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Abstract

In this paper a special type of nonlinear marking specifications called stair generalized mutual exclusion

constraints (stair-GMECs) is defined. A stair-GMEC can be represented by an inequality whose left-hand is

a linear combination of floor functions. Stair-GMECs have a higher modeling power than classical GMECs

and can model legal marking sets that cannot be defined by OR-AND GMECs. We propose two algorithms

to enforce a stair-GMEC as a closed-loop net, in which the control structure is composed by a residue

counter, remainder counters, and duplicate transitions. We also show that the proposed control structure is

maximally permissive since it prevents all and only the illegal trajectories of a plant net. This approach can

be applied to both bounded and unbounded nets. Several examples are proposed to illustrate the approach.
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1 Introduction

Generalized Mutual Exclusion Constraints [9] (GMECs) are a class of state specifications in Petri nets. They

can be efficiently enforced on nets if all transitions are controllable by a simple control structure called

monitor places. Since the monitor design does not require to enumerate the reachability set but is only based

on the net structure, the state explosion problem could be avoided and the controller design process is quite

efficient. GMECs are an example of Petri net structural approaches that have been proved to be useful in a

wide range of contexts [25, 1, 31, 30, 2, 26, 4, 27, 22, 24].

A single GMEC considers a very special class of legal markings that satisfy a linear inequality and thus

belong to an n-dimensional half-space, where n is the number of places in a net. The legal marking set defined

by a set of GMECs is given by the intersection of half-spaces and thus is always convex, as proved in [9].

Single GMECs and conjunction of single GMECs can be enforced in a straightforward manner by adding

monitor places [8, 11]. Such approaches have been used in the context of marking specification enforcement

problems [25, 10, 11, 12, 13, 2, 3] for supervisory control [29] as well as the deadlock prevention in automated

manufacturing systems [15, 5, 16, 14]. These results have been generalized showing that a legal marking set

that is a finite union of integer convex sets may be defined by a disjunction of GMECs, called an OR-AND

GMEC [22], which can be enforced by control structures containing both places and transitions.

Although control structures based on OR-AND GMECs have polynomial complexity with respect to the

number of disjunctions in them [22], it is usually not immediate to find an OR-AND GMEC that defines

the legal marking set for a given physical model (we discuss this issue in Section 3). In bounded nets, one

may need a full enumeration of the reachability space, and it is still difficult and exhaustive to recognize an

OR-AND GMEC from a long list of legal markings. In some cases the solution can be obtained stepwise

by GMEC transformations [20, 18, 19, 21, 32, 23]. However, this type of approaches is only applicable to

some very restricted subclasses of Petri nets. Moreover, in some problems the legal marking set is not a finite

union of integer convex sets [23], i.e., it cannot be defined by an OR-AND GMEC (examples are given in

Sections 3 and 6).

It is worth to note that several alternative methods are also developed to design supervisors based on

GMECs. For example, for nets and GMECs that satisfy some structural assumptions, Luo et al. developed

an efficient supervisor synthesis method that simultaneously performs the reduction of the net structure and

the constraint transformation [17]. For a bounded net, a minimal number of disjunctive GMECs that ensures

deadlock-free-ness can be obtained by the set classification method by Chen et al. [6]. However, it can only

be applied to small-scale systems, and the set of forbidden markings must be convex and must be known in

prior. Moreover, Qin et al. developed a method to obtain a controller that ensures liveness in LS3PR nets,

which circumvents the GMEC transformation [28]. However, the controller by this method is in general not

maximally permissive, i.e., some legal markings may not be reached in the closed-loop net. In this sense, the
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classical GMEC approach needs to be further extended, and new types of constraints with a higher modeling

power while still enforceable with a simple control structure are required.

To overcome the aforementioned difficulties, this paper proposes a new type of nonlinear marking specifi-

cations called stair-GMECs (defined in Section 3). In particular, they are extremely suitable for characterizing

the set of admissible markings in many supervisory control problems for Petri nets containing uncontrollable

transitions. Such sets are often very complex and cannot always be efficiently — if at all — described by

OR-AND GMECs [23].

A class of nonlinear marking constraints in Petri nets has also been studied by Chen et al. in [7] where a

method was proposed to enforce an additive separable nonlinear constraint (ASNC). Their approach works

in a straightforward manner, but is only applicable for Petri nets with a known bound. Moreover, the structural

complexity of the resulting controller is not satisfactory.

The modeling power of stair-GMECs and ASNCs are not comparable, and hence we present a different

approach to enforce a stair-GMEC in this paper. We also note that for a problem that can be modeled by both

types of constraints, the control structure that we propose is in general more compact than that of [7]. The

contributions of this paper are summarized as follows:

• A new type of nonlinear marking specifications for Petri nets, i.e., stair-GMECs, is proposed. A stair-

GMEC can be represented as an integer inequality whose left-hand side is a linear combination of

certain floor functions b·c. We show that stair-GMECs can conveniently characterize legal marking

sets that are difficult or even not possible to define by OR-AND GMECs. We also prove that under

certain restrictive conditions a stair-GMEC can be converted to an equivalent GMEC.

• Two algorithms are developed to design a controller that enforces a given stair-GMEC. The control

structure consists of two parts: (1) newly added control places including one residue counter and a

series of remainder counters, and (2) transitions duplicated from plant transitions. We prove that this

control structure is maximally permissive, i.e., it prevents all and only the illegal trajectories of the

plant.

• The control structure has a relatively compact structure comparing with those in [22] and in [7], and a

detailed comparison including an example is given at the end of this paper. Furthermore, this approach

can be applied to both bounded and unbounded nets.

The paper is organized in seven sections. Section 2 recalls the Petri net formalism used in the paper.

Section 3 introduces stair-GMECs and some properties are studied. Section 4 develops an algorithm to

construct the Petri net controller to enforce a stair-GMEC, and its maximal permissiveness is proved. The

complexity analysis of this approach is given in Section 5. An illustrative example is presented in Section 6,
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and conclusions are drawn in Section 7.

2 Preliminaries

2.1 Petri net

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places graphically represented by circles;

T is a set of n transitions graphically represented by boxes; Pre : P×T → N and Post : P×T → N are the

pre- and post-incidence functions that specify the arcs in the net and are represented as matrices in Nm×n

(N= {0,1,2, . . .}). The incidence matrix of a net is defined by C = Post−Pre∈Zm×n (Z= {0,±1,±2, . . .}).

A net is said to be self-loop free if ∀(p, t) ∈ P×T , Pre(p, t) ·Post(p, t) = 0 holds. For a self-loop free net,

from the incidence matrix one may univocally determine the Pre and Post functions.

For a transition t ∈ T we define the set of its input places as •t = {p ∈ P | Pre(p, t)> 0} and the set of its

output places as t• = {p ∈ P | Post(p, t)> 0}.

A marking is a vector M : P→ N that assigns to each place of a Petri net a non-negative integer number

of tokens, graphically represented by black dots. We denote by M(p) the marking of place p. A marked net,

also called a plant, 〈N,M0〉 is a net N with an initial marking M0.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M′ with M′ =

M +C(·, t). We write M[σ〉 to denote that the sequence of transitions σ = t j1 · · · t jk is enabled at M, and we

write M[σ〉M′ to denote that the firing of σ at M yields M′.

A marking M is reachable in 〈N,M0〉 if there exists a firing sequence σ such that M0[σ〉M. The set of all

markings reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted by R(N,M0). The set of

all firable sequences from M0 defines the language of 〈N,M0〉 and is denoted by L(N,M0). A place p ∈ P of

a marked net 〈N,M0〉 is said to be bounded if there exists a nonnegative integer K such that for all marking

M ∈ R(N,M0), M(p)≤ K holds, and the minimal value of K is said to be the bound of place p. A marked net

〈N,M0〉 is bounded if all its places are bounded.

We use b·c to denote the maximal integer that does not exceed (·).
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2.2 GMEC

Definition 1 A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w,k) that defines a set of legal

markings:

L(w,k) = {M ∈ Nm | wT ·M ≤ k}

where w ∈ Zm and k ∈ Z. M

Definition 2 An AND-GMEC is a set of single GMECs denoted by a pair (W,k) where W = [w1 · · ·ws] ∈

Zm×s and k = [k1 · · ·ks]
T ∈ Ns. An AND-GMEC defines a set of legal markings

L(W,k) = {M ∈ Nm | ∀(wi,ki) ∈ (W,k),wT
i ·M ≤ ki}.

An OR-AND GMEC is a set W = {(W1,k1), . . ., (Wr,kr)} in which each (Wi,ki) ∈ Zm×si ×Nsi is an

AND-GMEC for 1≤ i≤ r, and r is called the number of disjunctions of W. An OR-AND GMEC defines a set

of legal markings:

LW = {M ∈ Nm | ∃(Wi,ki) ∈W,WT
i ·M ≤ ki}.

M

A single GMEC (w,k) on a plant 〈N,M0〉 with N = (P,T,Pre,Post) can be enforced through a control

structure by adding to the net a loop-free place q called the monitor place which has an incidence matrix row

C(q, ·) =−wT ·C(·, t) and is initially marked as M0(q) = k−wT ·M0 [9].

3 Stair-GMECs and the Problem Formulation

3.1 GMECs and Stair-GMECs

In many supervisory control problems in Petri nets, the legal marking set can be written as a finite union of

integer convex sets1 In such a case the legal marking set can always be written as an OR-AND GMEC W and

can then be enforced by a place/transition controller that is maximally permissive if W is bounded [22].

Although control structures based on OR-AND GMECs have polynomial complexity with respect to the

number of disjunctions in them [22], it is not always convenient to characterize a legal marking set of a

physical model by OR-AND GMECs. For example, there are cases in which each AND-GMEC is used

1A set X ⊆ Rm is convex if (x1,x2 ∈ X)⇒ (∀λ ∈ [0,1],λ · x1 +(1−λ ) · x2 ∈ X). A set S ⊆ Nm is said to be an integer convex set if
there exists a convex set X ⊆ Rm such that S = X ∩Nm.
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to describes just a small number of legal markings and thus the OR-AND GMEC contains a number of

disjunctive terms of order comparable to the cardinality of the legal marking set as shown in the following

Example 1. The same example shows that stair-GMECs can describe some particular classes of infinite legal

marking sets that are not a finite union of convex sets, and thus cannot be described by OR-AND GMECs as

discussed in [23]. As a result, in this section we propose a new type of constraints called stair-GMECs that

have a higher modeling power than classical GMECs but are still enforceable with a simple control structure.

Definition 3 A stair-GMEC is a four-tuple (A,b,c,k), where A = [a1 · · ·as] ∈ Zm×s, b ∈ Zs, c ∈ Ns, and

k ∈ N. A stair-GMEC (A,b,c,k) defines a set of legal markings L(A,b,c,k):

L(A,b,c,k) = {M ∈ Nm |
s

∑
i=1

bi ·
⌊

aT
i ·M
ci

⌋
≤ k}, (1)

where bxc denotes the largest integer less than or equal to x. M

In general, due to the floor operator b·c in Eq. (1), a stair-GMEC is not a linear marking specification, and

the legal marking set of a stair-GMEC is not convex. However, a single GMEC (w,k) is always a stair-GMEC

(w,1,1,k).

For convenience of notation, in the following we also propose an equivalent expression to describe a

stair-GMEC, which will be used in the remaining part of this paper. The left-hand side of the inequality

in Eq. (1) can be considered as the sum of s functions fi(M) = bi · baT
i ·M/cic, i = 1, . . . ,s. By denoting

ξ (M)=∑
s
i=1 fi(M), a stair-GMEC (A,b,c,k) can be equivalently defined as a pair (ξ ,k) whose legal marking

set is:

L(A,b,c,k) = L(ξ ,k) = {M ∈ Nm | ξ (M) =
s

∑
i=1

fi(M)≤ k}, (2)

and in the sequel of this paper we will use (ξ ,k) to denote a stair-GMEC. Hence a marking is legal if it

satisfies the following inequality:

ξ (M) =
s

∑
i=1

fi(M) =
s

∑
i=1

bi

⌊
aT

i ·M
ci

⌋
≤ k. (3)

Remark 1 A stair-GMEC (ξ ,k) reduces to a GMEC if s = 1 and b1 = c1 = 1 in Eq.(3). M

Stair-GMECs are a generalization of GMECs that allow to compactly describe meaningful classes of legal

marking sets that are not convex. Thus they allow to solve control problems for which past methods are either

too complex in implementation (such is the case of bounded nets using OR-AND GMECs or other non-linear

methods such as [7]) or cannot apply (such is the case of unbounded nets). This is illustrated by the following

example. A comprehensive example is also given in Section 6.
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Figure 1: A manufacturing system.
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Figure 2: The Petri net model of the system in Figure 1.

Example 1 Consider the manufacturing system in Figure 1 whose corresponding Petri net model is shown

in Figure 2. Raw parts of type A arrive (t1) in Workplace 1 (p1) and then are loaded on an AGV (t2) to

be transferred to Workplace 2 (p2). The AGV is set to transport two parts of type A from Workplace 1 to

Workplace 2 automatically once it is fully loaded. A robot (t4) takes one part of type A from Workplace 2 and

two raw parts of type B arriving (t3) in Workplace 3 (p3) to produce the final product.

We consider a safety constraint related to the number of parts of type A. If the arrival of raw parts of

type B is unexpectedly delayed, the blocked parts of type A in Workplace 2 (i.e., after consuming all parts of

type B in Workplace 3) must not exceed 5. Noting that the AGV will automatically transfer parts of type A

from Workplace 1 to Workplace 2, the legal marking set L to be enforced can be defined by the following

stair-GMEC (ξ ,k) solely:

2bM(p1)/2c+M(p2)−bM(p3)/2c ≤ 5 (4)

A similar example is also discussed in [23] where it is shown that the legal set for this problem, i.e., L(ξ ,k),

cannot be defined by an OR-AND GMEC.

On the other hand, let us assume that p3 has a bound K ∈ N. In such a case the legal marking set L is
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characterized by the following inequalities:

2bM(p1)/2c+M(p2)−bM(p3)/2c ≤ 5

M(p3) ≤ K
(5)

The set L is now finite, and hence there exists an OR-AND GMEC defining it. However, one can readily

verify that it is difficult to obtain such an OR-AND GMEC.2 In fact, L can be defined by the following

OR-AND GMEC W:

bK/4+5/2c∨
j=0

(M(p1)≤ 2 j+1)∧ (2M(p2)−M(p3)≤ 10−4 j) (6)

This OR-AND GMEC consists of bK/4+5/2c+1 AND-GMECs and it cannot be simplified anymore. Obvi-

ously, it is much simpler to define L by Eq. (5) instead of Eq. (6). M

Remark 2 We also point out that to enforce the constraint in Eq. (6) by the method proposed in [22], 3×

bK/4+ 5/2c additional places (called control places) have to be added, and (bK/4+ 5/2c)2 additional

transitions (called mirror transitions) have to be added for each migrating transition [22]. For example,

for K = 120 there will be 96 control places and 1,024 duplicate transitions for transition t2, and a polling

mechanism has to be introduced to circularly activate them. Moreover, once the value of K changes, the

corresponding controller has to be completely redesigned. On the contrary, it is much simpler to define the

legal marking set by a stair-GMEC, e.g., Eq. (4). Furthermore, in the sequel we show that a stair-GMEC can

be easily enforced as a closed-loop net. M

In general a stair-GMEC defines a set of legal markings that do not form a half-space, and therefore it

cannot be enforced by monitor places as in [9]. However, in some cases a stair-GMEC may define a half-space

and hence is equivalent to a single GMEC.

Proposition 1 The stair-GMEC (ξ ,k) where

ξ (M) =

⌊
aT

1 ·M
c

⌋
+

⌊
aT

2 ·M
1

⌋
(7)

is equivalent to the single GMEC (w′,k′) (i.e., L(ξ ,k) = L(w′,k′)) where

w′ = aT
1 + c ·aT

2

k′ = (k+1) · c−1.
(8)

2The OR-AND GMEC that defines a given finite marking set L is in general not unique. However, there is no efficient method to
obtain it. For example, a brute-force way is to characterize a finite L by:

∨
M′∈L

∧m
i=1(M(pi)≤M′(pi))∧ (−M(pi)≤−M′(pi)) which

is an OR-AND GMEC. However, the resulting OR-AND GMEC consists of O(2m · |L |) single GMECs. Such complexity is too high
to be feasible in practice.
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Proof: First, it is not difficult to prove that given x,y ∈ Z and z ∈ N, it holds:

bx/zc ≤ y ⇔ x≤ (y+1) · z−1 (9)

Then we have

M ∈L(ξ ,k)⇔
⌊

aT
1 ·M

c

⌋
+

⌊
aT

2 ·M
1

⌋
≤ k

⇔
⌊

aT
1 ·M

c

⌋
≤ k−aT

2 ·M

(9)⇐⇒ aT
1 ·M ≤ ((k−aT

2 ·M)+1) · c−1

⇔ (aT
1 + c ·aT

2 ) ·M ≤ (k+1) · c−1

⇔M ∈L(w′,k′)

� �

Note that the type of stair-GMEC considered in Proposition 1 is rather peculiar: it contains only one term

containing the floor operator with b1 = 1. In particular, given a stair-GMEC (ξ ,k), if in ξ (M) there exists one

term bi · baT
i ·M/cic where bi,ci > 1, or there exists two terms baT

1 ·M/c1c+ baT
2 ·M/c2c where c1,c2 > 1,

then L(ξ ,k) would not be a half-space and there does not exist a single GMEC equivalent to it.3

Example 2 Consider the stair-GMEC represented by the following inequality:

⌊
M(p1)−2M(p2)+M(p3)

3

⌋
+2M(p1)−M(p3)≤ 3.

It can be rewritten as:

⌊
M(p1)−2M(p2)+M(p3)

3

⌋
+

⌊
2M(p1)−M(p3)

1

⌋
≤ 3.

Then by Proposition 1 it can be converted to an equivalent GMEC represented by the following inequality:

7M(p1)−2M(p2)−2M(p3)≤ 11.

M

At the end of this subsection we point out that, since a single GMEC is also a stair-GMEC, for any OR-

AND GMEC there exists a conjunction/disjunction of stair-GMECs defining the same legal marking set. Due

to the limit of space, we do not study conjunction/disjunction of stair-GMECs in this paper but will explore

it in the future. Note that the converse does not hold: as we have shown in Example 4, there exists some
3In this discussion we assume that k is sufficient large to ensure that L(ξ ,k) is not reduced to some very simple integer sets, e.g., a

singleton or the emptyset.
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stair-GMEC whose legal marking set cannot be defined by an OR-AND GMEC.

3.2 Problem Formulation

In the classical AND-GMEC controller design approaches, a controller consists of a set of monitor places

PS that are added to a plant net to determine a closed-loop net N̂ with P̂ = P∪PS and T̂ = T . However, for

stair-GMECs (as well as other nonlinear constraints) it is not in general possible to build a controller that only

consists of control places. Hence we look for a control structure that contains both additional control places

and control transitions.

We will consider a transition set T̂ in the closed-loop net that only contains transitions that are duplicate

of transitions in the open-loop plant. A transition t̂ is called a duplicate of a plant transition t ∈ T if t̂ has the

same input and output plant places as that of t, and the corresponding weight of arcs are identical [8]. In the

next section we propose a control structure that consists of control places and only duplicate transitions. The

problem studied in this paper is stated after defining duplicate transitions.

Definition 4 Given a Petri net 〈N,M0〉 and a closed-loop net 〈N̂,M̂0〉 where N = (P,T,Pre,Post) and N̂ =

(P∪PS, T̂ , P̂re, P̂ost), a transition t̂ ∈ T̂ is a duplicate of a plant transition t ∈ T if ∀p ∈ •t̂ ∩P,Pre(p, t̂) =

Pre(p, t) and ∀p ∈ t̂•∩P,Post(p, t̂) = Post(p, t). The set of duplicate transitions of t ∈ T is denoted as T (t).

M

Problem 1 Given a net 〈N,M0〉 where N = (P,T,Pre,Post) and a stair-GMEC (ξ ,k), determine a closed-

loop net 〈N̂,M̂0〉 with N̂ = (P∪PS, T̂ , P̂re, P̂ost) such that T̂ =
⋃

t∈T T (t) and the projection of the reacha-

bility set of the net N̂ on the set of places P of N satisfies R(N̂,M̂0)↑P ⊆L(ξ ,k). To ensure the existence of a

solution, we assume that the initial marking is legal, i.e., M0 ∈L . M

4 Controller Design for Stair-GMECs

4.1 Controller Design

We first propose some definitions that will be used in the algorithms.

Definition 5 Given a net 〈N,M0〉 and a function f (M) = b · baT ·M/cc, the influence of a transition t ∈ T on

f is defined as: η( f , t) = aT ·C(·, t). M
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Definition 6 Given a stair-GMEC (ξ ,k) with ξ (M) = ∑
s
i=1 fi(M), fi(M) = bi · baT

i ·M/cic, the quantity of

k−ξ (M) = k−∑
s
i=1 fi(M) is called the available residue of a marking M. M

Algorithm 1 given below determines a control structure that is capable of enforcing a given stair-GMEC.

By Algorithm 1 a residue place is added, and for each fi(M) = bi ·baT
i ·M/cic, ci remainder places are added.

The use of the residue place is to record the difference between ξ (M) and the constraint bound k. On the other

hand, at any marking M for each fi(M) there exists a unique remainder place being marked, corresponding to

the reminder of ai ·M/ci. During its execution, Algorithm1 calls Algorithm 2 which generates the duplicate

of transitions.

Algorithm 1 Controller Design for a Stair-GMEC
Input: A Petri net 〈N,M0〉 and a stair-GMEC (ξ ,k) where N = (P,T,Pre,Post), ξ (M) = ∑

s
i=1 fi(M), and

fi(M) = bi · baT
i ·M/cic;

Output: A closed-loop net 〈N̂,M̂0〉;
1: Let N̂ = N, let P̂ = P∪{ps};
2: Let M̂0(ps) = k−∑

s
i=1 bi · baT

i ·M0/cic;
3: for all fi, do
4: Let P̂ = P∪{q0

i , . . . ,q
ci−1
i };

5: Let r = aT
i ·M0 mod ci;

6: Let M̂0(qr
i ) = 1,M̂0(q

j
i ) = 0 for j 6= r.

7: for all tx ∈ T , do
8: Call Algorithm 2 to duplicate tx;
9: end for

10: end for
11: Let M̂0(p) = M0(p) for all p ∈ P;
12: Remove isolated places in P̂;
13: Output 〈N̂,M̂0〉 where N̂ = (P̂, T̂ , P̂re, P̂ost).

Algorithm 2 Duplication of Transitions

Input: A Petri net 〈N̂,M̂0〉, a function fi(M) = bi · baT
i ·M/cic, and a transition tx ∈ T ;

Output: An updated 〈N̂,M̂0〉;
1: if η( fi, tx) mod ci ≡ 0, then
2: Rename tx as t0

x ;
3: Let Ĉ(ps, tx) = Ĉ(ps, tx)−bi · bη( fi, tx)/cic;
4: else
5: Let T̂ = T̂ ∪{t0

x , . . . , t
ci−1
x }, let T̂ = T̂ \{tx};

6: for all j = 0 to ci−1, do
7: Let Pre(·, t j

x ) = Pre(·, tx), Post(·, t j
x ) = Post(·, tx);

8: Let Pre(q j
i , t

j
x ) = Post(qy

i , t
j
x ) = 1 where y = [ j+η( fi, tx)] mod ci;

9: Let Ĉ(ps, t
j
x ) = Ĉ(ps, t

j
x )−bi · b( j+η( fi, tx))/cic;

10: end for
11: end if
12: Return 〈N̂,M̂0〉;

We briefly explain how Algorithms 1 and 2 work before presenting an example. In Steps 1 and 2 of

Algorithm 1, a residue place ps is added and initially marked by k−ξ (M0) tokens, i.e., the available residue

of M0. Then by the loop from Steps 3 to 10 each fi is treated sequentially. In the first iteration, in Step 4 a set
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Figure 3: An illustration of Algorithms 1 and 2.

of remainder places q0
1, . . . ,q

c1−1
1 are added. In Steps 5 and 6 the r-th place in these remainder places (i.e., qr

1)

is marked with one token called the remainder token, where r is the remainder of aT
1 ·M0/c1. In fact, during

the evolution of the closed-loop net, at an arbitrary marking M this remainder token would mark the place q j
1

among these remainder places of f1 where j is the remainder of aT
1 ·M/c1. Then by Step 8 Algorithm 1 calls

Algorithm 2 to duplicate each transition tx ∈ T .

In Algorithm 2, if the influence of tx on f1 is a multiple of c1, i.e., η( f1, tx) mod c1 = 0, then tx is not

duplicated (since its firing will not change the remainder of aT
1 ·M/c1) but is renamed for convenience of

notation. The change of fi(M) by firing tx is recorded into the arc between ps and tx. On the other hand, if

η( f1, tx) is not a multiple of c1, then tx is duplicated to c1 transitions t0
x , . . . , t

c1−1
x by Step 5. By Steps 7 and

8, the firing of the duplicate transition t j
x of tx would move the remainder token from place q j

1 to qy
1 to update

the current remainder of aT
i ·M/ci. By Step 9, the change of fi(M) by firing tx in case that the remainder

of aT
i ·M/ci is j is recorded into the arc between ps and tx. After all transitions are treated, it returns to

Algorithm 1. Then Algorithm 1 goes back to Step 3 to treat f2. This process continues until all fi’s are

processed. We illustrate Algorithms 1 and 2 by the following example.

Example 3 Consider the net 〈N,M0〉 in Figure 3(a) (where M0 = [1,1]T ) and a stair-GMEC (ξ ,k) to be

enforced: ξ (M) = f1(M)+ f2(M) = 2bM(p1)/3c− bM(p2)/1c ≤ 14. In the beginning of Algorithm 1, a

control place ps is added and initially marked with k−ξ (M0) = 15 tokens.

In the first loop, f1 is treated and c1 = 3 remainder places q0
1,q

1
1, and q2

1 are added to P̂. The remainder

place q1
1 is marked with one token since aT

1 ·M0/c1 = 1. By calling Algorithm 2, since η( f1, t1) mod c1 ≡

2 6= 0, three duplicate transitions of t1 are added and the corresponding arcs are calculated. For example, if

the current remainder of aT
1 ·M/c1 = 1 is 1, only t1

1 is enabled. The firing of t1
1 will move the remainder token

from q1
1 to q0

1 since by firing t1 the new remainder of aT
1 ·M/c1 = 1 is 0, while Ĉ(ps, t1

1 ) =−2 since the firing

12



of t1 at a marking M such that aT
1 ·M mod c1 ≡ 1 will increase the value of f1(M) by 2. For transitions t2,

t3, and t4, since η( f1, t2) mod c1 = η( f1, t3) mod c1 = η( f1, t4) mod c1 ≡ 0, no duplicate transitions are

added for t2, t3, nor t4. Then the first loop of Algorithm 1 is done. In the second loop, since c2 = 1, no more

duplicate transitions are added. Finally we obtain the closed-loop net 〈N̂,M̂0〉 in Figure 3(b). M

4.2 Correctness and Maximal Permissiveness of Algorithm 1

In this subsection we first prove that Algorithm 1 is correct. The following proposition shows that given a

firing trajectory in the plant net 〈N,M0〉, there exists a unique firing trajectory in the closed-loop net 〈N̂,M̂0〉

composed of corresponding duplicate transitions.

Proposition 2 Given a Petri net 〈N,M0〉 and a stair-GMEC (ξ ,k) with ξ (M) = ∑
s
i=1 fi(M), fi(M) = bi ·baT

i ·

M/cic, let 〈N̂,M̂0〉 be the closed-loop net obtained by Algorithm 1. If M0[t〉NM1 satisfying ξ (M1) ≤ k, then

in N̂ there exists a unique t̂ ∈T (t) such that M̂0[t̂〉N̂M̂1 and:

1. M̂1↑P = M1;

2. for all i ∈ {1, . . . ,s}, M̂1(q
yi
i ) = 1 where aT

i ·M1 mod ci ≡ yi, and M̂1(qz
i ) = 0 if z 6= yi;

3. M̂1(ps) = k−ξ (M1).

Proof: We first prove that given an arbitrary transition tx ∈ T such that M0[t〉NM1 and ξ (M1)≤ k, there

exists a unique duplicate transition of tx that can fire at M̂0 in N̂.

Let Qi = {q0
i , . . . ,q

ci−1
i } ⊆ PS denote the set of remainder places added for fi. Consider tx and the first

function f1 in ξ . If η( f1, tx) mod c1 ≡ 0, then the renamed transition t0
x is not disabled by any places in Q1.

If η( f1, tx) mod c1 6= 0, then tx is duplicated to c1 transitions by Algorithm 2 among which there is a unique

transition tr1
x that is not disabled by Q1, since •tr1

x ∩Q1 = {qr1
1 } where r1 is the remainder of aT

1 ·M/c1 and qr1
1

is marked at M0. The same reasoning can be applied to tr1
x and f2 such that there exists a unique tr1r2

x ∈T (tx)

which is not disabled by neither Q1 nor Q2. Hence finally there exists a unique transition tr1···rs
x that is a

duplicate transition of tx, and tr1···rs
x is not disabled by Qi for all i = 1, . . . ,s. By tr1···rs

x ∈ T (tx), tr1···rs
x is not

disabled by any places p ∈ P at M̂0.

Now let us consider the residue place ps. The change of fi by firing tx is fi(M1)− fi(M0) = bi · b(ri +

η( fi, tx))/cic where ri is the remainder of aT
i ·M0/ci. Hence the change of ξ (M) is ξ (M1)− ξ (M0) =

∑
s
i=1( fi(M1)− fi(M0)) = −Ĉ(ps, t

r1···rs
x ). Since M̂0(ps) = k− ξ (M0), M1 ∈L(ξ ,k), and there is no self-loop

between ps and tr1···rs
x , we have M0(ps)−Pre(ps, t

r1···rs
x ) = M0(ps)− Ĉ(ps, t

r1···rs
x ) = k− ξ (M0)− (ξ (M1)−

ξ (M0)) = k−ξ (M1)≥ 0. This indicates that transition tr1...rs
x is not disabled by ps at M0. As a result, tr1...rs

x

13



is the unique duplicate transition of tx that can fire at M̂0, leading to a unique marking M̂1 in the closed-loop

net N̂.

Now we show that the three conditions in the statement holds. Since tr1···rs
x ∈T (t), M̂1↑P = M1 holds. By

Steps 7 and 8 in Algorithm 2, the firing of tr1...rx would move each unique remainder token in Qi from place

qri
i to qyi

i where aT
i ·M1 mod ci ≡ yi, and hence Condition 2 holds. Finally, ξ (M1) = M0(ps)−Ĉ(ps, t

r1···rs
x ) =

k−ξ (M1) holds, which concludes the proof. � �

Based on the previous proposition, we can now prove the following main result.

Theorem 1 Given a Petri net 〈N,M0〉 and a stair-GMEC (ξ ,k) with ξ (M) = ∑
s
i=1 fi(M), fi(M) = bi · baT

i ·

M/cic, the closed-loop net 〈N̂,M̂0〉 obtained by Algorithm 1 satisfies R(N̂,M̂0)↑P ⊆L(ξ ,k).

Proof: Consider an arbitrary firing trajectory:

M0[t0〉NM1 · · ·Mx−1[tx−1〉NM[tx〉M′

in which M0, · · · ,Mx−1,M ∈ L(ξ ,k) and M[tx〉NM′ /∈ L(ξ ,k). By Proposition 2, there exists a unique firing

sequence t̂1 · · · t̂x−1 ∈ T̂ ∗, t̂i ∈ T (ti) for i = 1, . . . ,x− 1 such that M̂0[t̂1〉N̂M̂1 · · ·M̂x−1[t̂y〉N̂M̂, M̂↑P = M, and

M̂(ps) = k−ξ (M) holds.

By the proof of Proposition 2, at M̂ there exists a unique transition of tx, say tr1···rs
x , which is not disabled

by the remainder places Qi’s. However, since M′ /∈ L(ξ ,k), we have M(ps)− Ĉ(ps, t
r1···rs
x ) = k− ξ (M)−

(ξ (M′)−ξ (M)) = k−ξ (M′)< 0. It indicates that tr1···rs
x is disabled by ps at M̂ in N̂. As a result, no transition

t̂ ∈ T (tx) is enabled at M̂ to yield a marking M̂′ such that M̂′↑P /∈L(ξ ,k). Hence R(N̂,M̂0)↑P ⊆L(ξ ,k) holds.

� �

A desirable property of the closed-loop 〈N̂,M̂0〉 is maximal permissiveness, that is, if a marking evolution

trajectory in the plant net is legal, such evolution should not be disabled by the control structure. This property

ensures that the evolution of the closed-loop net is minimally restricted.

The maximal permissiveness of a closed-loop net for language specifications is often characterized in

terms of supremal controllable sublanguages of automata [29] and Petri nets [10] when the supervisor is

described as an external control agent. In the approach of this work, the action of the supervisor is embedded

in the closed-loop net by means of both control places and duplicate transitions. For this particular reason,

we want to clearly state the definition of maximally permissiveness as follows.

Definition 7 Given a Petri net 〈N,M0〉 and a legal marking set L , a firing sequence σ = t1t2 · · · tx−1tx ∈ T ∗

is legal if M0[t1〉M1 · · ·Mx−1[tx〉Mx and Mi ∈L for i ∈ {0,1, . . . ,x}. M
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Definition 8 Given a Petri net 〈N,M0〉 and a legal marking set L , a closed-loop net 〈N̂,M̂0〉 with N̂ = (P∪

PS, T̂ , P̂re, P̂ost) and T̂ =
⋃

t∈T T (t) (i.e., it consists of only duplicate transitions) is maximally permissive if

∀σ = t1t2 · · · tx−1tx ∈ T ∗ that is legal, ∃t̂1, . . . , t̂x such that M̂0[t̂1t̂2 · · · t̂x〉, where t̂i ∈T (ti). M

The maximal permissiveness requires that if a firing sequence in the plant net is legal, i.e., its firing

does not yield any intermediate illegal markings, then in the closed-loop net a firing sequence composed

by corresponding duplicate transitions should be firable. Now we prove that the closed-loop net 〈N̂,M̂0〉

obtained by the proposed procedure is maximally permissive, i.e., it prevents only those illegal trajectories of

the plant.

Theorem 2 Given a Petri net 〈N,M0〉 and a stair-GMEC (ξ ,k) with ξ (M) = ∑
s
i=1 fi(M) and fi(M) = bi ·

baT
i ·M/cic, the closed-loop net 〈N̂,M̂0〉 obtained by Algorithm 1 is maximally permissive by Definition 8.

Proof: This theorem follows directly from Proposition 2. For a transition t satisfying M0[t〉NM1 ∈L ,

there exists a unique t̂ ∈ T (t) such that M̂0[t̂〉N̂M̂1 where M̂1 satisfies the three conditions in Proposition 2.

This reasoning can be repeatedly applied by letting M1 and M̂1 be the new initial marking of N and N̂,

respectively. Hence for any legal firing trajectory M0[t1〉NM1 · · ·Mx−1[tx〉NMx, there exists a unique firing

sequence t̂1 · · · t̂x ∈ T̂ ∗ such that M0[t̂1 · · · t̂x〉N̂ . This indicates the maximal permissiveness of 〈N̂,M̂0〉. � �

5 Complexity Analysis

In this section we discuss the complexity of the proposed control structure and compare it with the approach

in literature.

5.1 Complexity of the Closed-loop Net

The proposed control structure to enforce a stair-GMEC (ξ ,k) requires to add in the closed-loop net a unique

residue place ps and ci remainder places for each fi. Hence there will be 1+∑
s
i=1 ci places in the control

structure of the closed-loop net. For a transition t and an fi, if η( fi, t) mod ci 6= 0 then ci duplicate transitions

are added in the closed-loop net. Therefore given a stair-GMEC (ξ ,k) with ξ (M) = f1(M)+ · · ·+ fn(M), a

transition t will be duplicated to ∏
s
i=1 ci transitions in the worst case in which the firing of t affects the value

of all fi’s and η( fi, t) mod ci 6= 0 holds for all fi’s. Hence the number of transitions in the closed-loop net

will be |T̂ |= |T | ·∏s
i=1 ci. In conclusion, the total numbers of places and transitions in the closed-loop net are

|P|+∑
s
i=1 ci + 1 and |T | ·∏s

i=1 ci, respectively. Although the number of transitions grows up exponentially

with the increase of the number of floor functions fi in the worst case, in practice the number of duplications
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of a transition t would be less than ∏
s
i=1 ci since not all transitions are duplicated at each iteration but only

those whose firing affects the remainder of aT
i ·M/ci. i.e., t is duplicated only if η( fi, t) mod ci 6= 0.

5.2 Comparison with [7]

Now let us briefly compare in terms of structural complexity the controllers obtained by the proposed ap-

proach and by [7]. In both approaches duplicate transitions are introduced to realize the nonlinearity of the

constraint. However, for nonlinear stair-GMECs the advantages of the proposed approach are twofold.

The work of [7] focuses on general types of nonlinear constraints in bounded Petri nets. Their approach

seeks for a solution based on P-invariants and complementary places. Hence a full enumeration of all possible

value changes from x to y of a nonlinear function fi by firing a transition t is needed. This mechanism requires

that each nonlinear function fi appears in ξ is a function of only one bounded place pi. On the contrary, since

in this approach for stair-GMECs we do not need to track all possible value changes of ξ : only the remainder

of aT
i ·M/ci for each fi is recorded. Since the complementary place is not needed, this approach can be

applied to unbounded nets.

Moreover, although in both approaches the number of duplicate transitions is exponential in the worst

case, we note that the number of duplicate transitions in this approach (which is ∏
s
i=1 ci) is usually much less

than that of [7] (which is ∏
s
i=1 |T̂ zi |). Since in [7] |T̂ zi | duplicate transitions are added for a plant transition

t, each of which represents a possible value change of fi from x to y by firing t. Hence |T̂ zi | = Kmax −

Kmin− |η( fi, t)|+ 1 where Kmax and Kmin denote the upper and the lower bounds of fi(M), M ∈ R(N,M0),

respectively. In general |T̂ zi | is much larger than ci and hence ∏
s
i=1 ci�∏

s
i=1 |T̂ zi |.

For example, if we apply the method in [7] to the net in Figure 3(a) and the stair-GMEC ξ (M) =

f1(M) + f2(M) = 2bM(p1)/3c − bM(p2)/1c ≤ 14, for f1 there are 13 and 12 duplicate transitions of t1

and t2, respectively. However, as already shown in Example 3, for function f1 transition t1 is only duplicated

to c1 = 3 transitions while transition t2 does not need to be duplicated. Moreover, since |T̂ zi | grows with the

increase of the bound of place pi, for unbounded nets the method in [7] cannot be applied since T̂ zi is not

finite. A comprehensive example is also given in the next section.

6 Example

The Petri net in Figure 5 models the assembly system illustrated in Figure 4. Two types of parts A and B arrive

(t1 and t2) at Workplace 1 and Workplaces 2 (p1 and p2), respectively, and then assembled by a robot (t7).

Once the robot t7 is shut down, the remaining parts in workplaces p1 and p2 are automatically transported to
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Figure 4: An assembly system for the example in Section 6.
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Figure 6: The closed-loop net of the net in Figure 5.
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Storehouse 1 and Storehouse 2 (p3 and p4) by two AGVs (t3 and t5) that have different capacities, respectively.

When the robot (t7) recovers to function, the two AGVs automatically transport parts from storehouses back

to the corresponding workplaces (t4 and t6). The parts can also arrive (t8 and t9) in the storehouses p3 and p4

from elsewhere.

Now we want to enforce a control policy that, once the robot (t7) is shut down, after the transportation

from the workplaces to the storehouses, the quantity of type A parts in Storehouse 1 (p3) should not exceed

the quantity of type B parts in Storehouse 2 (p4) by more than 15 units. Hence the legal marking set can be

defined by the following stair-GMEC (ξ ,k):

3
⌊

M(p1)

3

⌋
−2
⌊

M(p2)

2

⌋
+M(p3)−M(p4)≤ 15 (10)

The Unbounded Case: By applying Algorithm 1 in this paper we can obtain the closed-loop net shown

in Figure 6 which is maximally permissive. On the other hand, since the net is unbounded and L(ξ ,k) cannot

be defined by an OR-AND GMEC, the methods in [7] and [22] cannot be applied.

The Bounded Case: Let us assume that the net has a bound K = 15 for all places, i.e., R(N,M0) =

{M ∈ N4 |M(pi) ≤ 15, i ∈ {1,2,3,4}}. In such a case R(N,M0) consists of 65,536 markings among which

62,758 markings are legal. Now let us compare the controller based on OR-AND GMECs [22], the nonlinear

controller synthesis approach in [7], and Algorithm 1 proposed in this paper.

1. [OR-AND GMEC Controller by [22]] First, since the legal marking set is finite, there exists an OR-

AND GMEC that defines it. Hence the method in [22] can apply. However, one can readily verify that

such an OR-AND GMEC is too complex to be obtained: there is no efficient algorithm to recognize it

from a linear-list of 62,758 legal markings. As a result, it is not possible to design a controller based

on OR-AND GMECs. Moreover, once the value of K and/or k changes, the corresponding OR-AND

GMEC has to be recalculated and the controller has to be completely recomputed.

2. [Nonlinear Controller by [7]] Second, since the net is bounded, the method in [7] can be applied, and

the number of duplicate transitions in the resulting closed-loop net are listed in Table 1. The closed-

loop net contains more than 300 transitions and hence is not presented graphically. In fact, the number

of duplicate transitions grows with the increase of the value of K.

3. [Controller by Algorithm 1] Finally, by Algorithm 1 the closed-loop net is exactly the one in Figure 6.

It contains only 17 transitions (details are also listed in Table 1) which is much less than that of [7]. In

addition, this closed-loop net is maximally permissive: all 62,758 legal plant markings are reachable.

Furthermore, this control structure is always the same regardless the value of the bound K.
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Table 1: The number of duplicate transitions for the plant in Figure 5 by different methods.

Transitions t1 t2 t3 t4 t5 t6 t7 t8 t9
Algorithm 1 3 2 1 1 1 1 6 1 1

[7] 15 15 13 13 14 14 225 1 1

7 Conclusion

In this paper a type of nonlinear marking specifications in Petri nets, called stair-GMECs, is proposed, which

have a higher modeling power than classical GMECs. Two algorithms are developed to enforce a stair-GMEC

as a closed-loop net, in which the control structure is composed by a residue counter, remainder counters, and

duplicate transitions. The proposed control structure is maximally permissive. This approach is applicable to

both bounded and unbounded nets. Our future topic is to extend this work to Petri nets with uncontrollable

and unobservable transitions, and to explore properties of stair-GMECs with OR and AND relations.
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