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Abstract

The interest in Petri nets has grown within the automatic control community in parallel

with the development of the theory of discrete event systems. In this article our goal is

that of giving a flavor of the features that make Petri nets a good model for discrete event

systems and of pointing out the main areas where Petri nets have offered the most significant

contributions.

Published as:

A. Giua, C. Seatzu, ”Petri nets for the control of discrete event systems,” Software & Systems

Modeling, Vol. 14, No. 2, pp. 693701, 2015. DOI: 10.1007/s10270-014-0425-1.

1



1 Introduction

The object of the study of traditional control theory have been time-driven systems, i.e., systems

of continuous and synchronous discrete variables, modeled by differential or difference equations.

However, as the scope of control theory is being extended into the domains of manufacturing,

robotics, computer and communication networks, and so on, there is an increasing need for

different models, capable of describing systems that evolve in accordance with the abrupt occur-

rence, at possibly unknown irregular intervals, of physical events. Such systems, whose states

have logical or symbolic, rather than numerical, values that change in response to events which

may also be described in nonnumerical terms, are called discrete event systems (DESs) and the

corresponding models are called discrete event models (Cassandras and Lafortune, 2008).

These systems require control and coordination to ensure the orderly flow of events. As con-

trolled (or potentially controllable) dynamic systems, discrete event systems qualify as a proper

subject for control theory. Hence a fundamental issue arises: we need classes of formal models

that are capable of capturing the essential features of discrete, asynchronous and possibly non-

deterministic systems and that are endowed with efficient mathematical tools for analysis and

control.

We claim that Petri nets (PNs) are a powerful discrete event model and, in fact, the interest for

this model has grown, within the automatic control community, in parallel with the development

of the theory of discrete event systems (Holloway et al., 1997; Cassandras and Lafortune, 2008;

Seatzu et al., 2012). In this article the goal is not that of providing a comprehensive survey of

the research in this area, but rather that of giving a flavor of the features that make Petri nets

a good model for systems theory.

Let us first point out what are the two main challenges in the application of system theory

approaches to discrete event systems.

• A first problem is due the absence of reference models. Unlike classical control theory where

there are well accepted models, such input-output or state variables models that can be

used in different contexts (analysis, control, etc.), in the DES domain we still find a series

of different modeling formalisms, each one used to solve a series of particular problems.

Examples of these modeling formalisms include finite state automata, formal languages,

Petri nets, max-plus algebra, predicate algebra, semimarkovian processes, queuing net-

works, and so on.

• A second problem, that has so far been the main obstacle to the transfer of theoretical

results to real word applications, is the so called state space explosion that originates from

the combinatorial nature of DESs. Consider, as an example, a system composed by k

modules each one having a state space of cardinality n: the cardinality of the state space

of the overall system will be N ≤ nk and the upper bound is strict in the sense that

in many cases it is attainable. This exponential growth of the state space size with the

number of composed systems makes all those approaches that are based on an exhaustive

exploration of the state space of little practical interest in many applications.
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The success of Petri nets as a discrete event model can be explained observing that they provide

an answer (albeit partial) to both problems.

2 The Petri net family

Petri nets can be considered as a reference model because they represent a general paradigm

that gives rise to a large family of powerful models (Murata, 1989; David and Alla, 2005).

Place/transition nets can be used to describe logical systems — possibly with an infinite

state space — providing several primitives for modeling sequentiality, concurrency, rendez-vous,

choice, resource allocation, etc. Labeled nets are formal languages generators that can also be

used to study problems related to observability and identification: the class of Petri net lan-

guages are (analogously to context-free languages) a superset of regular languages and a subset of

context-sensitive languages but the introduction of inhibitor arcs extends the modeling power of

Petri nets to that of Turing machines. Models of timed nets have also been defined: if the timing

structure is deterministic we get nets that can describe, among others, max-plus algebra models,

while deterministic nets generalize semi-markovian processes and queueing networks. Finally,

more recently continuous and hybrid Petri nets combining both event-driven and timed-driven

dynamics have also be defined. Although some of these models require their own analysis tech-

niques that are not applicable to all the family, there exist other approaches such as those based

on reachability, state equation, incidence matrix analysis that are applicable to all models, thus

providing a common unifying framework.

3 Coping with the state space explosion

Petri nets provide several features to alleviate the obstacle created by the state space explosion.

The modular synthesis of complex models is done through operators — such as the synchronous

product also called concurrent composition operator — that work on the net structure and not

on the reachability space (Peterson, 1981; Giua, 2012). This is an enormous advantage, because

the net structure typically grows linearly with the number of composed modules, as opposed to

the state space that grows exponentially.

Example 3.1 Consider a production line composed by a series of k + 1 workstations, denoted

W0,W1, . . . ,Wk interconnected though k buffers of capacity n, denoted B1, B2, . . . , Bk as shown

in Fig. 1.(a). The first workstation takes parts from a buffer of infinite capacity (not modeled)

and the last workstation puts produced parts in a buffer of infinite capacity (also not modeled).

Each workstation is initially in the idle state; when loaded with a part it goes in the working

state and after being unloaded goes back to the idle state: the model of the generic workstation

Wi is shown in Fig. 1.(b). Each buffer has initially n empty slots; when a new part arrives one

slot is occupied, while when a part leaves one slot is freed: the model of the generic buffer Bi is

also shown in Fig. 1.(b).
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Figure 1: Modular synthesis of a production line in Example 3.1.

In the production line, due to its topology, there is a synchronization between workstations and

buffers. In fact, workstation Wi is loaded with parts taken from buffer Bi (for i = 1, 2, . . . , k):

this means that event loadi coincides with event departurei and we denote this synchronized

event ai. Dually, when workstation Wi is unloaded the processed part is put in buffer Bi+1 (for

i = 0, 1, . . . , k−1): this means that event unloadi coincides with event arrivali+1 and we denote

this synchronized event bi. The overall model of the production line can thus be represented by

the net in Fig. 1.(c), obtained by the modules in Fig. 1.(b) through the concurrent composition

operator after suitable relabeling of the transitions.

Two comments concerning the model of the overall system are in order.

• This net has 2(2k+1) places and 2k transitions hence its structure grows linearly with the

number k of composed modules. On the contrary, its state space has cardinality 2k+1(n +

1)k, being 2 (resp., n+ 1) the cardinality of each machine (resp., buffer) module.

• In the overall net it is still possible to distinguish the structure of each single module. This

is due to a special feature of Petri nets: locality of states (described by the token distribution

in places) and events (each transition modifies the token count of a subset of places). �

Some PN analysis techniques, such as those based on the reachability graph, require the ex-

haustive enumeration of the net state space, thus they do not fully exploit the representational

advantage of this model. However, there exist other approaches, such as those based on struc-

tural analysis (Colom and Silva, 1990; Silva et al., 1992; Cabasino et al., 2012), that take into

account the net structure. This has made possible the development of efficient techniques for

reachability, liveness and deadlock analysis, state estimation, observability and diagnosis. It

must be said, however, that these techniques are usually only applicable to particular classes of

nets.
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To give a flavor of the structural approaches, we discuss a classic result concerning reachability

analysis. Given a net N with initial marking m0, we denote the set of its reachable markings

R(N,m0). There exist several algebraic approximations of this set and here we recall the one

based on invariant analysis.

Example 3.2 Consider the net in Fig. 1.(c) that models the production line discussed in Ex-

ample 3.1. This net belongs to a special class called marked graphs and the following two results

hold:

• the number of tokens in each elementary directed cycle of the net remains constant for all

reachable markings and the corresponding law is called a marking invariant of the net);

• if no elementary directed cycle of the net is initially empty, then a marking that satisfies

all invariants is reachable.

In this net there exist k+1 elementary directed cycles of the form piaip
′
ibipi (for i = 0, 1, . . . , k).

The initial marking shown in the figure assigns one token to each cycle, and we can thus write

the marking invariant laws:

m(pi) +m(p′i) = m0(pi) +m0(p
′
i) = 1.

There also exist k elementary directed cycles of the form qibiq
′
iai+1qi (for i = 1, 2, . . . , k). The

initial marking shown assigns n tokens to each cycle, and we can thus write the marking invariant

laws:

m(qi) +m(q′i) = m0(qi) +m0(q
′
i) = n.

Hence we can write

R(N,m0) = {m ∈ N2(2k+1) | m(pi) +m(p′i) = 1 (i = 0, 1, . . . , k),

m(qi) +m(q′i) = n (i = 1, 2, . . . , k)}

thus characterizing the set of reachable markings as the integer solutions of a system of linear

equations, as opposed to enumerating it. �

4 Comparison with automata

We would also like to briefly comment on the relationship between Petri nets and finite state

automata, another model that is often used in the DES domain (Seatzu et al., 2012). Firstly, it is

true that similarly to Petri nets automata can be seen as a family of formalisms that encompass

logic (finite state and Büchi automata), performance (semimarkov processes, Markov chains)

and hybrid models (timed and hybrid automata).

However automata have a smaller modeling power with respect to Petri nets: not only they can

only describe finite state systems but they also lack explicit primitives to model behavioral fea-

tures such as concurrency and rendez-vous. Furthermore, they require the explicit enumeration

of the state space and lack computationally efficient algorithms for analysis and synthesis.
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This gives credit to our belief that the study of automata — that being a very simple and

intuitive model is an integral part of the introductory courses on discrete event systems —

should always be complemented with the presentation of Petri nets.

5 Petri nets for DESs

In the last two decades an increasing number of researchers from the automatic control commu-

nity have devoted their effort to the study of Petri nets: for a recent survey see Seatzu et al.

(2012). Major contributions have appeared in the following areas of discrete event systems.

• Control: this is the core problem in systems theory and consists in applying suitable

control inputs to a plant to ensure its behavior satisfies a given specification. For Petri

nets a typical solution is that of designing a supervisor that disables the firing of some

transitions as a feedback law of the plant’s observed behavior or state: the controlled

system (plant and supervisor) is also called closed-loop system (see Section 6).

• Marking estimation: the problem is that of determining efficient ways of reconstructing

the state or the firing sequence of a net based on observed events occurrence and/or on

partial marking observation (see Section 7).

• Fault diagnosis: given a net modeling a system possibly affected by a fault, under the

assumption that the occurrence of a fault (modeled by an unobservable transition) cannot

be directly observed the problem is that of detecting and identifying the fault from the

observed behavior. Among the different approaches presented in this area are we mention

the work of Prock (1991), Wu and Hadjicostis (2005), Miyagi and Riascos (2010), Basile

et al. (2009), Benveniste et al. (2003), Dotoli et al. (2009), Genc and Lafortune (2007),

Cabasino et al. (2010), Cabasino et al. (2011).

• Deadlock: a deadlock represents an anomalous state from which no further evolution is

possible. This is an issue that appears in many automation problems and appropriate

strategies should be adopted in order to prevent it. We refer to the works of Viswanadham

et al. (1990), Ezpeleta et al. (1995), Chu and Xie (1997), Park and Reveliotis (2000),

Iordache et al. (2002), Li and Zhou (2004), Reveliotis (2007) and to the recent contribution

by Cordone et al. (2013).

• Identification: this problem consists in determining a Petri net system starting from ex-

amples/counterexamples of its language, or from the structure of its reachability (or cover-

ability) graph. See the work of Hiraishi (1992), Badouel and Darondeau (1998), Sreenivas

(2002), Bourdeaud’huy and Yim (2004), Cabasino et al. (2007).

In the rest of the article we will briefly discuss some successful approaches in the area of control

and state estimation.
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6 Control

The most interesting and original approach to the control of discrete event systems, that has

directly or indirectly shaped much of the research in this area, is Supervisory Control The-

ory (SCT), originated by the work of P.J. Ramadge and W.M. Wonham (Ramadge and Won-

ham, 1989). According to the paradigm of SCT, a discrete event system G is a language

generator whose behavior, i.e., language, is denoted L(G). Given a legal language K, the basic

control problem is to design a supervisor that restricts the closed loop behavior of the plant

to K ∩ L(G), disabling controllable events; the events whose occurrence cannot be disabled are

called uncontrollable. It is also usually required that the closed loop system satisfies additional

qualitative specifications, such as absence of blocking, reversibility, etc. Since Petri nets can be

seen as language generators, it is also possible to use them as discrete event models for SCT; in

this case it is assumed that some transitions, that we call controllable, can be disabled by an

external agent (Holloway et al., 1997; Cassandras and Lafortune, 2008; Giua, 2012).

A similar approach can also be taken when considering the state evolution of a discrete event

system, rather than the traces of events it generates. This approach, that we call state-based , is

particularly attractive when Petri nets are used to represent the plant and was used by several

authors, as reviewed in (Holloway et al., 1997). Let us consider a Petri net system 〈N,m0〉 with

m places, whose set of reachable markings is R(N,m0). Assume we are given a set of legal

markings M ⊆ Nm: the basic control problem consisting in designing a supervisor that restricts

the reachability set of plant in closed loop to M∩ R(N,m0), while satisfying some qualitative

properties of interest.

Of particular interest are those Petri net state-based control problems where the set of legal

markings M is expressed by one — or more — linear inequality constraints called Generalized

Mutual Exclusion Constraints (GMEC) (Giua et al., 1992). In this case we write M(~w, k) =

{m ∈ Nm | ~wTm ≤ k} to denote that M is expressed by the GMEC (~w, k) with ~w ∈ Zm, k ∈ Z.

Problems of this kind have been considered by several authors and this special structure of

the legal set has the advantage that the supervisor for this class of problems takes the form

of a place, called monitor , which has arcs going to and coming from some transitions of the

plant net. The plant and the controller are both described by a net thus providing a PN model

of the closed-loop system for further analysis. Moreover the synthesis is not computationally

demanding since it involves only a matrix multiplication. See Iordache and Antsaklis (2005) for

a recent survey.

Example 6.1 Consider the net in Fig. 2.(a) — ignoring the dashed place pm and its arcs —

representing the parallel execution of k processes. Initially all processes are idle (place p1 marked

with k tokens). From the idle state a process can pass to the reading state (place p2 marked) and

then to the writing state (place p3 marked), before returning idle.

To ensure data integrity we require that at most one process can be writing at a time: this can

be expressed by the GMEC m(p3) ≤ 1. The control structure that can enforce this constraint is

the monitor place pm shown in in Fig. 2.(a).
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controllable; (b) reachability graph of the plant for k = 2; (c) admissible monitor when transition

t2 is not controllable.

A few comments concerning this control structure.

• The monitor is just a new place to be added to the net describing the uncontrolled system

(that we call plant) but no additional transition is required.

• In Fig. 2.(a) we can recognize: a) the plant: the net without the monitor pm and its dashed

arcs; b) the supervisor: the monitor pm and its dashed arcs; c) the closed-loop system: the

complete net in figure.

• Although we do not detail the monitor design procedure — that can be found in (Giua et

al., 1992) — we point out that it does not require exploring the net state space. In fact,

the monitor does not even depend on parameter k.

• In the closed-loop net, the monitor determines the marking invariant law m(p3)+m(pm) =

1 which of course implies the GMEC m(p3) ≤ 1.

To better understand how the monitor works, consider the reachability graph of the plant (as-

suming k = 2) shown in Fig. 2.(b). The only reachable marking that does not satisfy the GMEC

is [0 0 2]T : in the plant this marking is reachable by the sequence
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However, in the closed-loop net after the firing of t1t1t2 place pm is empty and transition t2 is

disabled by the supervisor.
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Supervisory control theory assumes that some transitions may be uncontrollable, in the sense that

a control agent may not be able to disable them. Suppose that in the current example transition

t2 is uncontrollable: in this case the monitor pm we have designed is not an admissible supervisor

because it disables the uncontrollable transition t2 that is enabled in plant at marking is [0 1 1]T .

In this case we need to prevent the plant to reach not only the set of forbidden markings, i.e.,

those markings that do not satisfy the GMEC, but also the set of weakly forbidden markings,

i.e., those markings that satisfy the GMEC but from which a forbidden marking is reachable by

firing a sequence of uncontrollable transitions. The weakly forbidden markings are the light-filled

boxes in Fig. 2.(b).

Moody et al. (1996) and Moody and Antsaklis (1998) have presented an elegant structural al-

gorithm to transform a non-admissible monitor into a more restrictive admissible one. In the

case at hand, applying this procedure we get the monitor p̃m shown in Fig. 2.(c) where the un-

controllable transition t2 has been represented by an empty box. The new monitor enforces the

stronger GMEC m(p2) + m(p3) ≤ 1, exactly preventing the plant from reaching all forbidden

and weakly forbidden markings, and thus is an optimal, i.e., minimal restrictive, solution to the

given control problem. As a final remark, we mention that when the net contains uncontrollable

transitions an optimal solution may not be enforced by a monitor as shown by Giua et al. (1992):

in this case the procedure of Moody and Antsaklis determines a sub-optimal supervisor. �

The use of Petri nets for the control of discrete event systems is still an active research area

and we believe that it will continue to remain central during the next decade. In fact, there

exist many interesting Petri net analysis tools — as an example, partial order techniques such

as unfolding — whose applicability to control is still largely unexplored.

7 Marking estimation and observability

The problem of estimating the state of a dynamic system has attracted the attention of several

researchers in the DES community (Ramadge, 1986; Caines et al., 1988; Kumar et al., 1993;

Ozveren and Willsky, 1990; Giua and Seatzu, 2002; Cabasino et al., 2010; Cabasino et al., 2011).

It consists in reconstructing the current state values of a dynamical system from the knowledge

of the current and past values of its external measurable outputs and inputs. If such a problem

admits a solution, the system is said to be observable.

We remark that several choices are possible for inputs and outputs.

• In the case of input/output automata — such as Mealy and Moore machines, synchronized

Petri nets — the inputs are the events in the input alphabet. In the case of autonomous

systems (finite state automata, labeled Petri nest) we obviously have no inputs.

• Possible choice of outputs are: event labels in the case of Mealy automata; state labels in

Moore automata; measurements coming from transitions or places sensors on Petri nets.

In the rest of this section we will consider Petri nets with no inputs and where the firing
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Figure 3: Total observation (left) and partial observation (right).

of transitions can be observed — possibly though an observation mask, as discussed in the

following.

A main difference exists between state estimation in time-driven (i.e., continuous) systems and

state estimation in DES. While in former case the problem consists in determining at each

time instant t an estimate χ(t) of the actual state x(t), in the DES framework it consists in

determining a set of states C(w) consistent with a given observation w, i.e., the possible values

of the system’s state after w has been observed.

In DES we also distinguish between two main approaches to the state estimation problem:

• Total observation: transition firings are directly observable (i.e., the net is free-labeled)

but the initial state is unknown (Giua and Seatzu, 2002).

• Partial observation: transition firings are observed though a mask (i.e, the net is arbitrarily-

labeled) but the initial state is usually known (Cabasino et al., 2010; Cabasino et al., 2011).

In the Petri net framework, the above two cases are schematized in Fig. 3 where T denotes the

set of transitions of the Petri net plant, E is an alphabet of symbols associated to transitions

via a labeling function L : T → E ∪ {ε}, and ε is the empty string. In the case of partial

observation we mention that: (a) nondeterminism may arise from the fact that transitions may

either be labeled with the empty string, or share the same label in E with other transitions that

are concurrently enabled: (b) one may also be interested in reconstructing the set S(w) of event

sequences consistent with observation w (event estimation).

Several are the motivations behind state estimation. The most natural one in a systems theory

setting is the need to implement a state-feedback or event-feedback control as sketched in Fig. 4.

In the left-hand side scheme specifications are given in terms of legal states, so the controller

computes a control pattern γ(C(w)) that enables or disables transitions, based on the set of

markings consistent with the observation w, so as to guarantee that the state of the system

remains legal. In the right-hand side scheme specifications are given in terms of legal sequences,

so the controller computes a control pattern γ(S(w)) that enables or disables transitions, based

on the current estimation of the set of sequences consistent with the observation w, so as to

guarantee that the system only generates legal words.

Other motivations for state estimation are: fault diagnosis, monitoring the evolution of a par-

tially observed system, surveillance/intrusion detection problems, testing (i.e., determining the

final state after a test), opacity (i.e., guaranteeing that the current or the initial state remains

ambiguous), etc.
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Figure 5: The AGV in Example 7.1.

The problem of state estimation under the assumption of known initial state has been first

investigated in the automata framework and can be solved using an automata determinization

procedure as shown via the following example.

Example 7.1 Consider the AGV shown on the left-hand side of Fig. 5. It moves on a track

from left to right and viz. automatically. Two contacts at the end points of the track generate

a signal when the AGV touches them. An obstacle may block the path but there is no sensor

to detect it thus the occurrence of such an event is labeled with the empty string ε: when the

obstacle is present, the AGV will be trapped in one of the two subtracks on its left or on its right.

The behavior this system can be described by the nondeterministic finite automaton (NFA) in

Fig. 5. State x0 (resp., x1) denotes that the obstacle is not blocking the path and the AGV is

moving from right to left (resp., left to right). State x2 (resp., x3) denotes that the obstacle

is blocking the path and the AGV is trapped on the left (resp., right) subtrack regardless of the

direction of its movement.

A state observer may be obtained by simply computing the deterministic finite automaton (DFA)

equivalent to the given NFA, i.e., the DFA that generates the same observable language. In

the DFA each state obviously corresponds to a set of states of the NFA. The state reached on

the DFA after a word w is observed gives the set of states of the NFA consistent with w. The

observer for the considered example is shown in right-hand side of Fig. 5. �

The automata determinization procedure presents the main advantage of generality, indeed it

works for any NFA being LNFA = LDFA = Lreg where LNFA, LDFA and Lreg denote the set of

languages generated by NFA, DFA, and the set of regular languages, respectively. Unfortunately

a determinization procedure cannot be applied to Petri nets in the general case since it holds
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Ldet ( Lλ where Ldet is the set of deterministic PN languages, and Lλ is the set of arbitrary

PN languages where nondeterminism is due both to silent events (transitions labeled with the

empty string ε) and to undistinguishable events (transitions sharing the same label).

Moreover, the automata determinization procedure presents a series of limitations:

• each set C(w) must be exhaustively enumerated;

• to compute C(w) we need to compute C(w′) for all prefixes w′ � w;

• if the NFA has n states, the DFA can have up to 2n states;

• it does not allow to reconstruct the set S(w) of consistent sequences.

For the above reasons different techniques have been proposed in the PN literature. In this

section we recall one approach suggested by the two authors of this article and their team whose

main features can be summarized in the following three items.

• At each step the set of consistent markings is represented by the integer solutions of a

linear constraint set thus one needs not exhaustively enumerate all consistent markings.

• The linear constraint set depends on some parameters (the so-called basis markings) that

can be recursively computed each time a new event is observed.

• We pose some structural constraints but the same procedure works for bounded and un-

bounded nets.

Four are the main assumptions:

• the structure of the net N is known;

• the initial marking M0 is known;

• the net is labeled: when a sequence σ ∈ T ∗ fires we observe the word w = L(σ) ∈ E∗;

• the net obtained from N removing all transitions that are observable is acyclic.

The solution we propose is based on two notions of justifications and basis markings that make

it possible to avoid the exploration of all the reachability set, but only require to explore the

smaller basis marking set.

In the following we denote Tu the set of unobservable transitions, and To the set of observ-

able transitions, that may obviously also be undistinguishable. The set of justifications of the

observed word w ∈ E∗ is

J (w) = {(σo, σu), (σ
′
o, σ

′
u), . . .}

where in each couple
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• sequence σo ∈ T ∗
o is such that L(σ) = w,

• sequence σu ∈ T ∗
u (called justification) is a sequence of unobservable transitions that must

be interleaved with σo to produce a firable sequence and whose firing vector π(σu) is

minimal.

Example 7.2 Consider the labeled Petri net system in Fig. 6 where t2, labeled a, is the only

observable transition.

If a is observed, it holds J (a) = {(t2, ε1)}: in fact, we can infer that ε1 must have fired to enable

t2. Note that also ε3 and ε4 may have fired, but their firing is not necessary to “justify” the

firing of t2. �

For each couple (σo, σu) ∈ J (w), the marking1

mb = m0 +Co · σo +Cu · σu,

i.e., the marking reached firing σo interleaved with the minimal justification σu, is called basis

marking and the firing vector σu is called its j-vector (or justification-vector).

The set M(w) is the set of pairs (basis marking - relative j-vector) that are consistent with

w ∈ E∗, and Mb(w) is the set of basis markings that are consistent with w ∈ E∗.

Example 7.3 Consider again the Petri net system in Fig. 6. If a is observed, it holds

M(a) = {(mb
1,σu,1)} = {([1 0 1 0 1 0]T , [1 0 0]T )}

where σu,1 = [ε1 ε3 ε4]
T = [1 0 0]T . �

The following main result has been proved in (Cabasino et al., 2011). It shows how the set of

consistent markings can be written in linear integer terms.

Theorem 7.4 Let us consider a net system 〈N,m0〉. Assume that the net obtained removing

all transitions that are observable (the unobservable subnet) is acyclic. For any w ∈ L∗ it holds

that
C(w) =

⋃

mb∈Mb(w)

R(Nu,m
b)

=
⋃

mb∈Mb(w)

{m ∈ Nm | (∃y ≥ 0) m = mb +Cu · y}.

1Here Co and Cu denote the incidence matrix of the observable and unobservable subnet, while σ denotes the

firing vector (or Parikh vector) of sequence σ.
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The set M(w) and Mb(w) can be recursively computed. Moreover, for bounded nets this can

be done off-line computing a Basis Reachability Graph with as many nodes as the number of

basis markings (Cabasino et al., 2011).

This is a significant advantage with respect to automata based approaches since the set of

basis markings is always a subset (usually a strict subset) of the set of reachable markings. In

particular, there exist nets where the size of the reachability graph is exponential in some net

parameters, while the set of basis marking is constant or grows linearly (Cabasino et al., 2011).

8 Conclusions

Petri nets play an important role in the area of systems theory and in particular in the domain

of discrete event systems. In this article we have highlighted by means of several examples what

are the main features that make Petri nets such a useful model and what are the advantages that

they can offer with respect to other formalisms, focusing in particular on the two fundamental

issues of control design and state estimation.
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