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Abstract

In this paper we propose a decentralized discontinuous interaction rule which allows to achieve consensus in a

network of agents modeled by continuous-time first-order integrator dynamics affected by bounded disturbances. The

topology of the network is described by a directed graph. The proposed discontinuous interaction rule is capable of

rejecting the effects of the disturbances and achieving consensus after a finite transient time. An upper bound to the

convergence time is explicitly derived in the paper. Simulation results, referring to a network of coupled Kuramoto-like

oscillators, are illustrated to corroborate the theoretical analysis.
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I. INTRODUCTION

The consensus problem for networked systems, i.e., the problem of steering the states of a set of agents towards

a common value exploiting only local interactions, finds application in several domains ranging from networks of

power generators [?], coordination of flocks of mobile autonomous vehicles [?], [?], [?], [?], synchronization of

dynamical systems such as clocks or oscillators [?], [?] and others. Linear interaction rules, as those considered in

the above works, always lead to the asymptotic achievement of consensus.

In [?] the control problem for synchronization of large networks is addressed via pinning control, a method

which consists in controlling only a subset of systems possibly small in number to achieve the desired emerging

behavior even if many systems are not directly controlled and the graph that describes the network topology of the

uncontrolled agents is only weakly connected or possibly a simple directed forest.

General nonlinear interaction rules are considered in [?] for multi-agent systems modeled in discrete time where

also undirected time-varying network topologies and time-varying delays are taken into account. In [?] the authors

study the consensus problem for discrete-time second order multi-agent systems considering state transition matrices

that are stochastic but with possibly negative elements.

Several works have recently appeared in the literature that exploit appropriate nonlinear interaction rules to achieve

consensus after a transient of finite length (finite-time consensus). More specifically, in [?] the concept of finite time

semistability has been developed and applied to solve the finite time consensus problem for networked systems with

static network topology and agents modeled as continuous time integrators. In [?], finite time consensus by means

of discontinuous protocols based on signed gradient flows has been developed and applied to networks of first order

dynamics. In [?] and [?], hybrid finite-time consensus protocols exploiting a synergic combined use of continuous

and discontinuous control algorithms have been proposed with application, respectively, to rendezvous of mobile

robots and formation control for agents modeled by single integrators. In [?], finite-time consensus is achieved in the

framework of a leader-follower problem. Agents are modeled by second order dynamics and the suggested solution

takes the form of a discontinuous local interaction rule. In [?], discontinuous interaction protocols are proposed

for finite time formation tracking by making reference to agents governed by single or double integrator dynamics

and considering directed network topologies. In [?], finite time consensus is established for first and second order

agents with nonlinear dynamics considering a static network topology with an undirected graph. In [?] and [?] the

finite time consensus problem is solved in discrete time for single integrator agents with static and directed network

topologies. The approach requires each agent to know the minimal polynomial of the iteration matrix that governs

the discrete state updates, and the authors propose a decentralized computation scheme for the required parameters.

Some works that consider the switching topology case have appeared for undirected or balanced graphs. In [?],

the finite-time consensus problem for first order systems is investigated considering a general class of nonlinear

local interaction terms, and stability was proved for static and switching undirected graphs. In [?], the finite-time

consensus problem is addressed for networks of continuous time integrators by employing an interaction rule

consisting, for each agent, of a weighted sum of fractional powers of the differences between the agent state and
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that of its neighbors. The authors show that finite time consensus is achieved provided that the network topology

stays connected for sufficiently long intervals of time. In [?] and [?], finite-time consensus algorithms are provided

for networks of unperturbed integrators by exploiting discontinuous local interaction rules under time varying (both

undirected and directed) network topologies. In [?], the authors study discontinuous binary protocols for finite time

consensus in directed graphs. We also note that the consensus problem with quantized state variables may lead to

finite time convergence results as shown in [?] and [?].

All the above works focus on demonstrating the finite time achievement of consensus, and none of them accounts

for external disturbances or unknown coupling terms in the network dynamics. The robust consensus problem for

a network of agents affected by noise, disturbances, measurements errors or unmodeled perturbations has been

addressed in different forms by several authors [?], [?], [?], [?]. In [?], the consensus problem in the presence

of measurements errors is studied in the discrete-time setting, with reference to linear consensus protocols with

constant or vanishing weights. In [?], a class of non-linear continuous protocols is investigated that achieve the

so-called “ϵ-consensus”, namely an approximate agreement condition where the state of all agents converge towards

a common set, in spite of the presence of additive disturbances. In [?], the continuous-time consensus problem is

studied in the case of quantized information exchange between agents which is a particular kind of discontinuous

feedback where the effect of quantization can be seen as a disturbance. In [?], the finite time consensus problem

is investigated for networks of agents affected by Gaussian white noise and the associated convergence properties

are characterized in a probabilistic setting.

The main contribution of the present work, which considers a network of perturbed continuous time integrators

along with a directed communication topology, is to provide for the finite time achievement of an exact consensus

condition while explicitly accounting for the presence of unknown bounded disturbances affecting the agents’

dynamics. In [?], similarly to the present work, we have considered a network of first-order integrators perturbed

by unknown disturbances, by considering a switching but undirected network topology. The proposed solution was

only able to provide disturbance attenuation. Here we propose a different protocol that is able to achieve complete

disturbance rejection in directed graphs with static topology. Noticeably, the presented analysis makes use of non

smooth Lyapunov analysis arguments.

The use of a discontinuous control action is necessary to achieve complete disturbance rejection as discussed in

[?] in that a standard finite gain controller which depends continuously on state variables, in absence of a model

of the disturbance and knowledge of the network topology, is only able to attenuate the effect of the disturbances

on the output but not cancel them out if they are time-varying and unknown.

This paper is structured as follows. In Section ?? the problem statement and system model are introduced. In

Section ?? the convergence and robustness properties of the suggested decentralized interaction rule are character-

ized. In Section ?? numerical simulations for a network of Kuramoto-like agents are provided to corroborate the

theoretical analysis. In Section ?? some concluding remarks are given, and the Appendix Section contains some

background result on the solution concept for discontinuous dynamical systems.
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II. PROBLEM STATEMENT

Let us consider n agents connected by a communication network whose topology is described by a directed graph

G = (V,E), where V = {1, . . . , n} denotes the set of agents and E ⊆ {V × V } is the set of edges representing

communication channels between the agents. The graph contains an edge (i, j) ∈ E directed from agent j to agent

i if agent i receives information from agent j. Furthermore, let L = {lij} denote the Laplacian matrix of graph G

whose elements are defined as

lij =


|Ni| if i = j,

−1 if (i, j) ∈ E,

0 otherwise,

(1)

where Ni ⊆ V denotes the set of neighbors of agent i, i.e., the set of agents that send informations to the i-th

agent. The cardinality of Ni is called in-degree of agent i, and it is referred to as δin,i = |Ni|. A directed path p

is an ordered sequence of directed edges that connect two nodes in V . A rooted directed spanning tree is a graph

which contains no cycles with the property that there exist a node, called root, from which every other node is

reachable by walking a directed path.

Let x = [x1, x2, ..., xn]
T represent the state of the entire network of agents that are modeled by the perturbed

first order integrator dynamics

ẋi(t) = νi(x, t) + ui(t), xi(0) = xi0, ∀i ∈ V, (2)

where νi(x, t) is an unknown term representing couplings, perturbations or disturbances corrupting the i-th agent

dynamics, ui(t) is the local control input and xi0 is the initial condition. Due to the explicit dependence of νi(x, t)

on the entire state vector x, this representation takes into account the possibility that the dynamics of the agents are

affected by the state of other agents also without the availability of a direct communication channel between them.

By stacking the input and disturbance variables into the vectors u = [u1, u2, ..., un]
T and ν = [ν1, ν2, ..., νn]

T one

obtains the next compact representation of the network dynamics

ẋ(t) = ν(x, t) + u(t). (3)

Denote

ν̂(x, t) = ν(x, t)− 1T
nν(x, t)

n
1n, (4)

where 1n = [1, 1, ..., 1]T ∈ Rn. Vector ν̂(x, t) represents the deviation of the disturbance term ν(x, t) from its

time-varying average value 1T ν(x,t)
n . In the rest of the paper we make the following assumption

Assumption 1: ν(x, t) is continuous in x and t and there exists a known constant Π ≥ 0 such that

∥ν̂(x, t)∥1 =
n∑

i=1

|ν̂i(x, t)| ≤ Π, ∀x ∈ Rn, ∀t ∈ R+, (5)

�
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Our objective is to develop a local interaction rule ui(t) compatible with the current graph topology and guaranteeing,

in spite of the presence of disturbances that satisfy Assumption ??, the following finite-time consensus property

∃tr ∈ R+ : |xi(t)− xj(t)| = 0, ∀t > tr, ∀i, j ∈ V, (6)

where tr is the finite transient time. The proposed discontinuous control protocol takes the form

ui(t) = −k · sign
(
Lix(t)

)
, (7)

where k is the tuning constant of the algorithm, Li is the i-th row of the Laplacian matrix, and sign(·) is the sign

function defined as follows

sign(z) =


1 if z > 0

0 if z = 0

−1 if z < 0

(8)

It is useful to remark that the discontinuous protocol (??) can be equivalently written as

ui(t) = −k · sign

∑
j∈Ni

(xi(t)− xj(t))

 , i ∈ V. (9)

Denote

σi(x) = sign(Lix(t)), i ∈ V, (10)

and define vector

σ(x) = [σ1, σ2, ..., σn]
T . (11)

We can therefore rewrite the control vector in compact form as

u(t) = −k · σ(x), (12)

and the next closed-loop collective agent dynamics arises

ẋ(t) = ν(x, t)− k · σ(x). (13)

In the following, we intend the solutions to eq. (??) in the sense of Filippov. Solutions are not unique and

their existence is guaranteed by the fact that ẋ(t) exists almost everywhere by definition and its bounded. In the

proof of Theorem ?? we introduce and adopt the necessary tools of non-smooth Lyapunov analysis to analyse the

convergence properties of eq. (??).

The next proposition states two relationships that shall be instrumental to prove the main contribution of this

paper.

Proposition 2.1: Consider the networked dynamics (??) where graph G = (V,E) contains at least a rooted

directed spanning tree. If there exists a pair (i, j) ∈ E such that xi ̸= xj , i.e., the network is not at consensus, then

the next properties hold:

i) Vector σ(x) has at least one element different from zero.
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ii)

σ(x)TLσ(x) ≥ 1. (14)

Proof of i)

Consider the sets of maximal and minimal nodes defined as follows:

Vmax = {i ∈ V | (∀j ∈ V ) xi ≥ xj),

Vmin = {i ∈ V | (∀j ∈ V ) xi ≤ xj).

Since the network is not at consensus, both sets are not empty and they are disjoint.

Obviously, if i ∈ Vmax then σ(xi) ≥ 0 and in particular σ(xi) > 0 iff there exists an arc (i, j) such that

xj ̸∈ Vmax. Dually, one can see that if i ∈ Vmin then σ(xi) < 0 iff there exists an arc (i, j) such that xj ̸∈ Vmin.

Since graph G contains a rooted directed spanning tree, from the root node there exists a directed path that reaches

every other node. At least one these two cases must hold. If the root node does not belong to Vmax, consider a path

from the root to a node in Vmax: along this path there must be an arc (i, j) ∈ Vmax× (V \Vmax), hence σ(xi) ̸= 0.

If the root node does not belong to Vmin, consider a path from the root to a node in Vmin: along this path there

must be an arc (i, j) ∈ Vmin × (V \ Vmin), hence σ(xi) ̸= 0 thus proving property i).

Proof of property ii) In what follows we omit the dependence of σi(x) from x. The left hand side of (??) can

be rewritten as follows

σ(x)TLσ(x) =
n∑

i=1

σi

∑
j∈Ni

(σi − σj) =
n∑

i=1

∑
j∈Ni

σi (σi − σj) ≥ 0. (15)

Since σi ∈ {−1, 0, 1} for i = 1, . . . , n we get that the term σi (σi − σj) can only be either 0, 1 or 2.

It was proved in the previous step i) that at least one entry of vector σ(x) is not zero if the network state is not

at consensus. Define the disjoint subsets V+1, V−1 and V0 of V as follows

V+1 = {i ∈ V : σi = 1},

V−1 = {i ∈ V : σi = −1},

V0 = {i ∈ V : σi = 0}.

(16)

Obviously, the above sets constitute a partition of V , i.e.,

V+1 ∪ V−1 ∪ V0 ≡ V (17)

It readily follows from the previous step i) that the cardinality of either set V+1 or V−1 is at least one if the

network is not in the consensus state.

On the other hand, since σi (σi − σj) = 0 ∀i ∈ V0, one can rewrite (??) as follows

σ(x)TLσ(x) =
∑

i∈V+1

∑
j∈Ni

σi (σi − σj) +
∑

i∈V−1

∑
j∈Ni

σi (σi − σj) . (18)

Since the graph G contains a rooted directed spanning tree, if the network is not at consensus there exists at

least a path that connects two nodes that belong to different sets with at least one node not in V0. It follows that
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in such a path we can consider the directed arc (i, j) ∈ E with either i ∈ V+1 and j ∈ V0 ∪ V−1 or with i ∈ V−1

and j ∈ V0 ∪ V+1.

If i ∈ V+1 or i ∈ V−1 and j ∈ V0 then

σi (σi − σj) = 1 (19)

On the contrary if i ∈ V−1 and j ∈ V1 (or, analogously, i ∈ V+1 and j ∈ V−1) this would imply the next relation

σi (σi − σj) = 2 (20)

By taking the worst case condition (??) one can conclude that at least one term σi (σi − σj) in the right hand

side of (??) is greater than or equal to one and Proposition ?? is proven. �

III. CONVERGENCE ANALYSIS AND MAIN RESULT

We now present the formal proof of convergence of the proposed control protocol showing the finite time

attainment of the consensus condition for the considered network of agents and the complete rejection of the

disturbance terms provided that the control gain k is taken large enough.

Let us define the disagreement vector of the state vector as

δ(t) = x(t)− 1n1
T
n

n
x(t), (21)

Clearly, convergence to consensus implies the convergence to the origin of the disagreement vector.

We now recall the Clarke’s definition of generalized gradient [?] that will be exploited in our main result.

Definition 3.1 (Clarke generalized gradient): Let V : Rn → R be locally Lipschitz continuous and define

∂CV (x) , co {limi→∞∇V (xi)|xi → x, xi /∈ ΩV ∪N} ,

where co denotes the convex hull, ΩV is the set of Lebesgue measure zero where the gradient ∇V (x) does not

exists and N is an arbitrary set of measure zero. �
Moreover, we recall the conditions under which the chain rule can be exploited in non-smooth Lyapunov analysis

[?].

Proposition 3.2 (Chain rule): If V : Rn → R is locally Lipshitz continuous and x : R → Rn is absolutely

continuous, then for almost every t there exists p ∈ ∂CV (x(t)) such that

d

dt
[V (x(t))] = pT ẋ

�
We are now ready to state the main result of this paper.

Theorem 3.3: Consider the collective agents dynamics (??) and let assumption (??) be satisfied. If the considered

graph G contains at least a rooted directed spanning tree and the gain parameter k satisfies the inequality

k ≥ 2δin,maxΠ+ ϵ, ϵ > 0, (22)

April 14, 2015 DRAFT



8

where δin,max = maxi∈V δin,i denotes the maximum in-degree of graph G, Π is the bound given in Assumption ??

and ϵ is an arbitrary positive constant, then the consensus condition expressed by eq. (??) is attained within a finite

transient time tr such that

tr ≤ ∥Lδ(0)∥1
ε

. (23)

Proof: Let zi = Liδ(t), where Li denotes the i-th row of matrix L, and z = [z1, . . . , zn]
T such that z = Lδ(t).

Consider the next non-smooth Lyapunov function

d

dt
[V (z(t))] =

n∑
i=1

|zi| = ∥z∥1. (24)

For z1 ̸= 0, z2 ̸= 0, . . . , zn ̸= 0 the time derivative of eq. (??) is well defined and it given by

V̇ (t) =

n∑
i=1

∂V

∂zi
żi =

n∑
i=1

sign(zi)żi. (25)

The reminder of this proof borrows its main idea from [?] (chapt. 3, Theorem 3, pp. 157-158). If any of the

variables zi is zero, the definition of V̇ (t) becomes non trivial since the corresponding right hand side becomes

discontinuous. Let us define the sets I0 = {i ∈ V : zi = 0} and I ̸= = {i ∈ V : zi ̸= 0}. We interpret the

corresponding discontinuous differential equation and its solution in the sense of Filippov [?]. We now consider

the Clarke generalized gradient of V (z) as in definition ??, which in our case since V (z) is the 1-norm of z takes

the form

∂CV (z) = pT (26)

where p ∈ Rn is a vector whose elements pi for i = 1, . . . , n are pi = sign(zi) if i ∈ I ̸= or pi ∈ SIGN(zi)

if i ∈ I0. Since V (z) is locally Lipshitz continuous we can compute the generalized time derivative of V (z(t))

according to Proposition ?? as follows

d

dt
[V (z(t))] ∈

∑
i∈I̸=

sign(zi)żi +
∑
i∈I0

SIGN(zi)żi. (27)

where SIGN(·) is the multivalued function

SIGN(z) ∈


1 if z > 0,

[−1, 1] if z = 0,

−1 if z < 0.

(28)

Since we deal with solutions in the sense of Filippov, the case in which zi(t) = 0 holds for isolated time instants

of measure zero can be disregarded in those instants of time [?]. As interestingly noticed in (chapt. 3, Theorem 3,

pp. 157-158) of [?], if any of the conditions zi(t) = 0 holds along an interval of time of positive measure then, at

those time instants, ∀i ∈ I0 żi exists in the sense of Filippov and it takes zero value, i.e. żi = 0 ∀i ∈ I0. We can

therefore modify the second term in the right hand side of eq. (??), and exploiting the fact that in our particular
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case zi = 0 implies ż = 0 we find that the set of points from which d
dt [V (z(t))] defined in eq. (??) takes values

consists in a single point corresponding to

d
dt [V (z(t))] =

∑
i∈I ̸=

sign(zi)żi +
∑

i∈I0
sign(zi)żi

= σ(δ(t))TLδ̇(t).
(29)

where σ(δ(t)) is defined as in eq. (??). Therefore, the generalized time derivative d
dt [V (z(t))] which in general

is a set valued function, in our case is a well defined function to which for every t it corresponds a single point in

the real line.

Note that both in (??) and (??) the term involving the indexes i ∈ I0 is identically zero as a consequence of the

fact that żi = 0 ∀i ∈ I0. Rather than removing such term it is more convenient to keep it, as proposed in (chapt.

3, Theorem 3, pp. 157-158) of [?], as it allows to express d
dt [V (z(t))] in a form which is suitable for the next

analysis.

The dynamics of δ(t) are obtained by differentiating (??) and considering (??) and (??), which yields

δ̇(t) = ẋ− 1n1
T
n

n
ẋ

= ν(x, t)− k · σ(x)− 1n1
T
n

n
(ν(x, t)− k · σ(x))

= ν̂(x, t)− k · σ(x) + γ(t)1n,

(30)

where

ν̂(x, t) = ν(x, t)− 1n1
T
n

n
ν(x, t), γ(t) =

1T
n

n
k σ(x). (31)

In light of eqs. (??)-(??), the time derivative (??) can be rewritten as

d
dt [V (z(t))] = σ(x)TL (ν̂(x, t)− k · σ(x) + γ(t)1n)

= −k · σ(x)TLσ(x) + σ(x)TLν̂(x, t)

+γ(t)σ(x)TL1n.

(32)

By noticing that L1n = 0, one can simplify (??) as

d
dt [V (z(t))] (t) = −k · σ(x)TLσ(x) + σ(x)TLν̂(x, t). (33)

It holds that
|σ(x)TLν̂(x, t)| = |

∑n
i=1 σi(x)Liν̂(x, t)|

≤
∑n

i=1 |σi(x)Liν̂(x, t)|

≤
∑n

i=1 |Liν̂(x, t)| = ∥Lν̂(x, t)∥1

(34)

The next estimation holds by virtue of the Hölder inequality

∥Lν̂(x, t)∥1 ≤ ∥L∥∞∥ν̂(x, t)∥1. (35)

It is well known that

∥L∥∞ = 2δin,max. (36)
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Considering (??) and (??) into (??) we finally get

|σ(x)TLν̂(x, t)| ≤ 2δin,maxΠ. (37)

Therefore, substituting (??) in (??) and taking into account Proposition ?? with relation (??), it yields

d

dt
[V (z(t))] ≤ −k + 2δin,maxΠ. (38)

Considering the tuning condition (??) into the right hand side of eq. (??) then one has that

d

dt
[V (z(t))] ≤ −ε < 0, (39)

for almost all t as long as there exists i ∈ V such that Liδi(t) ̸= 0, i.e., the consensus state has not been reached.

Summarizing, it holds

V (x) > 0 and d
dt [V (z(t))] ≤ −ε for x ̸= α1, α ∈ R (40)

V (x) = 0 and d
dt [V (z(t))] = 0 for x = α1, α ∈ R (41)

therefore, all solutions converge to the invariant set α1, α ∈ R. From (??), the finite time consensus property with

a transient time satisfying (??) is easily verified since ε is a constant lower bound to
∣∣∣∣ ddt [V̇ (t)

]∣∣∣∣ and Theorem ??

is proved. �

IV. NUMERICAL SIMULATIONS

In this section we provide some numerical simulations of the proposed scheme to corroborate the theoretical

results. We consider a network of 20 perturbed Kuramoto-like oscillators in which the bounded non-linear couplings,

along with additional noise components, are collected into the disturbance term

νi(x, t) = ωi +
1

n

∑
j∈Ni

sin(xi(t)− xj(t)) + µi(t),

i = 1, 2, ..., n
(42)

where ωi ∈ [0.1, 0.2] is an input bias, different for each agent and randomly selected, and µi(t) ∈ [0, 0.1] is a

random noise with uniform distribution.

The network topology is described by a randomly generated directed graph with 20 nodes, shown in Figure ??,

which contains a directed spanning tree. By considering the actual topology of the considered example, the worst

case bound on the norm of the perturbation deviation vector ν̂(x, t) can be quantified as follows

∥ν̂(x, t)∥1 =

∥∥∥∥ν(x, t)− 1T ν(x, t)

n
1

∥∥∥∥
1

≤ 0.4773. (43)

For the chosen network topology it has been evaluated that δin,max = 3. For the computation of the control gain

in accordance with relation (??) we choose ϵ = 0.01, therefore the minimal control gain providing convergence

according to (??) is 2δin,maxΠ+ϵ = 2.85, and the value k = 3 has been adopted in the first test. The continuous time

system (??)-(??) has been simulated by using the Euler integration method with a fixed sampling time dt = 10−4.

In Figure ?? it is shown the evolution of the network state x(t) in the first test by taking the initial conditions

at random within the interval xi(t) ∈ [0, 1]. It is seen that consensus is achieved after a transient of about 0.2s.

April 14, 2015 DRAFT



11

Fig. 1. Graph representing the directed network topology. (Direction of edges is not shown to improve visual quality)
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Fig. 2. Transient evolution of the network state x(t) subject to control action with gain k = 3.

Figure ?? shows the evolution of the network state x(t) obtained in a second test where the higher value of the

control gain k = 6, twice of that used in the first test, was used. Comparing the Figures ?? and ?? shows that

increasing the gain speeds up the convergence to consensus. The price to be paid, however, is higher chattering

(i.e., high-frequency and small-amplitude vibrations of the state variables) once consensus has been achieved in the

discrete-time approximation of the closed loop network dynamics.

Figure ?? depicts a comparison between the time evolutions of the Lyapunov function (??) in the two previously

outlined tests with different control gain k.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a decentralized algorithm to solve the finite time consensus problem in a network

of integrators affected by bounded disturbances with directed communication topology. A robustness analysis of

the proposed discontinuous consensus algorithm, that proves complete disturbance rejection, has been provided.

An interesting outcome of the robustness analysis is the link between the maximum in-degree of the underlying

network and the minimal amplitude of the control action needed to fully reject the disturbances. Finally, numerical

simulations making reference to a network of perturbed Kuramoto-like oscillators have been provided. Future work
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Fig. 3. Transient evolution of the network state x(t) subject to control action with gain k = 6.
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Fig. 4. Finite time transient evolution of the Lyapunov function (??) for k = 3 and k = 6.

might be devoted to extend the robustness analysis to networks with switching topology and/or agents governed by

more complex dynamics.

April 14, 2015 DRAFT


