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Abstract

In this paper a type of specifications called OR-AND Generalized Mutual Exclusion Constraints (G-

MEC) for place/transition nets is defined. Such a specification consists of a disjunction of conjunction of

several single GMECs, i.e., the requirement is that, at any given time, the controlled system should satisfy

at least one set of conjunctive GMECs. We show that a bounded OR-AND GMEC can be enforced by

a special control structure composed by a set of AND-GMEC monitor places plus a switcher that deter-

mines the current active ones. We also show that such a simple control structure can be modified to ensure

maximal permissiveness. This approach can be used in the framework of supervisory control in Petri nets.
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1 Introduction

Generalized Mutual Exclusion Constraints [1] (GMECs) are a class of state specifications that can be ef-

ficiently enforced in a Petri net with controllable transitions by a simple control structure, called monitor

places, which is maximally permissive. Since the monitor design does not require to enumerate the reach-

ability set but can be solved by working on the net structure, the state explosion problem could be avoided

and the controller design process is quite efficient. The GMEC approach has many advantages and has been

used in a wide range of contexts [2–6]. Besides its efficient advantages, however, the modeling power of

classical GMEC has its intrinsic restriction. In fact a single GMEC only considers a very special class of

legal markings that belong to an n-dimensional half-space, where n is the number of places in the net. The

legal marking set defined by a set of GMECs is given by the intersection of half-spaces and thus is always

convex.

When Petri nets models are used in the supervisory control theory [7] for arbitrary language specification-

s [8, 9], the following problem arises. First, the set of legal markings in these types of problems are usually

not convex. For instance, in the GMEC transformation problem [6], we need to propose a more restrictive

control policy which prohibits not only the forbidden markings that violate the given GMEC, but also some

other weakly forbidden markings, from which the system may uncontrollably violate the control law. A solu-

tion to such a problem has been provided by Moody and Antsaklis in [6,10]: in these works they presented an

efficient technique which determines a more restrictive admissible GMEC (w′,k′) from a given in admissible

GMEC (w,k). However, the solution of Moody and Antsaklis is typically suboptimal, unless each uncontrol-

lable transition has at most one input [11]. In more general classes of systems, although there does not exist

a generalized solution yet, typically an inadmissible GMEC should be transformed into a set of disjunctive

admissible GMECs, or even a disjunction of conjunctive admissible GMECs [12, 13]. Furthermore, in the

forbidden marking problem such as deadlock prevention problems in S3PR nets [14, 15], the legal marking

set can also be non-convex. Therefore to obtain an optimal solution it would require an approach capable of

handling non-convex sets of legal markings.

The control of disjunctive GMECs in Petri nets has been studied by Iordache and Antsaklis [5] and then

extended to arbitrary logical structure of GMECs [16]. They designed a closed-loop controller to precisely

keep track of the violation information, i.e., which GMECs are currently violated, to ensure that the plant

would not violate all GMECs at the same time. Their approach works in a straightforward manner in classi-

cal models, but it still has some limitations. First, in their approach each GMEC must have a known upper

and lower bound, and thus the approach is not applicable if the token count of a GMEC may go to positive or

negative infinity. For example, if the support of a GMEC contains an unbounded place whose corresponding

weight is negative, the GMEC may not have a lower bound: this is very common in the supervisory control

framework (see Example 3.5). Second, the algorithms in [5,16] are based on the Petri net concurrent compo-
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sition, hence in the worst case the number of newly added control transitions in the closed-loop system would

be exponential in the number of the disjunctions. In this sense, a more general method which can handle a

larger class of systems and obtain the controllers with lower structural complexity is desirable.

In this paper we propose a different approach to construct a controller which realizes a given disjunction

of conjunctive GMECs (this is called OR-AND GMEC). We introduce a monitor-switcher control structure

which contains both places and transitions to enforce the disjunction of conjunctive GMECs. The monitor-

switcher does not need to precisely record the violation information such that it has two advantages: (1) the

controller does not require the lower bound of GMECs as in [5], therefore this method is more general; (2) the

controller has a relative compact structure since the structural complexity of the monitor-switcher in the worst

case is quadratic with respect to the number of disjunctions. This work also extends our previous approach

in [17], in which a closed-loop controller is proposed for the disjunctive OR-GMEC. The contributions of

this paper are summarized as follows:

• A two-stage design procedure for a controller capable of enforcing an OR-AND GMEC under the

assumption that the GMECs are bounded (we refer to Section 3 for a formal definition of bounded

OR-AND GMEC and for a discussion of its limitations). The monitor-switcher obtained using the first

procedure is easy to be implemented and does not require the lower bound of GMECs as in [5]. We

also show that a maximally permissive Petri net controller may not exist if the OR-AND GMEC is

unbounded.

• We characterize the conditions under which the monitor-switcher is not maximally permissive by i-

dentifying a special subset of transitions that may be over-restricted. We also show how the monitor-

switcher could be modified, if necessary, to always obtain a maximally permissive controller. The

modification procedures works on the net structure, thus the control problem can be efficiently solved.

The final closed-loop controller has a quadratic structural complexity with respect to the number of

disjunctions in the OR-AND GMEC.

• By using this approach a compiled Petri net controller to enforce a given OR-AND GMEC can be

obtained. The fundamental advantage of a compiled controller is the possibility of constructing a

model of a closed-loop system as a place/transition net that can be validated using existing techniques

such as structural analysis.

The paper is organized in seven sections. Section II presents the Petri net formalism used in the paper.

Section III introduces the OR-AND GMECs and some properties including boundedness are studied. Section

IV presents the first stage of the monitor-switcher design. Section V analyzes the conditions under which the

switcher is maximally permissive and shows how it can be modified to obtain a maximally permissive con-

troller in the second stage of design. The complexity analysis of the resulting controller and the comparison
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with the work in literature are presented in Section VI, and conclusions are presented in Section VII.

2 Preliminaries

A Petri net is a four-tuple N = (P,T,Pre,Post), where P is a set of m places represented by circles; T is a set

of n transitions represented by bars; Pre : P×T → N and Post : P×T → N are the pre- and post-incidence

functions that specify the arcs in the net and are represented as matrices in Nm×n (here N= {0,1,2, . . .}).

The incidence matrix of a net is defined by C = Post −Pre ∈ Zm×n (here Z = {0,±1,±2, . . .}). A net is

said to be self-loop free if for all places p ∈ P and for all transitions t ∈ T , Pre(p, t) ·Post(p, t) = 0 holds. For

a self-loop free net, from the incidence matrix one may univocally determine the Pre and Post functions.

For a transition t ∈ T we define the set of its input places as •t = {p ∈ P | Pre(p, t)> 0} and the set of its

output places as t• = {p ∈ P | Post(p, t)> 0}. This notation can also be applied to a set of transitions T̄ ⊆ T

by defining •T̄ = ∪t∈T̄
•t and T̄ • = ∪t∈T̄ t•.

A marking is a vector M : P → N that assigns to each place of a Petri net a non-negative integer number

of tokens, represented by black dots. We denote by M(p) the marking of place p. A marked net ⟨N,M0⟩ is a

net N with an initial marking M0.

A transition t is (directly) enabled at M if M ≥ Pre(·, t) and may fire reaching a new marking M′ with

M′ = M+C(·, t). We write M[σ⟩ to denote that the sequence of transitions σ = t j1 · · · t jk is enabled at M, and

we write M[σ⟩M′ to denote that the firing of σ yields M′.

Given a sequence σ ∈ T ∗, we associate to it an n-component vector y : T →N, called the firing vector (or

Parikh vector) of σ . Specifically, y(t) = k if the transition t is contained k times in σ .

A marking M is reachable in ⟨N,M0⟩ if there exists a firing sequence σ such that M0[σ⟩M. The set of all

markings reachable from M0 defines the reachability set of ⟨N,M0⟩ and is denoted by R(N,M0). We denote

by PR(N,M0) the potentially reachable set, i.e., the set of all markings M ∈Nm for which there exists a vector

y ∈Nn that satisfies the state equation M = M0+C ·y, i.e., PR(N,M0) = {M ∈Nm|∃y ∈Nn : M = M0+C ·y}.

We have that R(N,M0)⊆ PR(N,M0).

A place p ∈ P of a marked net ⟨N,M0⟩ is said to be bounded if there exists a nonnegative integer K such

that for any marking M ∈ R(N,M0), M(p)≤ K holds. A marked net is bounded if all its places are bounded.

Definition 2.1 A Generalized Mutual Exclusion Constraint (GMEC) is a pair (w,k) that defines a set of legal

markings:

L (w,k) = {M ∈ Nm | wT ·M ≤ k}
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where w ∈ Zm and k ∈ N.

An AND-GMEC is a set of s GMECs denoted by a pair (W,k) where W = [w1 · · ·ws] ∈ Zm×s and k =

[k1 · · ·ks]
T ∈ Ns. In an AND-GMEC (W,k), each (wi,ki) is a single GMEC. An AND-GMEC defines a set of

legal markings

LAND(W,k) = {M ∈ Nm | ∀(wi,ki) ∈ (W,k),wT
i ·M ≤ ki}

where (w,k) ∈ (W,k) indicates that there exists an entry i of W and k such that (w,k) = (wi,ki). △

A single GMEC (w,k) on a net system ⟨N,M0⟩ with N = (P,T,Pre,Post) (that is called a plant net) can

be easily enforced through a control structure by adding to the net a loop free place q called the monitor

place with incidence matrix C(q, ·) =−wT ·C(·, t) and initial marking M(q) = k−wT ·M0. For the resulting

closed-loop net ⟨N′,M′
0⟩ with N′ = (P∪{q},T,Pre′,Post ′), the projection of its reachability set onto the set

of places P of N satisfies R(N′,M′
0)↑P ⊆ L (w,k). An AND-GMEC can be enforced by a set of monitor

places using the previous technique.

3 Definitions and Properties of OR-AND GMECs

In the classical GMEC condition, the logical relationship between constraints is AND, i.e., each legal marking

must satisfy all the constraints in (W,k). We consider the cases, however, in which the system is not required

to satisfy all constraints but is only required to satisfy at least one GMEC from the given GMECs. This type

of constraints is called the OR-GMEC.

Definition 3.1 An OR-GMEC is a set of r GMECs denoted by a set WOR = {(w1,k1), . . ., (wr,kr)} where

each (wi,ki) is a single GMEC. An OR-GMEC defines a set of legal markings:

LOR(WOR) = {M ∈ Nm | ∃(wi,ki) ∈WOR,wT
i ·M ≤ ki}

△

Analogous to the OR-GMEC, if a system is required to satisfy at least one AND-GMEC from a set of

AND-GMECs, this new type of constraints is called OR-AND GMEC. In particular, in a given OR-AND

GMEC, if each AND-GMEC contains only one single GMEC, then the OR-AND GMEC is reduced to an

OR-GMEC.

Definition 3.2 Given a series of AND-GMEC (W1,k1), . . ., (Wr,kr), the corresponding OR-AND GMEC is

a set WOA = {(W1,k1), . . ., (Wr,kr)} with Wi ∈ Zm×si and ki ∈ Nsi for each 1 ≤ i ≤ r. An OR-AND GMEC
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defines a set of legal markings:

LOA(WOA) = {M ∈ Nm | ∃(Wi,ki) ∈WOA,

∀ j : 1 ≤ j ≤ si,wT
i j ·M ≤ ki j}

where (wi j,ki j) denotes the j-th single GMEC in (Wi,ki). △

For a legal marking set L , we can also define its corresponding bad marking set B = Nm \L . From the

definitions of AND-GMEC, OR-GMEC, and OR-AND GMEC, we can easily derive the following proposi-

tion.

Proposition 3.3 LAND and BOR are convex sets of integer vectors.

Proof: LAND is convex since a set of linear constraints defines a convex feasible set in the n-dimensional

space. That BOR is convex follows from the fact that BOR defines the feasible set that for all GMEC in WOR,

wT ·M > k holds, which is a set of conjunctive linear constraints. �

Since in the classical Petri net model, markings are defined on the integer but not real space, the convexity

of LAND and BOR refers to integer markings. For simplicity we call these sets “convex” if there is no

confusion. We also note that typically neither LOA nor BOA is convex.

3.1 Boundedness of an OR-AND GMEC

Before presenting an algorithm to design an OR-AND GMEC controller, let us define the boundedness for

an OR-AND GMEC.

Definition 3.4 An OR-AND GMEC WOA = {(W1,k1), . . ., (Wr,kr)} is said to be bounded (with respect to

⟨N,M0⟩) if there exists an integer K <+∞ such that for any constraint (wi j,ki j) ∈ (Wi,ki) with 1 ≤ i ≤ r and

for any marking M ∈ R(N,M0)∩LOA(WOA), wT
i j ·M ≤ K holds.

Example 3.5 Consider the net in Figure 1 which represents an assembly workstation containing two input

buffers p1 and p3, two workflows p2 and p4, one product stack p5 and a stack counter p6. Suppose that we

want to enforce an OR-GMEC with r = 2: (M(p2)+M(p5)−M(p6)≤ 0)∨ (M(p4)+M(p5)−M(p6)≤ 0),

to ensure that the product stack p5 will not exceed the threshold specified by the counter p6. This OR-GMEC

(that can also be considered as a particular case of OR-AND GMEC) is bounded according to Definition 3.4

with K = 5. Since p6 is unbounded, this OR-GMEC does not have a lower bound and thus Iordache’s

approach in [5] cannot be applied. △
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Figure 1: The supervisory control model for Example 3.5 with no lower bounds.

In the next section, to construct a control structure, one needs to find such a proper K. Typically one

may have to explore the whole state space to precisely find the bound K, which is exhaustive in some cas-

es. However, one may efficiently find a proper K by solving the state equation, as shown in the following

proposition.

Proposition 3.6 Given a net ⟨N,M0⟩, an OR-AND GMEC WOA is bounded if for each (wi j,ki j) and for each

(Wx,kx) with x ̸= i, the objective function of the following linear integer programming problem (IPP) is

bounded: 
Ki j,x = max wT

i j · (M0 +Cy)− ki j

s.t. M0 +Cy ≥ 0

WT
x · (M0 +Cy)≤ kx.

(1)

Moreover, the bound K of WOA in Definition 3.4 can be given as K = maxi, j,x Ki j,x.

Proof: First, we observe that any marking that satisfies M0 +Cy ≥ 0 is in PR(N,M0). If each Ki j,x is a

finite integer (which implies that all IPPs are bounded), K must also be finite and wT
i j ·M ≤ K holds for any

marking M ∈
∪

i(PR(N,M0)∩LAND(Wi,ki)). Since the following equalities hold:

∪
i

(PR(N,M0)∩LAND(Wi,ki))

=PR(N,M0)∩ (
∪

i

LAND(Wi,ki))

=PR(N,M0)∩LOA(WOA),

for any marking M ∈PR(N,M0)∩LOA(WOA), wT
i j ·M ≤K holds. By PR(N,M0)⊇R(N,M0), for any marking

M ∈ R(N,M0)∩LOA(WOA), wT
i j ·M ≤ K holds, which concludes the proof. �

Note that the parameter K found by the method in Proposition 3.6 may be larger than the actual reach-

able bound; however the behavior of the closed-loop net is not influenced by the selected value of K (see

Section IV).

Two immediate consequences of Definition 3.4 are given as follows.
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Figure 2: The supervisory control model for Example 3.9 containing an unbounded place with positive
weight.

Proposition 3.7 An OR-AND GMEC WOA is bounded with respect to a plant net ⟨N,M0⟩ if for any constraint

(wi j,ki j), wi j(p)> 0 implies that place p is bounded.

Proof: Without loss of generality, for an arbitrarily chosen (w,k) ∈
∪

i
∪

j{(wi j,ki j)} let us assume

w(pv) > 0 for v ≤ m′ ≤ m and w(pv) ≤ 0 for v > m′. Assume that all places pv’s are bounded for v ≤ m′.

Then for any marking M ∈ R(N,M0) and for any v ≤ m′, M(pv)≤ cv holds, where cv ∈ N is the upper bound

of pv. Define a vector w′ ∈ Zm where w′(pv) = w(pv) for v ≤ m′ and w′(pv) = 0 for v > m′. Therefore for

any marking M ∈ R(N,M0) and any (wi j,ki j) we have:

wT
i j ·M ≤ w′T

i j ·M ≤
m′

∑
1

wi j(pv) · c j ≤ Ki j ∈ N. (2)

Hence for any marking M ∈ R(N,M0), wT
i j ·M ≤ K holds where K = maxi, j Ki j. Therefore for any marking

M ∈ R(N,M0)∩LOA(WOA), wT
i j ·M ≤ K holds and consequently WOA is bounded according to Definition 3.4.

�

Corollary 3.8 If ⟨N,M0⟩ is bounded, any OR-AND GMEC defined on its reachability set is bounded with

respect to ⟨N,M0⟩.

We point out that Proposition 3.7 and Corollary 3.8 only give a sufficient but not necessary condition for

the boundedness of an OR-AND GMEC WOA. If there exists an unbounded place p where for some (wi j,ki j)

the condition wi j(p)> 0 holds, it does not imply that WOA is unbounded: in the support of (wi j,ki j) there may

also exist some other unbounded places, say p̄, with negative coefficient which prevents the token count of

(wi j,ki j) from going to positive infinity. In this sense we believe that the requirement for boundedness is not

too restrictive since it applies not only to the class of bounded nets but to meaningful classes of unbounded

nets as well.

Example 3.9 Consider the net in Figure 2 which represents a workstation containing two input buffers p1, p2

and two workplaces p3, p4. There are three types of operations: assembling part A and part B (t2), machining

part A (t4), and machining part B (t6). Suppose that we want to enforce a GMEC: (M(p3)− M(p4) ≤
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Figure 3: An unbounded OR-AND GMEC with unbounded places (a) and its inhibitor solution (b).

2)∧ (M(p4)−M(p3) ≤ 2) to balance the amounts of parts in the two workplaces. This AND-GMEC that

can also be considered as a reduced OR-AND GMEC is bounded, although the support of the AND-GMEC

contains two unbounded places with positive weights. △

3.2 Requirement for Boundedness of OR-AND GMECs

In this subsection, we explain the importance of the boundedness of OR-AND GMECs. In Sections IV and

V we will show that given a Petri net and a bounded OR-AND GMEC WOA, the OR-AND GMEC can always

be implemented by a Petri net structure which is maximally permissive. However, if WOA is unbounded, it

is not always possible to construct such a maximally permissive closed-loop system as a place/transition net.

We show this by means of a simple example.

Example 3.10 Consider the Petri net in Figure 3(a). The OR-AND GMEC that we want to implement is

(M(p1) ≤ 0)∨ (M(p2) ≤ 0), which is unbounded. One can intuitively verify that there does not exist a

place/transition solution for this unbounded OR-AND GMEC. A solution presented by a Petri net with in-

hibitor arcs1 is shown in Figure 3(b). However, it is well known that a Petri net with inhibitor arcs is

equivalent to a Turing Machine and may not always be converted to a place/transition net. △

We want to prove that it not possible to find a Petri net structure capable of enforcing the OR-AND GMEC

discussed in Example 3.10 on the net in Figure 3(a). To show this in all generality, we prove an even stronger

result. The formal definitions of free-labeled Petri nets and Petri net languages can be found in [18].

Proposition 3.11 There does not exist a labeled Petri net ⟨N̂,M̂0⟩ with arbitrary labeling function that can

generate the language of the free-labeled net with inhibitor arcs ⟨N,M0⟩ in Figure 3(b).

Proof: We proof this by contradiction. Assume that such a net ⟨N̂,M̂0⟩ exists and let T̂ be its set of

transitions and ℓ : T̂ →{t1, t2, t3, t4}∪{ε} its labeling function, where ε denotes the empty string. We require

1An inhibitor arc from a place p to a transition t ends with a small circle and denotes that the transition is disabled when the place is
marked. In Fig. 3(b) there are two inhibitor arcs: the arc from p1 to t3 and the arc from p2 to t1.
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that

Lℓ(N̂,M̂0)≡ {ℓ(σ̂) | σ̂ ∈ L(N̂,M̂0)}= L(N,M0). (3)

Since for all i ∈ N, t i
1t i

2t3 ∈ L(N,M0), thus we can construct an infinite sequence M̂1,M̂2,M̂3, . . . , of

markings in R(N̂,M̂0) such that for i > 0:

(∃σ̂i, σ̂ ′
i ) M̂0[σ̂i⟩M̂i[σ̂ ′

i ⟩ with ℓ(σ̂i) = t i
1, ℓ(σ̂

′
i ) = t i

2t3,

i.e., marking M̂i is reachable by a firing sequence that generates t i
1 and from such a marking a sequence that

generates t i
2t3 is firable.

We now claim that there necessarily exist integers u,v with 0 < u < v such that M̂u ≤ M̂v. This follows

from a stronger result [19] that states that from an infinite sequence of elements of Nm one can extract an

infinite non-decreasing subsequence.

Since M̂u[σ̂ ′
u⟩ and M̂v ≥ M̂u, M̂v[σ̂ ′

u⟩ also holds, which implies tv
1tu

2 t3 ∈ Lℓ(N̂,M̂0) with v > u. By tv
1tu

2 t3 ̸∈

L(N,M0), this contradicts Eq. (3). �

Proposition 3.11 shows that given an unbounded OR-AND GMEC control requirement there may be no

place/transition solution. We also point out that many Petri nets with unbounded OR-AND GMECs can be

reduced to the problem in Figure 3(a). Since the place/transition solution for an unbounded OR-AND GMEC

does not always exist, this paper only focuses on bounded OR-AND GMECs.

4 Petri Net Controller Design for OR-AND GMECs

4.1 Monitor-Switcher Design for OR-AND GMECs

In the classical AND-GMEC controller design approaches, a controller consists of a set of monitor places PS

that are added to a plant net to determine a closed-loop net N̂ with P̂ = P
∪

PS and T̂ = T . For an OR-AND

GMEC, however, it is not in general possible to build a controller that only consists of control places. Here

we are looking for a control structure that contains both additional control places PS and control transitions TS,

i.e., the closed-loop net shall have a set of places P̂ = P
∪

PS and a set of transitions T̂ = T
∪

TS. Considering

that the firing of a transition t ∈ TS should not change the marking of the plant net, we assume that TS is such

a set satisfying •TS
∪

T •
S ⊆ PS. This motivates the following problem.

Problem 1 Given a Petri net system ⟨N,M0⟩ with N = (P,T,Pre,Post) and an OR-AND GMEC WOA =

{(W1,k1), . . ., (Wr,kr)}, determine a closed-loop net ⟨N̂,M̂0⟩ with N̂ = (P
∪

PS, T
∪

TS, ˆPre, ˆPost) such
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Figure 4: A plant net to be controlled by OR-AND GMEC WOA = {(W1,k1), (W2,k2)} in Example 4.1.

that it satisfies •TS
∪

T •
S ⊆ PS, and the projection of the reachability set of the net N̂ on the set of places P

of N satisfies R(N̂,M̂0)↑P ⊆ LOA(WOA). To ensure the problem has a solution, it is natural for us to assume

M0 ∈ LOA(WOA). △

The next algorithm determines a control structure, called a monitor-switcher, that is capable of enforcing

a given bounded OR-AND GMEC.

Algorithm 1 Monitor-Switcher Design

Input: A plant net ⟨N,M0⟩ and a bounded OR-AND GMEC WOA = {(Wi,ki),1≤ i≤ r} with M0 ∈LOA(WOA)

Output: A closed-loop net ⟨N̂,M̂0⟩ such that R(N̂,M̂0)↑P ⊆ LOA(WOA)

Step 1: Select a sufficient large constant K that satisfies:

K ≥ K′ = max
i=1,...,r

max
j=1,...,si

max
M∈R(N,M0)

{wT
i j ·M− ki j} (4)

Step 2: For each single constraint (wi j,ki j) (i = 1, . . . ,r, j = 1, . . . ,si), add a loop free place qi j to the plant

net ⟨N,M0⟩ with C(qi j, t) =−wT
i j ·C(·, t) and M0(qi j) = ki j −wT

i j ·M0 +K.

Step 3: Add r places q′1, . . . ,q′r. Add r× (r− 1) transitions ti j where 1 ≤ i, j ≤ r, i ̸= j. Let Pre(q′i, ti j) = 1

and Post(q′j, ti j) = 1. Let Post(qi·, ti j) = K and Pre(q j·, ti j) = K.

Step 4: Pick an l which satisfies M0(ql·)≥K. Let M(q′l) = 1 and M(q′i) = 0 for i ̸= l. Let M(ql·) =M(ql·)−K.

Step 5: Output the closed-loop net ⟨N̂,M̂0⟩. �

We briefly illustrate how this algorithm works before showing an example. In the first step a sufficiently

large constant K is selected, which is larger than the maximal upper bound of all the single GMECs. This

could be done by the method in Proposition 3.6. In Step 2 for each single GMEC (wi j,ki j) a standard GMEC

monitor place qi j is added. The initial tokens in each of these monitor places is the standard ki j −wT
i j ·M0

plus additional K tokens. Since K is greater than the upper bound of each single GMEC, all these AND-

GMECs are considered as not active. In Step 3 the switcher structure is added and then in Step 4 we put a

unique token in the switcher place corresponding to an AND-GMEC (Wl ,kl) which M0 satisfies. To ensure

that (Wl ,kl) is considered as active, K tokens are removed from the monitor place of each single GMEC of

(Wl ,kl). Algorithm 1 can always be applied since in Step 1, K always exists due to the boundedness of the
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Figure 5: The monitor-switcher design for the net in Figure 4 in Example 4.1.

given OR-AND GMEC, and in Step 4, l can always be found since M0 satisfies at least one AND-GMEC as

assumed.

Example 4.1 2 In Figure 4 the OR-AND GMEC to be enforced is

WOA = {(W1,k1),(W2,k2)}

where two single GMECs (w11,k11) = ([0,1,0,0,0]T ,2), (w12,k12) = ([0,0,1,0,0]T ,1) are in (W1,k1) and

two single GMECs (w21,k21) = ([0,0,0,1,0]T ,2), (w22,k22) = ([0,0,0,0,1]T ,1) are in (W2,k2). In this net

all places are 5-bounded, i.e., ∀M ∈ R(N,M0), M(px) ≤ 5, x = 0,1,2,3,4. By applying Algorithm 1, we

obtain the closed-loop net in Figure 5 with the monitor-switcher structure. In the closed-loop net, qi j is the

monitor place associated to the j-th constraint in (Wi,ki). If the unique token in the switcher is in q′1, monitor

places q11 and q12 would have proper number of tokens such that (W1,k1) is active, while monitor places q21

and q22 would have excessive number of tokens such that the corresponding AND-GMEC (W2,k2) is inactive.

It is also a similar case if the unique token in the switcher is in q′2. Therefore the unique token in q′i indicates

that the i-th AND-GMEC (Wi,ki) is active, i.e., the current legal marking satisfies (at least) (Wi,ki). △

From the structure of the resulting net, we have the following result ensuring that only legal markings

are reachable under control. We denote the marking of the closed-loop net N̂ by M̂ and the corresponding

marking of the plant net N by M, i.e., M = M̂↑P. Furthermore, we define ŵT · M̂ = wT ·M for M̂↑P = M,

where w ∈ N|P| and ŵ ∈ N|P∪PS| is obtained by w assigning to all monitor and switcher places a weight 0,

i.e., ŵ(i) = w(i) if pi ∈ P, else ŵ(i) = 0. The next theorem shows that the monitor-switcher constructed by

Algorithm 1 provides a candidate solution for Problem 1.

Theorem 4.2 A net ⟨N̂,M̂0⟩ constructed by Algorithm 1 satisfies R(N̂,M̂0)↑P ⊆ LOA(WOA).

2In Example 4.1 the number of disjunctions is r = 2. Another example is given in Figure 8 in Appendix to illustrate a switching
mode with three disjunctions.
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Proof: In Step 2 of the algorithm, the resulting net has the following invariants:

ŵT
i j · M̂+ M̂(qi j) = ki j +K (5)

After the monitor-switcher is added, the resulting net has the following invariants:


ŵT

i j · M̂+ M̂(qi j) = ki j +K − M̂(q′i) ·K

∑
i

M̂(q′i) = 1
(6)

The last invariant ensures that for any marking M̂ ∈ R(N̂,M̂0) there exists a constraint x such that M̂(q′x) =

1 and by Eq.(6) M̂ also satisfies ŵT
x j ·M̂+M̂(qx j) = kx j. Thus, M = M̂↑P satisfies at least the x-th AND-GMEC

(Wx,kx) in WOA. �

One may notice that the number of reachable states of the closed-loop net is always the same regardless

of K. Therefore, in some real systems the selection of K can be quite intuitive. In Example 4.1 we can let

K = 100,000, and the resulting closed-loop net exactly has the same evolution as the closed-loop net with

K = K′ = 5. This algorithm cannot be applied for an unbounded OR-AND GMEC since a finite K that makes

any constraint inactive does not exist.

4.2 Non-optimality

A desirable property of the obtained ⟨N̂,M̂0⟩ is maximal permissiveness, that is, if the firing of a transition

t in the plant net is legal, it should also be firable in the closed-loop net. In the closed-loop net, however,

the firing of t may depend on the previous firing of a control transition in the switcher. This motivates the

following weaker definition of permissiveness.

Definition 4.3 A closed-loop net ⟨N̂,M̂0⟩ (with respect to ⟨N,M0⟩) is said to be maximally permissive if for

any marking M̂ ∈ R(N̂,M̂0) and for any marking M = M̂↑P ∈ L , the following condition3 holds:

(M[t⟩NM′ ∈ L )⇒ (∃σS ∈ T ∗
S : M̂[σSt⟩N̂) (7)

△

According to the condition in Definition 4.3, a closed-loop net is maximally permissive if, given any

marking M̂ such that M̂↑P ∈ L , the trajectory of M̂↑P[t⟩N is legal in the plant net, then in the closed-loop

net, transition t must also be enabled after a proper evolution of the control transitions in TS. Note that for
3Here we distinguish the enabling in the nets N and N̂ using the notation [·⟩N and [·⟩N̂ , respectively.
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Figure 6: An example in which ⟨N̂,M̂0⟩ is not maximally permissive.

a monitor-switcher controlled net, we only need to check |σS| ≤ 1 to verify maximal permissiveness, since

the switcher can always unmark q′x and mark q′y in one step by firing txy (if this operation is legal). However,

in some general types of control structures it may be necessary to fire more than one control transitions to

enable a plant transition.

The following proposition shows that Algorithm 1 does not determine a maximally permissive net ac-

cording to Definition 4.3.

Proposition 4.4 The closed-loop net ⟨N̂,M̂0⟩ by Algorithm 1 is not always maximally permissive with respect

to ⟨N,M0⟩.

Proof: We prove this result by providing a counterexample. Consider again the closed-loop net ⟨N,M0⟩

in Figure 5. After firing t5t5t5t2 it will reach a plant marking Ma = [1,0,1,3,0]T , as shown in Figure 6

without transition t4,1→2 in the dashed box. One can readily verify that both Ma (satisfying (W1,k1)) and

Mb = [1,0,2,2,0]T (satisfying (W2,k2)) are legal markings, hence t4 may legally fire at Ma. However, at

Ma transition t4 is blocked by q12, and the switcher cannot shift from q′1 to q′2 since Ma(q21) = K − 1 < K.

Therefore Mb cannot be reached from Ma by firing a sequence (possibly empty) of transitions in TS followed

by t4. �

Remark 1 We comment on the notion of maximal permissiveness defined above. In some areas of Petri net

control, such as deadlock avoidance and prevention [14, 15, 20–23], a notion of maximal permissiveness

based on reachable markings is typically used: it only requires that all markings that can be reached by legal

trajectories are reachable in a closed-loop net, even if some of the sequences that lead to them may not be

firable. However Definition 4.3 — which is defined on the firing sequences — implies that also all legal firing

sequences must be firable in the closed-loop net. For instance, we have shown that in Proposition 4.4 from

[1,0,1,3,0]T one cannot reach [1,0,2,2,0]T by firing σSt4. However, [1,0,2,2,0]T can be legally reached

from [5,0,0,0,0] by firing t12t2t2t5t5. Hence Definition 4.3 is more strict. △
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Figure 7: The illustration of the unnecessarily blocking.

To better illustrate this situation we introduce the concept of weakly enabled transitions.

Definition 4.5 A transition t is said to be weakly enabled at M if there exists a firing sequence σS ∈ T ∗
S :

M̂[σS⟩M̂′ and t is enabled at M̂′. △

Different from a directly enabled transition, a weakly enabled transition is not necessarily enabled at the

current closed-loop marking but can be enabled after a proper firing sequence occurs in the switcher. From

the definition it is obvious that a transition directly enabled at M̂ is also weakly enabled, and in such a case

σS is the empty string. Note that in the monitor-switcher controlled net, a transition is weakly enabled if and

only if it is enabled after the firing of some single control transition txy, since the switcher can always unmark

q′x and mark q′y in one step. But it is not always the case in more general types of controllers.

Figure 7 illustrates this situation. For better illustration, let us consider the reduced OR-AND GMEC,

i.e., |(W1,k1)| = |(W2,k2)| = 1. The horizontal axes represent the token counts of (w1,k1) ∈ (W1,k1) and

(w2,k2) ∈ (W2,k2) of the plant markings, and the vertical axis represents the token in the monitor place q′1

of the monitor-switcher. In this illustration two markings Mx,q1 and Mx,q2 with the same projection share the

same plant marking. Suppose that in the plant net without the controller, both M1[t⟩M2 and M3[t ′⟩M2 are legal.

After the monitor-switcher is added, M1[t⟩M2 is not blocked: if the current marking is M1,q1 , t is enabled;

if the current marking is M1,q2 , although t is not firable at M1,q2 , after a proper evolution of the switcher,

e.g., t21, we can reach M1,q1 at which t is enabled. Therefore t is weakly enabled at M1,q2 . However, the

monitor-switcher will block M3[t ′⟩M2, since M3 only satisfies (w2,k2) and M2 only satisfies (w1,k1). Thus,

the possible full marking could only be M3,q2 . As a result, both the firing of t ′ and the activation/deactivation

of (w1,k1)/(w2,k2) are not possible (two dashed arrows). Therefore t ′ is blocked at M3 by the monitors.

This is exactly the case happened in the example shown in Proposition 4.4. In the example the marking

Ma = [1,0,1,3,0]T only satisfies (W1,k1) (as M3 in Figure 7) and Mb = [1,0,2,2,0]T only satisfies (W2,k2)

(as M2 in Figure 7). Therefore neither t12 nor t4 can fire under Ma, and consequently t4 is not weakly enabled.
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At the end of this section we point out that although the monitor-switcher that we synthesized up to now

is not maximally permissive according to Definition 4.3, the evolution of the closed-loop system satisfies

the condition: for any marking M1 with M1[t⟩M2, if M1 satisfies (Wi,ki) then M2 also satisfies (Wi,ki). In

particular, if each (Wi,ki) contains only one single GMEC, the evolution of the closed-loop system would

exactly satisfy the so-called dynamic interpretation of the disjunctive GMECs in [5]. Therefore the monitor-

switcher controlled system in this paper can be considered satisfying the extended dynamic interpretation.

However in this paper we only consider the optimality of the controller according to Definition 4.3. Since

a maximally permissive closed-loop net is expected, the net ⟨N̂,M̂0⟩ has to be suitably modified, which is

technically feasible as shown in the next section.

5 Modifying a Monitor-Switcher to Ensure Maximal Permissiveness

In the previous discussion we have seen that the legal firing represented by the dashed arc in Figure 7 is

unnecessarily blocked. It is natural to find a way to create a shortcut for such blocking. In this section we

will explore this approach to compile such a mechanism into the closed-loop Petri net. We first define the

unnecessary blocking of a transition.

Definition 5.1 A transition t ∈ T is said to be unnecessarily blocked at M̂ in a closed-loop net ⟨N̂,M̂0⟩ if

M̂↑P[t⟩NM′ ∈ L and t is not weakly enabled at M̂. △

In the closed-loop net in Figure 6 we can see that t1, t2, t3, t5, t6, and t7 are not unnecessarily blocked under

all closed-loop markings in ⟨N̂,M̂0⟩. However, t4 is unnecessarily blocked since t4 is not weakly enabled at

all markings M̂ with M̂↑P = [1,0,1,3,0]T .

Definition 5.2 Given an OR-AND GMEC WOA = {(W1,k1), . . ., (Wr,kr)} and a plant marking M, the satis-

fied GMEC index set S(M) is defined as:

S(M) = {i ∈ {1, . . . ,r}|∀ j : 1 ≤ j ≤ si,wT
i j ·M ≤ ki j}

△

Theorem 5.3 In a closed-loop net N̂ obtained by Algorithm 1 and corresponding WOA, a transition t is

unnecessarily blocked at the marking M̂ with M̂↑P = M,M[t⟩NM′ if and only if S(M)
∩

S(M′) = /0, where

M,M′ ∈ N|P|.

Proof: (If) Suppose that S(M)
∩

S(M′) = /0. Since M is a legal marking satisfying some (Wi,ki)’s, there

exists an index i ∈ S(M) with M̂(q′i) = 1. Since i /∈ S(M′), the firing of t would violate (Wi,ki). We conclude
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that there exists j ∈ {1, . . . ,si} such that M̂(qi j)< P̂re(qi j, t) is true. Since the index i is arbitrarily chosen, t

is always blocked regardless the firing of σS ∈ TS. Therefore t is not weakly enabled at M̂.

(Only If) Suppose that S(M)
∩

S(M′) ̸= /0. We pick any index x ∈ S(M)
∩

S(M′). If the unique marked

place in the switcher is q′x, t is not blocked (σ equals to the empty string) since q′x does not restrict the firing

of t and all the other (Wi,ki)’s (i ̸= x) are deactivated. If the unique marked place in the switcher is q′y ̸= q′x,

q′x can be marked by firing tyx such that t is weakly enabled. Therefore t is weakly enabled at M̂ and is not

unnecessarily blocked. �

Note that in Theorem 5.3 we do not consider whether the marking M is reachable, since it is usually

difficult to determine the reachability problem. However, an efficient trimming algorithm will be presented

shortly without checking if such markings are reachable. Before this we use the following definitions to

further characterize the situation of unnecessary blocking.

Definition 5.4 The influence of a transition t on a GMEC (w,k) is defined as ηt(w) = wT ·C(·, t). △

Definition 5.5 Given an OR-AND GMEC WOA = {(W1,k1), . . ., (Wr,kr)}, the increasable support of a

transition t Z +
t is defined as:

Z +
t = {i|∃ j ∈ {1,2, . . . ,si},ηt(wi j)> 0} (8)

and the decreasable support of a transition t Z −
t is defined as:

Z −
t = {i|∃ j ∈ {1,2, . . . ,si},ηt(wi j)< 0} (9)

△

In short words, i ∈ Z +
t means that the firing of t may increase the token count of some GMEC (wi ĵ,ki ĵ)

in (Wi,ki), which implies the firing of t may make (Wi,ki) be violated. On the other hand, i ∈ Z −
t means

that the firing of t may decrease the token count of some GMEC (wi ĵ,ki ĵ) in (Wi,ki), which implies that if

(Wi,ki) is violated, then the firing of t may make it be satisfied.

Definition 5.6 A transition tx is called a migrating transition if there exist two indices i1 ̸= i2 such that

(i1 ∈ Z +
tx )∧ (i2 ∈ Z −

tx ). △

Then we will show that the non-maximal permissiveness may be only due to the existence of migrating

transitions.
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Theorem 5.7 If a transition t is unnecessarily blocked at the closed-loop marking M̂ which corresponds to a

plant marking M = M̂↑P with M[t⟩NM′, then t is a migrating transition with S(M)⊆ Z +
t and S(M′)⊆ Z −

t .

Proof: Without loss of generality, let S(M) and S(M′) be the index sets corresponding to the first r′

and the following (r′′− r′) AND-GMECs, respectively. By Theorem 5.3, S(M)
∩

S(M′) is empty. Hence M′

necessarily violates all AND-GMECs in S(M) while M necessarily violates all AND-GMECs in S(M′). As

a result, for any i ∈ S(M) there exists an index j (1 ≤ j ≤ si) such that wT
i j ·M′ > ki j > wT

i j ·M, and for any

i∈ S(M′) there exists an index j (1≤ j ≤ si) such that wT
i j ·M′ < ki j <wT

i j ·M. This implies i∈Z +
t , i= 1, . . . ,r′

and i ∈ Z −
t , i = r′+1, . . . ,r′′. Therefore t is a migrating transition with S(M)⊆ Z +

t and S(M′)⊆ Z −
t . �

Corollary 5.8 If a migrating transition tx is unnecessarily blocked at the closed-loop marking M̂ which

corresponds to a plant marking M = M̂↑P with M[tx⟩M′ ∈ L , then:



∀i ∈ Z −
tx \Z +

tx ,∃ j,wT
i j ·M > ki j

∀i ∈ Z +
tx \Z −

tx ,∃ j,wT
i j ·M′ > ki j

∀i ∈ (Z +
tx ∩Z −

tx ),(∃ j1,wT
i j1 ·M > ki j1)

∨ (∃ j2,wT
i j2 ·M

′ > ki j2)

∀i /∈ (Z +
tx ∪Z −

tx ),∃ j,wT
i j ·M = wT

i j ·M′ > ki j

(10)

Proof: This result is straight forward from the conclusion of Theorems 5.3 and 5.7. If any condition

above fails to hold, it will lead to a fact that S(M)∩S(M′) ̸= /0, which implies tx is not unnecessarily blocked.

This contradicts the statement that tx is unnecessarily blocked at M. �

From Theorems 5.3 and 5.7 we can clearly see that only migrating transitions should be treated to enhance

permissiveness. Note that in some cases after the first stage of controller design, some of the migrating tran-

sitions are already maximally permissive, since those markings which satisfy the condition in Corollary 5.8

are actually not reachable in the origin plant net. However, to verify this there is no efficient method except

to check the whole reachability graph. Therefore, a simpler way is to treat all migrating transitions by adding

the so-called mirror transitions (their definition will be given shortly). If a migrating transition is already

maximally permissive, the added transitions will not affect the evolution of the closed-loop system.

The following proposition shows under which condition a migrating transition should fire. It will be used

to distinguish the unnecessary blocking and the normal blocking.

Proposition 5.9 The firing of a migrating transition t does not lead to a violation of the OR-AND GMEC if

the current plant net marking M satisfies the condition: ∃i(1 ≤ i ≤ r),∀ j(1 ≤ j ≤ si),wT
i j ·M ≤ ki j −ηt(wi j).
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Proof: Suppose that at the current marking M, ∃i(1 ≤ i ≤ r),∀ j(1 ≤ j ≤ si),wT
i j ·M ≤ ki j −ηt(wi j)

holds. After the firing of t, the system will reach M′. Since ηt(wi j) = wT
i j ·C(·, t) and M′ = M+C(·, t), then

wT
i j ·M′ = wT

i j ·M+ηt(wi j) ≤ ki j −ηt(wi j)+ηt(wi j) = ki j. Therefore M′ is a legal marking that satisfies at

least (Wi,ki). �

The migrating transitions in a Petri net can be easily found by incident matrix analysis. Once the potential

non-maximally permissive migrating transitions are found, we propose to add a set of mirror transitions for

each of these transitions thus constructing a new closed-loop net from ⟨N̂,M̂0⟩ obtained by Algorithm 1. Such

a set of mirror transitions is described in the following definition.

Definition 5.10 For a transition tx ∈ T , its mirror transition set T (tx) is the set of transitions constructed

according to the following procedure:

1. Let T (tx) = {tx}.

2. For all (i1, i2) ∈ Z +
tx ×Z −

tx , i1 ̸= i2, add a transition tx,i1→i2 to T (tx) with:

∀p ∈ P∪PS\{qi j|i = 1, . . . ,r, j = 1, . . . ,si},

ˆPre(p, tx,i1→i2) = ˆPre(p, tx)+ ˆPre(p, ti1i2),

ˆPost(p, tx,i1→i2) = ˆPost(p, tx)+ ˆPost(p, ti1i2);

∀p ∈ {qi j|i = 1, . . . ,r, j = 1, . . . ,si},

ˆPre(p, tx,i1→i2) = ˆPre(p, ti1i2)− ˆPost(p, tx),

ˆPost(p, tx,i1→i2) = ˆPost(p, ti1i2)− ˆPre(p, tx)

(11)

3. Output T (tx), end. △

Note that the definition of the mirror transition set can be applied to all transitions that are not necessarily

migrating. However, for a non-migrating transition, its mirror transition set only contains itself such that we

could actually ignore this procedure. By adding the mirror transition set for each migrating transition, from

⟨N̂,M̂0⟩ we obtain a new closed-loop net ⟨Ñ,M̃0⟩, in which Ñ = (P∪PS,T ∪TS∪T , ˜Pre, ˜Post),T =
∪

T (tx),

tx is a migrating transition, and ˜Pre and ˜Post denote the pre and post matrices of the modified net, respectively.

The marking of ⟨Ñ,M̃0⟩ is denoted as M̃. Since the places of ⟨N̂,M̂0⟩ and ⟨Ñ,M̃0⟩ are the same, given a

marking M̃ in Ñ, the corresponding M̂ in N̂ are identical, i.e., M̃ = M̂. The GMEC ŵ and corresponding w̃

are also identical, i.e., w̃ = ŵ. From the definition of mirror transition set we have the following property.

Proposition 5.11 For any mirror transition tx,i1→i2 in T (tx), we have:

C̃(·, tx,i1→i2) = Ĉ(·, tx)+Ĉ(·, ti1i2) (12)
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where ti1i2 ∈ TS.

From Definition 5.10 we now prove that the newly added mirror transition sets would enhance the maxi-

mal permissiveness of the net ⟨N̂,M̂0⟩.

Theorem 5.12 If a transition tx is unnecessarily blocked in N̂ at the closed-loop marking M̂ corresponding

to a plant marking M with M[t⟩NM′, then in Ñ there necessarily exists a mirror transition tx,i1→i2 ∈ T (tx)

that is enabled at M̃. Moreover, the firing of a transition tx,i1→i2 ∈ T (tx) in Ñ has the same impact on state

evolution in the plant as the firing of sequence σ = txti1i2 .

Proof: Suppose that the corresponding plant markings M and M′ satisfy (Wi1 ,ki1) and (Wi2 ,ki2),

respectively. To make tx fire at M̃ we need to deactivate (Wi1 ,ki1) and activate (Wi2 ,ki2).

For any place p ∈ {qi2 j|1 ≤ j ≤ si2}, from Definition 5.10, the following equation holds:

˜Pre(qi2 j, tx,i1→i2) = ˆPre(qi2 j, ti1i2)− ˆPost(qi2 j, tx)

= K −ηtx(w̃i2 j)
(13)

Since (Wi2 ,ki2) is not activated, for all j (1 ≤ j ≤ si2) the following equation holds:

M̃(qi2 j) = ki2 j +K − w̃T
i2 j · M̃ (14)

According to Proposition 5.9, w̃T
i2 j · M̃ ≤ ki2 j −ηtx(w̃i2 j) holds. Therefore we have:

M̃(qi2 j)≥ K +ηt(w̃i2 j) = ˜Pre(qi2 j, tx,i1→i2) (15)

Therefore tx,i1→i2 is not blocked by qi2 j (1 ≤ j ≤ si) at M̃. For the places p ∈ P∪PS\{qi2 j|1 ≤ j ≤ si}

which are the input places of tx,i1→i2 , M̃(p)≥ ˜Pre(p, tx,i1→i2) is obviously true. Therefore, tx,i1→i2 is enabled

at M̃.

By the condition in Eq. (12), it is clear that the firing of a transition tx,i1→i2 ∈ T (tx) has the same impact

on the state evolution of Ñ as the firing of sequence σ = txti1i2 in N̂. �

Theorem 5.12 ensures that if in neither tx nor ti1i2 is enabled but M̂+CN̂σ ≥ 0 in Ñ, we can fire a mirror

transition tx,i1→i2 instead of firing tx and ti1i2 sequentially, where σ = txti1i2 .

Since the firing of a transition tx,i1→i2 ∈ T (tx) has the same impact on state evolution in the plant as the

transition sequence σ = txti1i2 in Ñ, the definition of maximal permissiveness given in Definition 4.3 should
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be extended for the net ⟨Ñ,M̃0⟩ as follows.

Definition 5.13 A closed-loop net ⟨Ñ,M̃0⟩ (with respect to ⟨N,M0⟩) is said to be maximally permissive if

∀M̃ ∈ R(Ñ,M̃0) the following condition holds:

(M̃↑P[t⟩NM′ ∈ L ) =⇒ (∃σS ∈ T ∗
S ,∃t̄ ∈ T (t) : M̃[σSt̄⟩Ñ) (16)

△

Then we present an algorithm to construct the modified net.

Algorithm 2 Modified closed-loop net design

Input: A closed-loop net ⟨N̂,M̂0⟩ for WOA obtained by Algorithm 1

Output: A modified closed-loop net ⟨Ñ,M̃0⟩ that is maximally permissive

Step 1: Let Ñ = N̂,M̃0 = M̂0.

Step 2: Let Tmig be the set of migrating transitions.

Step 3: Pick a transition tx from Tmig. Construct its mirror transition set T (tx). Let T̃ = T̃ ∪T (tx).

Step 4: Remove tx from Tmig.

Step 5: If Tmig ̸= /0 goto Step 2.

Step 6: Output the closed-loop net ⟨Ñ,M̃0⟩. �

Algorithm 2 can be illustrated in the following way. First we compute all migrating transitions which will

be treated later. For each migrating transition tx, according to Theorem 5.3, the only condition under which

tx is unnecessarily blocked at a marking M̂, which corresponds to a plant marking M = M̂↑P, is that the firing

of tx will make some satisfied (Wi1 ,ki1), i1 ∈ Z +
tx , be violated while make some violated (Wi2 ,ki2), i2 ∈

Z −
tx (i1 ̸= i2), be satisfied. Hence, before the firing of tx, the unique token in the switcher must be in q′i1 .

Since the firing of tx is legal, M̂ +CN̂y ≥ 0 necessarily holds, where y is the count vector of σ = txti1i2 .

Therefore a mirror transition tx,i1→i2 is added. The firing of tx,i1→i2 implies the firing of tx, the deactivation

of (Wi1 ,ki1), and the activation of (Wi2 ,ki2) simultaneously. According to Definition 5.13 we can state the

following result.

Theorem 5.14 The closed loop-net ⟨Ñ,M̃0⟩ by Algorithm 2 is maximally permissive with respect to ⟨N,M0⟩.

Proof: According to Theorem 5.7, the non-maximal permissiveness may only arise due to migrating

transitions. Suppose that a migrating transition tx at the closed-loop marking M̂ that corresponds to the plant

marking M with M[t⟩NM′ is unnecessarily blocked by the monitors in N̂. Since M satisfies (Wi1 ,ki1), i1 ∈

Z +
tx , and M′ satisfies (Wi2 ,ki2), i2 ∈ Z −

tx , i1 ̸= i2, according to Step 3 in Algorithm 2, a mirror transition of
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tx,i1→i2 is added and enabled at M̃ due to Theorem 5.12. Since the only possibility that reduces the maximal

permissiveness is eliminated, the closed-loop net ⟨Ñ,M̃0⟩ is maximally permissive. �

Let us review Figure 7 in Section 4. Since t ′ is unnecessarily blocked at M3,q2 , by applying Algorithm 2,

a mirror transition t ′2→1 is added for t ′ while the firing of t ′2→1 has exactly the same influence as that of t ′ and

t21 simultaneously. Transition t ′2→1 is enabled at M3,q2 even if neither t ′ nor t21 is enabled.

Example 5.15 In the net in Figure 6 without the dashed box, t4 is the only migrating transition. Since Z +
t4 =

{1} and Z −
t4 = {2}, the firing of t4 may activate (W2,k2) while concurrently deactivate (W1,k1). |Z +

t4 \

Z −
t4 |= |Z −

t4 \Z +
t4 |= 1 indicates that only one additional transition should be added to T (t4). Therefore by

applying Algorithm 2, one transition t4,1→2 is added with its incident matrix ˜Pre(·, t4,1→2) and ˜Post(·, t4,1→2)

computed according to Definition 5.10. The resulting net ⟨Ñ,M̃0⟩ is shown in Figure 6 containing t4,1→2 in

the dashed box. This net is maximally permissive. △

At the end of this section we point out that this approach can be extended to the more general cases

where any legal markings must satisfy at least r̂ ≥ 1 AND-GMECs. The two-stage algorithm in this paper

can also be used after some modifications. However, in such a problem the complexity of the legal marking

set is typically very high. To obtain a maximally permissive closed-loop net, for each migrating transition it

is more complex to construct its mirror transition set. In the worst case it may grow exponentially with the

increase of r̂. To keep this paper simple we would not discuss this in detail.

6 Complexity Analysis and Comparison

In this section we first discuss the complexity of the two proposed algorithms. To convert an OR-AND

GMEC WOA = {(W1,k1), . . . ,(Wr,kr)} where Wi ∈ Zm×si and ki ∈ Nsi , Algorithm 1 adds r places and

r× (r−1) transitions as the switcher, in addition to ∑r
i=1 si classical GMEC monitor places. By Algorithm 2,

for each migrating transition tx, |Z +
tx \Z −

tx |× |Z −
tx \Z +

tx | mirror transitions are added, which in the worst

case means that (r−1)× (r−1) mirror transitions will be added. Assuming that all transitions in the initial

plant net are migrating transitions, the total number of places and transitions added in the modified monitor-

switcher structure is of order O(r) and O(nr2), respectively, where n is the number of transitions in the plant

net. Considering that the complexity is linear with respect to the size of the net (number of transitions) and

quadratic with respect to the number of AND-GMECs in WOA, while the enumeration of the reachability set

is not required, we believe this approach is more efficient than the existing ones.

Let us briefly compare in terms of structural complexity the controllers obtained by our approach and by

Iordache’s approach [5, 16]. Both approaches consider a control structure that contains monitor places that
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enforce each AND-GMEC. However, they differ in the way of recognizing which AND-GMECs are violated

during the evolution of the system.

In Iordache’s approach, the controller precisely keeps track of the violation information, i.e., at each

marking which AND-GMECs are violated and which are satisfied. To precisely keep track of this informa-

tion, the weights of some control arcs must be calculated according to the upper and lower bounds of its

corresponding GMECs. This mechanism prevents its token count from going to positive infinity or negative

infinity. In our approach, however, we only need to keep track of one AND-GMEC (among possibly many)

that is satisfied by marking the corresponding switcher place by a unique token. Since we do not need the

entire satisfiction/violation information, only a constant K corresponding to the largest higher bound is intro-

duced. Therefore the lower bound requirement could be removed and our approach is more general, e.g., it

can handle the control problem in Example 3.5 while Iordache’s approach cannot do so.

On the other hand, by loosing the necessity of keeping track of all violation information requirement,

the structural complexity of the controller is also reduced. In Iordache’s approach, for each transition t all

the AND-GMECs which may be influenced by t (i.e., ∃ j,wT
i j ·C(·, t) ̸= 0) must be considered. Therefore

for a transition t which may influence r AND-GMECs, 2r − 1 duplicated transitions must be added. In our

approach, however, since the switcher only need to specify one of the satisfied AND-GMECs and activate it,

the structural complexity (mainly due to the mirror transitions) is quadratic with respect to r in the worst case,

as discussed above. This greatly reduces the number of the newly added transitions. For example, suppose

we want to enforce an OR-AND GMEC with r = 10 AND-GMECs and there is a migrating transition tx

which influences all the ten disjunctions. By Iordache’s approach 210 −1 = 1023 duplicated transitions will

be introduced for tx, while only (10− 1)2 = 81 mirror transitions will be introduced by our method in the

worst case. Furthermore, only migrating transitions have to be treated in our approach, which would further

reduce the structural complexity of the resulting controller.

7 Conclusion

This paper considered the OR-AND GMECs, i.e., a disjunction of conjunctions of single GMECs. We

proposed a method to transform a bounded OR-AND GMEC into a Petri net control structure with maximal

permissiveness. The obtained closed-loop net has a low structural complexity that is quadratic in the number

of disjunctions in the OR-AND GMEC. This approach would be a supplement and extension to the classical

GMEC approach and provides a framework that can be widely used in different systems where the legal

marking set is not convex. It could be extended to the cases where the system must satisfy at least more than

one constraints.
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Appendix

Figure 8: Another example to illustrate Algorithm 1 with WOA = {(W1,k1), (W2,k2), (W3,k3)} where two
single GMECs (w11,k11) = ([0,1,0,0,0,0]T ,2), (w12,k12) = ([0,0,1,0,0,0]T ,1) are in (W1,k1), two single
GMECs (w21,k21) = ([0,0,0,1,0,0]T ,2), (w22,k22) = ([0,0,0,0,1,0]T ,1) are in (W2,k2), and one single
GMEC (w31,k31) = ([0,0,0,0,0,1]T ,1) is in (W3,k3).
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