for PNs, a ssgpe is identified as increasing
if it yields a larger marking. This condition, however, fatio identify increasing sequences in

the case of synchronized PNs, as discussed in the previdasedion. In this subsection we
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propose a new notion of increasing sequence for synchrémees that will allow us to derive
a procedure for constructing a modified coverability graph.

We first introduce the notion of increasing input event seges.

Definition IIl.4. (Increasing input sequence) Consider a marked synchronized RN, M,

E, f). An input sequence» € E* is calledincreasingat marking M; € R(N, M) if:

Mi[wl|o) Malwl|o) Mzwlo) - - -
M/L'gMZ'Jrl VZ: 172,... -

In other words, an increasing input sequence applied tedyi starting from M, always
produces the same firing step sequendeading to a greater marking.

The following proposition provides a sufficient conditicor fa sequence to be increasing.

Proposition 111.5. Consider a synchronized PNV, E, f) and a markingM. Let M’ and M"
be respectively the marking reached after a first and a seepmdication of input sequence,
i.e., Mw|o)M'[w|o’YM". Sequencev is an increasing input sequence af if the following
three conditions hold:

Cl) o=0

C2) M<M'<M”;

C3) (Vp such thatM'(p) > M(p)) (Vt € p*) M'(p) > Pre(p,t).

Proof. Conditions C1) and C2) are necessary to ensure that inputeseqw IS increasing.
Condition C3) guarantees that all subsequent marking$eeaby repeated applications of the

input sequence will not modify the corresponding step fiseguence. O O

We now present an algorithm to construct a finite graph thdit vei used to describe the
behavior of unbounded synchronized PNs. Such a graph isdcaibdified coverability tree

(MCT) because it derives from the classical constructioiKaifp and Miller [13].

Algorithm 1. MCT construction for deterministic synchronized PNs
Input: a deterministic marked synchronized RN, M,, E, f).
Output: a MCT 7.

1. Label the root node, with the initial marking)/, and tag it "new”.

2. While a node tagged "new” existslo
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2.1. Select a node tagged "new”.
2.2. LetM be the label of;.
2.3. For all e € E such that€. (M) # 0:

2.3.1. LetM' = M + Z C(-,t) be the marking reached firing all enabled transitions

te€e (M)
tel.,.

2.3.2. LetQ be the set of nodes met on a backward path frptio ¢, whose label is
M<M'.
2.3.3. For all nodesj € @ labeled )/,
2.3.3.1. letw ando be the input sequence and the corresponding firing step Seg|set.
Mlw|o) M.
2.3.3.2. Let apply agaim from M’, obtainingM'[w|c") M".
2.3.3.3. If the three following conditions hold:
Cl)o =0';
C2) M<M'<M";
C3) (¥p such thatM’(p) > M(p)) (¥t € p*) M'(p) > Pre(p,t);
then let M'(p) = w.
2.3.4. Add a new node and label it)/.
2.3.5. Add an arc labeled&. (M) from g to ¢'.
2.3.6. If there exists already in the tree a node with lab@) then tag node;’ "duplicate”,

elsetag it "new”.

2.4. Untag nodey. [ |

The MCG is obtained from the MCT by fusing duplicate nodeswtiite untagged node with
the same label.

We point out that the complexity of this algorithm is comgdeawith that of computing the
coverability graph of a PN using the algorithm of Karp and I&fil[13], which is known to be
non-primitive recursive [15]. Algorithm 1 is a reformulati of the algorithm in [13] in terms
of synchronized nets, but contains an essential differestep 2.3.3.3 that embeds the test for

repetitive input sequences. This difference does not ttfifecorder of computational complexity.

Example 111.6. By applying Algorithm 1 to the unbounded synchronized PN im E, the
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Fig. 4: The MCG of the synchronized PN of Fig. 2.

MCG depicted in Fig. 4 can be constructed. As an example sfdmstruction, note that input
sequences; from M, satisfies conditions C1) and C2) but does not satisfy cami€3). In
fact, it increases the marking of plagg but the increased marking/; (p;) is not sufficiently
large to enable transitiort, that outputs place,. However, the occurrence of input sequence
e1 from M, satisfies also condition C3) and this justifies why in the M@Eig. 4 the marking

of py is set tow in M. [ |

Note that in a MCG there is a one-to-one mapping between a andéts label, hence in the
following we will not distinguish between a node of the grapitd thew-marking that labels it.

The boundedness of the MCG is proven by the following praposi

Proposition 1II.7. Consider an unbounded marked synchronized PN M, E, f). Its MCG
constructed via Algorithm 1 is a finite graph.

Proof. We just provide a sketch of the proof that is based on the teepuésented by Karp and
Miller in [13] in the framework of PNs. These authors havewhdahat by recognising increasing
sequences and using the symholto denote the increasing components of the markings the
procedure to construct the tree halts in a finite number qfsste i.e., the constructed tree has
a finite number of vertices — even if the net has an infinite mahdity set. A similar reasoning
applies to Algorithm 1 whose main difference from [13] catsin the computation of increasing
sequences. Note that in synchronized nets reaching anasentemarking after the occurrence
of an input sequence — condition C2) — is only a necessaryitondor the sequence to be
increasing: if the repeated application of such an inputuerage produces an ever increasing
markings, then in a finite number of steps also conditions &) C3) will be satisfied, so that

the identification of an increasing input sequence is onktpaned for a finite number of steps.
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C. Vanishing steps and vanishing markings

We now address the problem of determining whether the madifoeerability graph provides
a faithful representation of the behavior of a synchronizetd Unfortunately the relatively strong
results — summarized by Proposition 1.4 — that hold for tlogerability graph of PNs do not
hold for the MCG of synchronized nets. Next example shows tihere may exist steps and

reachable markings that are not represented in the MCG.

Example I11.8. Consider the synchronized PN in Fig. 5a. Its partial RG ar&l MCG are
depicted, respectively, in Fig. 5b and Fig. 5c. Consider #pplication of an input sequence
w = ejezes at initial marking M, = [001]7 that produces the step sequenigg}{t,}{t,}. The

net reaches marking/ = [11 1] from which the following increasing sequence may occur:

[L117 [eal{ta}) [112]" [eaf{ts}) [113]" [eal{ts}) [114]" [eal{ts}) -+

However in the MCG in Fig. 5c the step|{t3} is not firable from thev-marking M,, =
lww1]T that coversM, because the application of event from A, produces the “larger”
step es|{ts,t3}. This in turn implies that in the MCG there exists no markirayering the
reachable markinggww k)T | k = 2,3,...}. Furthermore, since the missing steg{t;} in
this particular case is associated with an increasing seqgae the MCG fails to recognize that

place p; is unbounded. [ |

We formalize the steps and marking that are not representdteiMCG with the following

definition.

Definition 111.9. (Vanishing steps and vanishing markings) Consider an unbounded marked
synchronized PN N, My, E, f) and letG be its MCG, constructed by means of Algorithm 1.
Suppose that there exists ¢han w-marking M, and there exists in the net a reachable marking
M € cov(M,,) such that for some input eveatc E:

i) M{e|T), i.e., stepe|r is firable from M, with 7 # (;

1)) M,le|r’)y with 7/ 2 7, i.e., a “larger” stepe|7’ is firable from M,,,.
Then stepe|7 is called avanishing stepA marking that can only be reached in the net by firing

a sequence containing a vanishing step is calledrashing marking [ |
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Fig. 5: An unbounded synchronized PN with vanishing markiga), and its RG (b) and its
MCG (c).

The proposed MCG lacks in representing vanishing steps amdings and as such does
not always provide a faithful representation of the net baha(this was the case of the net
in Example 111.8). For this reason we now propose a restlictass of synchronized nets for

which we can ensure that the MCG does not contain vanishamssand markings.

assum 111.10. Given a marked synchronized RN, M,, E, f), let P, C P be the set of markings

that are unbounded according to the MGQ&constructed by means of Algorithm 1, i.e.,
P,={pe P | (there existsM,, in G) M,(p) =w}. (3)

We assume that for every transitiore P? does not exists € 7" such thatt # ¢’ A f(t) = f(t').
|

The previous assumption ensures that any transition dutgw place detected as unbounded
by the MCG is associated with an input event which is not shavigh any other transition.

Obviously the net studied in Example II1.8 does not satigdfis tassumption because, say,
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transitiont,, outputting placer; — that is detected as unbounded by inspection of the MCG —

shares labet, with transitionts.

Proposition [lI.11. There exists no vanishing step or vanishing marking in theGvi&¥ an
unbounded synchronized PN$/, M,, E, f) satisfying Assumption 111.10, hende(N, M,) C
CS(N, M,).

Proof. Consider the MCGJ of an unbounded synchronized PN, constructed by Algorithm 1
and letM,, be anw-marking inG. Assume that from a reachable marking € cov(M,,) step
el may occur (withr # ()) and let P, be the set defined in (3). Then two cases are possible.

Case 1)r N P: = (). Then stepe|7 is also firable fromM,, because. (M) = E.(M,,), since
M, (p) = M(p) for all placesp ¢ P,.

Case 2)r N P? # (. In this case, by Assumption I11.10, set= T, = {t¢} is a singleton set.
This implies thate.(M,,) = T. N E(M,,) = {t} hence step|t is also firable froml/,,.

This shows that there exists no vanishing step, and as a@assee, no vanishing marking.
0 0]

Thus for unbounded synchronized PNs satisfying Assumplidi® the MCG provides a faith-
ful representation of the net behavior — analogously to thee@mbility graph of an unbounded
PN — and as such can be used to determine synchronizing sexguby the procedure that will
be presented in the following section.

We point out that Assumption 111.10 is only a sufficient (budtmecessary) condition to rule
out the existence of vanishing steps and markings. For #@san the procedure presented in
the next section can be used with a larger class of synctedmets, although currently we lack

a general characterization of this class.

IV. SYNCHRONIZING SEQUENCES OF UNBOUNDED DETERMINISTIC SYNCHBRNIZED PNs

The objective of this section is first to define synchronizesgjuences (SSs) for unbounded
PNs. Next we discuss the computation of potentially synaizing sequences from the MCG
of a given net. We finally use these sequences to compute $3sefmet itself.

First of all, note that thev symbol, used to obtain a finite coverability graph, entaokssl of
information in terms of reachable markings and of firing sames. Next example shows what

kind of problems we may encounter in determining SSs.
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Fig. 6: A unbounded synchronized PN (a) and its RG (b).

Example IV.1. Consider the synchronized Petri net in Fig. 6a (without tlastied transitiort;)
with an initial marking[1 00]? and its infinite reachability graph in Fig. 6b (without the sted
arc corresponding to steps|{¢;}). Here the set of bounded places and the set of unbounded
places are respectively, = {pi,p.} and P, = {ps}. This graph does not have an ergodic
component, because all the nodes are transient comporseris & case cannot occur in bounded
nets) hence no SS exists.

Consider now the unbounded PN in Fig. 6a (including dashadditiont¢;) with an initial
marking [100]7 and its infinite reachability graph in Fig. 6b (including tiiashed arcs corre-
sponding to steps|{t3}). Also in this caseP, = {p;,p2} and P, = {ps}. Suppose we want to
reach target markingV/ = [100]~.

For such a marked net, it holds th&t(N, My) = {M € N3 | M(p;) + M(p2) =1, M(p3) =
k € N}.

Obviously, the input sequenge= e,{e3}* drives the net td/ from any markingV/ = [10u]”
and M = [01u]T with u < k. However, since: can be arbitrarily large, properly speaking no
SS toM exists for this net.

Finally, note that in both cases we have discussed, it is ywaossible to reach a marking
where the token content of placesand p, is known. In fact, from any reachable marking the

input sequencey = e, drives the net taV/(p;) = 1 and M(p2) = 0. [

The previous example shows that in an unbounded net one tthnda SS that leads from
any reachable marking to a marking where the token conteahafnbounded place is known.
This motivates the following extended definition of SS thatyotakes into account the set of

bounded place$,.
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Definition IV.2. (Synchronizing Sequence on unbounded synchronized PNs) Consider a marked
unbounded synchronized P, M, E, f) with set of bounded placeB,. An input sequence
w € E* is called a Synchronizing Sequence (SS) for a target marking R(N, M,) if for all
M € R(N, M) it holds M[w|-) M’ with M’ t,= M %, |

The set of all synchronizing sequences for a given markihgs denotedSS (N, My, M).
According to the previous definition a SS for a target markidgdrives the net from any
(unknown) reachable marking to a marking identicalMoin terms of bounded places. Clearly

here we are assuming that a target marking implicitly defan¢srget set of markings.

Definition 1V.3. (Synchronization target marking set) Consider a marked unbounded synchro-
nized PN (N, M,, E, f) with set of bounded places,. The target marking sefor a given
marking M € R(N, M,) is*

TM(M)={M e NJ | M ty= M 1,}.
[ |

The approach we propose to search for SS for unbounded netspsed by approach

developed in [21] for bounded nets. It requires three maspsst

)] computation of the MCQJ;
i)  computation of a potentially SS from the analysis of th€®l G;

iii)  validation of a potentially SS.

Step i), i.e., the computation of the MCG, is done by Algarith, so in the rest of this section

we focus on the last two steps of the procedure.

A. Potentially synchronizing sequences

The MCG generated by Algorithm 1 is an automaton where eaufsition is labeled by a
pair e|T with e € E andt C T’; hence it can be seen as an automaton with input alph&bet

and output alphabet” .

“We are assuming that target marking set can also inaludearkings.
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Given a target marking of the net, we want to determine antispquence that synchronizes
the MCG to a node corresponding to the target marking, ardhgala potentially synchronizing
sequencgPSS).

Definition IV.4. (Set of potentially synchronizing sequence) Given the MCGG of a marked
synchronized PN with input alphabét and set of bounded placdd, the set of all potentially

synchronizing sequencésr a target marking\/ is defined by:
PSS(G, M) ={we E*| (VM € G) M = M'AM ty= M 13} u

Note that in the previous definition we are denoting the rahiity relation on the MCG by
M % M’, as opposed to the reachability relation on the net dendféd|-) M.

To compute a PSS, i.e., a SS for the MCG, we propose to extendpproach presented in
[21] for bounded nets that we briefly summarize in the follogviDetails can be found in [21].

We start by completing the MCG (see [21]) to make sure that from any state all input event
occurrences are considered. Hence for any reachable rgavkiand for every input such that
E.(M) = (), we add toG a self loop labellect|(). The completed MCG is denoted

Secondly, we construct treuxiliary graph(AG) A(Q) from the completely specified MCG.
This auxiliary graph is a new graph whose nodes are the uresdwirs()/;, M;) of markings
of G, including pairs(M;, M;) of identical markings and such that there is an edge ftdfm A/;)
to (M,, M,) labeled with an input event € E if in G there exists an arc from/; to M, and
an arc from}/; to M,, both associated to input event

The two preliminary steps mentioned above are reviewed gnshef the following example.

Example IV.5. Consider the synchronized PN in Fig. 2. Its completely $getMCG and its
AG are respectively depicted in Fig. 7a and in Fig. 7b. For katter, self-loop are omitted since

useless for the synchronization scope. [ |

Every path from(M;, M;) to (M, M) determines an input sequence that certainly drives the
MCG to marking)M if the previous marking was eitheéd; or M/;. Hence the PSS is constructed
concatenating the input sequences determined by syneimgrtivo markings at time.

The following algorithm allows one to construct a P&8Swhich is not necessarily the shortest

one but leads the MCG to a target marking.
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Fig. 7: Completely specified MC@ (a) and AGA(C;) (b) of the unbounded synchronized PN
in Fig. 2.

Algorithm 2. (Computing a PSS for a marking M)

Input: A marked unbounded synchronized PN, M, E, f) satisfying Assumption I11.10 and a
bounded target marking/ € R(N, M,).

Ouput: A PSSw.

1. Let G and A(G) be respectively the MCG and the AG of the completely spedifieG.
2. Letw = ¢, the empty initial input sequence.
3. Letp(w) = {M | M € V}, the initial current marking uncertainty, whefé is the set of
nodes ofg.
4. While ¢(w) € TM(M), do
4.1. pick two markingsM;, M; € ¢(w) such that the two following conditions hold: i)
M; # M, i)y M; ¢ TM(M) or M; ¢ TM(M);
4.2. find a shortest path itd(G) from (M;, M;) to (M’, M""), whereM’, M" € T M(M).
4.3. If no such a path exists, stop the computation, there existsS® fBr).
Else, let w’ be the input sequence along this padio,
4.3.1. p(ww') = {M'|VM € ¢(w), M = M'};
4.3.2. w=wuw'.

end if
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end while [

We point out that the above procedure is based on the staattpodthm for automata based
on the construction of the auxiliary graph as presented 4h §hd redefined for PNs in [21]. At
each step the cardinality of the current state uncertaiatyehses by at least one unit, thus it is
ensured to halt in a finite number of steps. The complexithisf procedure i$) (n®+n? x |E]),
wheren is the number of nodes of the MCG apHl| denotes the cardinality of the input event
set.

There are, however, two main differences with respect tg, @kt do not modify the order
of complexity of the algorithm. First, the current state emainty — used as halting criterion
at step 4. — is not required to be singleton, but just to beuihetl in the synchronization target
marking set, according to Definition 1V.2. Second, the alhon searches the shortest path in the
AG from node(MM;, M;) to a node(M’, M"), whereM’ and M” may be different provided they
belong to the set of target markingsl, and M, are selected from the current state uncertainty
to be synchronized into the target but should not belong bwotthe target set, accordingly to

conditions i) and ii) of step 4.1., otherwise the currentestancertainty would not change.

Example IV.6. Consider again the synchronized PN in Fig. 2, its complesggcified MCG
(see Fig. 7a ) and its AG (cf. Fig. 7b). Here, = {p,} and P? = {t,}, where f(t,) = e; (this
net clearly satisfies Assumption 111.10, since no other $ion is associated witl,). Given
M = [031]T, since P, = {p1, ps} only nodeM; belongs to7 M (M). A possible execution of
Algorithm 2 is described by the following steps. Let theiahitnarking uncertainty bes(c) =
{M,, My, My, Ms}. If at step 4.1 markings\/, and M, are selected, patfiM,, M;) <=2
(M3, M3) will be obtained. The corresponding current state unceitiais updated t@ (e eie5) =

{M3}, so that the computation ends returning= e;e e, as the searched PSS. [

B. Validation of a PSS

In this section we discuss the relation between SSs and PSSs.
We first show by means of an example that a PSS synchronizexg/MbG to a target set
T M(M) may fail to be a SS for the synchronized PN.

Example IV.7. Consider the synchronized PN shown in Fig. 8 with its MCG, &td\ =
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Fig. 8: Unbounded synchronized PN (a) and its MCG (b) in EXantyd.7.

[10000]” be a target marking. The net satisfies Assumption 111.10 asdiset of bounded places
P, = {p1,p3,p4,p5}, hence the set of target marking M (M) = {[1z000]7 | = € N,}.
One can verify that in the MCG the input sequence- e;ese0e; Synchronizes to the marking
M, =[1w000]T € TM(M). However, in the net from the initial marking this input segae

produces the evolution

1 1 1 1 1
0 1 0 0 1
Mo=|0 |[eal{t:i} > | 0 |[eal{ta} > | 1 |[e20> | 1 | [aal{ts} > | 1
1 1 1 1 1
| 2 ] | 2 | | 1] | 1] [ 1]
which does not yield a marking in the target set. [ |

To characterize those PSSs that are also SSs, we need ttuicereome additional definitions.

Definition IV.8. Given the completed MC@ of a marked synchronized PN with input alphabet
E, let M; € N7} be one of its nodes and let € £* be an input sequence. We define:
« 0w € (27)* the step sequence produceddrby the input sequence starting fromAZ;,
i.e., the sequence of steps such that:

w[oj,w

M, ——

J

Note that such a sequence exists and is unique.
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« M™™ ¢ N™ the minimal marking incov(M;). This marking is

min Mj(p) it Mj(p) # w
Mj (p) = ’ . ’
0 if M;(p) =w

l.e., it is obtained from\/; setting to O all itsu components.

Example 1V.9. Consider again the synchronized PN shown in Fig. 8 with itsSGWlConsider the
marking M, = [1 w01 Z]T in the graph and letw = €1€2€2€1. ThenO'Lw = {tl}{tz}{tz}{tl,tg}
and M{nin = []_ 001 Q]T If w' = €9€1€2€9 then Ol = {tg}{tl}{t2}® [ |

Based on these new concepts, we can derive a sufficient onétr a PSS to be a SS. Let

us first present a lemma that will be used in the following \d&ron.

Lemma IV.10. Consider an unbounded marked synchronized PNM,, E, f). Let G be its
MCG andw € E* be an input sequence. Given a notle € N' in the graph, leto;,, be the
sequence described in Definition 1V.8. Consider a markifg cov(M;). Ther?

Mw|oj.,) — (VM'" € cov(M;), M' > M) M'[w|oj.,).

Proof. We prove this by contradiction. Let;, = 772 - - 7,. Assume that input sequenece
produces from)M’ the evolutionM'[w|o’) with ¢’ = 7{7}--- 7. If ¢’ # 0;, then letr be the
smallest index in{1,2, ..., k} such thatr] # 7.. SinceM’ > M then7, D 7,. However, since

M’ € cov(M;) and M;[w|o;,,) it also follows thatr, C 7., clearly a contradiction. [J O

This lemma states a simple monotonicity property. In plagrds, if starting from a reachable
marking M € cov(M;) an input sequence produces a firing step sequentg, (the same that
is produced in the MCG froml/;) then starting from any other marking greater thahand

still in cov(M;) input sequencev will also produce firing step sequeneg,,.

*The completed graph is not shown in figure for sake of simpli¢iut can be easily obtained adding selfloop labelgdas

discussed in the previous subsection.
®Here M [w|o;.,) denotes that in the synchronized PN starting from markifighe input sequencer determines the firing

of the step sequence;,...
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Proposition IV.11. Consider an unbounded marked synchronized (ANM,, E, f) satisfying
Assumption I11.10. Let; be its MCG with set of nodek. Given an input sequence € E*,

for each nodeM; € V let 0;,, and M™" be the step sequence and marking described in
Definition IV.8. It holds:

w e PSS(G, M)A (YM; € V) M [wloj.) =  w e SS(N, My, M). (4)

Proof. First we recall an elementary property of the coverabilitg, that holds for both PNs
and synchronized PNs. If in the coverability graph of a PNgreMCG of a synchronized PN)
the firing of a sequence of transitions (resp. of transiti@ps)os yields from a marking\/,, a
markingM,,, then the firing of the same sequence — assuming it is possilitethe net starting
from any markingM € cov(M,,) yields a marking that coincides with/, for all components
associated to bounded places. Thus if the condition in gchdqlls, by Lemma IV.10 it follows
that from any marking irC'S(N, M,) the input sequence yields a marking in the target set
T M(M). Finally, since the net satisfies Assumption I11.10, we krmyvProposition I11.11 that
R(N, My) € CS(N, M) which concludes the proof. O O

Example IV.12. Consider again the synchronized PN shown in Fig. 8 with its@iConsider
the input sequence = e ejeseze;. One can verify that this input sequence is a PSSMoe-
[10000]". We want to check if the sequence satisfies the sufficieniticonic Proposition IV.11.

We observe that

My=1[10012]", 09, = {t:i {t: }{t2}{t2}{t1, t3}, MFn=1[10012]"
My =[1w012]", o1, ={ts {t:. } {t2}{t2{t1, 83}, M =1[10012]"
My=[1wl111", o9, = {t1}{t1 H{t2}0{t1, t3}, Mpm =[10111)7
My =[1w210]", 03, = {t1,t3}{t:}00{t,}, Mpn =[10210)T
My =[1w000]", 04, = {t:}{t:}00{t;:}, MpPin =110000])7

Now one can readily verify that in the synchronized Petri, riet ; = 0, 1,2, 3,4, it holds

M wlo) whereols = o, hence the PS& is a SS. |

If a PSS does not satisfy Proposition 1V.11, one should lamkdifferent PSSs possibly of
increasing length. We note, however, that the testing ofctradition in eq. (4) may provide

some intuition on why the PSS fails to be a SS and possibly heWvauld be modified to obtain
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a SS. We do not provide a formal procedure to do this, but ds@uch a case in the next

example.

Example IV.13. Consider again the synchronized PN shown in Fig. 8 with its@iConsider
the PSSw = ejesene; for M = [10000]7 that, as discussed in Example 8, is not a SS. We
observe that it holds:

My=[10012)", 0., = {t1}{t2{t2}{t1, 83}, MF"=[10012]"
My =[1w012]", o1, = {t: {ta}{t2}{t1, 83}, MM =[10012]"
My =[1wl11)%, o094 = {t{t2}0{t1, 15}, Myin =[10111)7
Ms=[1w210]%, 03, = {t:,t3}00{t;}, Myin =110210]7
My =[1w000]", 04, = {t:}00{t:}, Mrn =1[10000]"

Now one can readily verify that:

[ ) with ot = {6 Mt }0{t1} # 00,0,

[ ) with o = {t e }0{t1} # 010,
MQmin[w|crrflin> with 05’:‘51 = {t1 H{t2}0{t1, t3} = 020,

[ ) with  ofi = {6, }00{t1, t3} # 030,

[ ) with Uf}f = {t1}00{t1} = 04,
This difference betweent'.» and oy, is due to a lacking token i, after the evolution
eres|{t1}{t2}. This lacking token can be produced by previously firing thgetitive sequence
e1 twice (as opposed to once). This leads to the longer inputiessmpsw’ = ejegejese; OF
equivalentlyw” = e ejeseseq Which can both be shown to be SSs (the latter was studied in the

previous example). [ |

V. CONCLUSION

The problem of determining synchronizing sequences foounted systems is here investi-
gated. We consider deterministic synchronized PNs, forcwhve first propose an algorithmic
construction of a finite coverability graph that describesskehavior. Unfortunately we show
that this graph does not always cover all evolutions of the dee to the presence of van-
ishing steps and vanishing markings. A condition to rule thig undesirable situation, called

Assumption 111.10, is introduced.
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Second, we propose a simple approach, that builds on thés@sel have previously derived
for bounded nets, to compute synchronizing sequences fwunded nets. The idea is to use the
coverability graph to compute potentially synchronizimgjsences and then to test if a sufficient
condition for such a sequence for being a synchronizing eneeiified.

We point out that Assumption 111.10 is only a sufficient (budtmecessary) condition to rule
out the existence of vanishing steps and markings. For &aisans, the procedure presented in
this paper can be used with a larger class of synchronizes] akhough currently we lack a

general characterization of this class and will address ghoblem in future works.
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