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Abstract

Fault identi�cation studies in the Discrete Event Systems literature are typically model-

based and require knowledge of the structure of the system, including the nature (and be-

havior) of the possible faults. In this paper we consider this problem within the framework

of Petri nets assuming knowledge of the nominal (fault-free) system model but removing the

requirement that the nature (or behavior) of the faults is known. Speci�cally, we consider a

setting where faults are unobservable and use sequences of observations to infer the structure

and behavior of faults. The resulting method recognizes the structure of the faulty system

using knowledge of the structure of the fault-free system, and the projection of the faulty

system language on the set of non-faulty events, which are assumed to be observable. Two

problem formulations can be given: (i) fault identi�cation when the resulting faulty Petri

net system is required to generate all observed sequences, while no constraint is imposed

on sequences that are not observed; (ii) fault synthesis where the resulting faulty Petri net

system is required to only generate all observed sequences, while all sequences that are not

observed cannot actually occur. We show that a solution to the �rst problem can always

be easily found, while the synthesis problem is not trivial at all and we solve it via an ap-

proach based on linear integer programming, which allows us to take into account physical

constraints on the system in terms of possible and not possible interactions in the system.
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1 Introduction

In the discrete-event system (DES) framework, the data collected from the observation of the
system is usually given in terms of behavioral descriptions (e.g., transition system and language)
and the set of behavioral sequences may be �xed or may be increased in the course of the system
operation (e.g. due to new experiments). The identi�cation problem aims to address two main
issues. First, it determines whether for the given behavioral speci�cation there exists a DES (e.g.,
a Petri net of a given class or size) that generates the speci�ed behavior. Second, it provides a
constructive procedure to obtain a suitable DES model (usually an automaton or a Petri net).

Synthesis is a problem related to identi�cation. While only a partial description of the system is
assumed for identi�cation, the synthesis problem starts from a complete behavioral description
of the system. This does not imply that bisimulation is necessarily a goal to achieve, but a
requirement of exactness or approximation needs to be speci�ed as an input parameter of the
synthesis problem. In simple words, the essential di�erences between identi�cation and synthesis
can be summarized in the following two items.

• While in many synthesis approaches there are both examples and counterexamples, i.e.,
respectively sequences of events that can be generated by the system and sequences of
events that cannot be generated by the system, identi�cation approaches typically do not
consider counterexamples.

• In identi�cation approaches only a fraction of all possible behaviors is observed, i.e., the
system may allow for many traces in addition to the ones that are observed.

It is important to highlight that the above distinction between synthesis and identi�cation is
not universally recognized in the literature. Thus, it often occurs that the two terms are used
interchangeably [6].

In this paper we deal with the problems of identi�cation and synthesis of the fault model of a Petri
net whose nominal behavior is known1. The proposed approach is based on some of our earlier
results [8] where, given the language of a Petri net system, we identify the Petri net structure
and its initial marking by solving an integer programming problem (IPP). We assume knowledge
of the fault-free system and our goal is to identify the structure of the faulty part of the system,
speci�cally the additional transitions that comprise the faulty behavior. We address both the
identi�cation and the synthesis problem. We consider faults as unobservable transitions, which
implies that identi�cation should only be based on the projection of the faulty system language
on the set of non-faulty (observable) events.

1A preliminary and partial version of this paper was presented in [7].
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We prove that a trivial solution to the identi�cation problem can always be found even if such
a solution may not in general have a physical meaning. Such a trivial solution, that consists by
adding a fault transition with no input place, comes from the fact that the identi�cation problem
simply requires additional sequences of observable transitions to �re, while no disabling constraint
should be met. On the contrary, the synthesis problem requires the simultaneous satisfaction
of enabling and disabling constraints. A solution to the synthesis problem is proposed that
is based on integer linear programming. Such a solution takes advantage of a linear algebraic
characterization of the set of admissible solutions to the identi�cation problem.

Our paper is based on the results we obtained in [8]. In particular both papers deal with
identi�cation and synthesis problems and both approaches are based on integer programming.
However, the problem addressed in this paper cannot be seen as a particular case of the one
in [8]. In fact we only have to identify (or synthesize) a part of the net, but the behavior of
such a part is not observable. As a result of this requirement, the set of enabling and disabling
constraints is signi�cantly di�erent with respect to [8] as discussed in the rest of the paper.

To the best of our knowledge very few contributions exist in the literature that deal with the
problem of fault synthesis. On the contrary a very rich literature exists on the problem of
identi�cation and synthesis of discrete event systems modeled via Petri nets. The �rst solutions
to the synthesis/identi�cation problem of PNs date back to the early nineties and are based
on the theory of regions. Most contributions along this line of research have been proposed by
people from the computer science area. Among these we mention the works by Ehrenfeucht and
Rozenberg [14], Badouel et al. [1], Badouel and Darondeau [2], and Cortadella et al. [11]. A series
of more recent contributions based on the theory of regions have been brought by Bergenthum et

al. [5], Carmona et al. [9], Lorenz et al. [15], and Lorenz and Juhás [16]. Independently, a series
of other contributions have been proposed by people from the automatic control community.
Among these we mention the works by Meda-Campaña and López-Mellado [17, 18], Cabasino
et al. [8], Dotoli et al. [12] and Basile et al. [3]. An exhaustive survey on identi�cation and
synthesis of DES has been recently published by some of the authors [6].

The paper with the largest points of contact with this manuscript is one quite recently published
by Dotoli et al. [13], which addresses the problem of identi�cation of a Petri net system by
modeling the unobservable behavior of a discrete event system. Assuming that the structure of
the PN that captures the observable system behavior is known, they characterize the PN that
models the unobservable system behavior. The PN system is recursively obtained by an on-line
algorithm that detects the unobservable event occurrences and de�nes and solves (in some cases)
a corresponding integer linear programming problem. The main di�erence between our approach
and the approach in [13] is that they assume knowledge at each step of the marking of the Petri
net system, while in our case only the �ring of the observable transitions is given. The extra
information (knowledge of PN marking) that is available in the approach in [13] also allows it to
identify unobservable events that do not alter the nominal system behavior.

3



2 Background on Petri nets

In this section we introduce the formalism used in the paper. For more details on Petri nets, we
refer the reader to [19].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P = {p1, . . . , pm}
is a set of m places; T = {t1, . . . , tn} is a set of n transitions; Pre : P × T → N and Post :

P×T → N are the pre� and post�incidence functions, where N is the set of nonnegative integers,
that specify the arcs; we use C = Post− Pre to denote the incidence matrix of N . Pictorially,
places are represented by circles, and transitions by bars.

The preset of a place (resp., transition), denoted by •p (resp., •t), is the set of input transitions
(resp., places), i.e., •p = {t ∈ T | Post(p, t) > 0} (•t = {p ∈ P | Pre(p, t) > 0}). The postset

of a place (resp., transition), denoted by p• (resp., t•), is the set of output transitions (resp.,
places), i.e., p• = {t ∈ T | Pre(p, t) > 0} (t• = {p ∈ P | Post(p, t) > 0}).

A marking is a vector M : P → N that assigns to each place of a P/T net a nonnegative integer
number of tokens, represented by black dots. We use M(p) to denote the marking of place p. A
P/T system or net system ⟨N,M0⟩ is a net N with an initial marking M0.

A transition t ∈ T is enabled at M if M ≥ Pre(· , t) and may �re yielding the marking M ′ =

M +C(· , t). We write M [σ⟩ to denote that the sequence of transitions σ = tj1 · · · tjk is enabled
at M , and we write M [σ⟩ M ′ to denote that the �ring of σ yields M ′. We denote the length of
the �ring sequence σ by |σ|.

Given a sequence σ ∈ T ∗, we call π : T ∗ → Nn the function that associates with σ a vector
y ∈ Nn, called the �ring vector of σ. We denote the ith entry of the �ring vector y = π(σ)

by y(i), and we denote the number of occurrences of transition t in sequence σ by |σ|t, i.e.,
y(i) = |σ|ti .

A marking M is reachable in ⟨N,M0⟩ i� there exists a �ring sequence σ such that M0 [σ⟩ M .
The set of all markings reachable from M0 de�nes the reachability set of ⟨N,M0⟩ and is denoted
by R(N,M0).

Given a Petri net system ⟨N,M0⟩, we de�ne its language as the set of �ring sequences that are
enabled at its initial marking M0, L(N,M0) = {σ ∈ T ∗ | M0[σ⟩}. We also de�ne the set of
�ring sequences of length less than or equal to k ∈ N as Lk(N,M0) = {σ ∈ L(N,M0) | |σ| ≤ k}.
A language L is said to be pre�x-closed if for any string σ ∈ L, all pre�xes of σ are in L.

Given a nominal net system ⟨N,M0⟩, it is possible to associate with it a faulty net whose set
of transitions TF = T ∪ Tf contains the set of observable transitions T of the nominal net, plus
a set of unobservable fault transitions Tf . We de�ne the projection operator Po : (TF )∗ → T ∗

recursively as follows: (i) Po(ε) = ε, where ε is the empty word ; (ii) Po(t) = t ∀t ∈ T ; (iii)
Po(f) = ε ∀f ∈ Tf ; (iv) Po(σt) = Po(σ)Po(t) ∀σ ∈ (TF )∗, t ∈ TF . We denote as Po

−1 the
inverse of the projection operator Po. Note that Po

−1 returns a set.

We also de�ne the k-projection operator Po,k : (TF )∗ → ∪k
i=0T

k as the restriction of the operator
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Po to only those sequences that lead to a projected word of length less than or equal to k.

The projection over the set of unobservable and fault transitions Tf is denoted Pu.

Finally, given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we de�ne
the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′ are the
restrictions of Pre, Post to T ′. The net N ′ can be obtained from N by removing all transitions
in T \ T ′.

3 Problem formulation

In the sequel two di�erent problems are proposed. In both cases we assume that:

(A1) The behavior of the fault-free system is known and fault occurrences never forbid sequences
that are enabled in the nominal behavior.

However, it may happen that some other sequences of events that were not allowed in the nominal
behavior, become enabled after the faults occurrence.

In the �rst problem formulation, called identi�cation, we simply want to be sure that all the
observations performed after the fault occurrence are actually enabled by the faulty model. On
the contrary, in the second problem formulation, called synthesis, given a �nite set of observed
words, we want to be sure that such words completely describe the observable behavior of the
faulty system, in the sense that all observable words that do not belong to such a given set, are
actually forbidden.

Let ⟨N,M0⟩ be the known net system that generates a nominal (i.e., fault-free) language L; both
the net structure N = (P, T, Pre, Post) and the language L are known. The set of transitions
T of the nominal net is composed by all observable transitions. We consider a faulty net system
⟨NF ,M0⟩, where NF = (P, TF , P reF , PostF ), that has the same number of places and the
same initial marking as the nominal one, but its set of transitions is TF = T ∪ Tf , where
Tf = {f1, . . . , fq} is the set of fault transitions. Furthermore, we make the following assumption.

(A2) The pre� and post�incidence matrices of the faulty net are

PreF =
[
Pre Pref1 · · · Prefq

]
,

PostF =
[
Post Postf1 · · · Postfq

]
,

where Prefi (resp., Postfi) is the m × 1 pre�incidence (resp., post�incidence) matrix of
transition fi.

According to assumption (A2), the faulty net retains the structure of the nominal one but includes
a number of additional fault transitions. Note that the number of fault transitions is not known
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a priori. One can assume a certain number (based on the knowledge of the nominal system)
and look for the solution of the identi�cation/synthesis problem. If the integer programming
problem has no solution, then the number of fault transitions should be increased. Numerical
examples presented in Subsection 5.5 help to understand how the number of fault transitions
can be chosen.

3.1 Case I: fault model identi�cation

Problem 3.1 Let us consider a fault-free net system ⟨N,M0⟩. Let LF
k ⊆ T ∗ be a �nite pre�x-

closed language over T whose strings have length less than or equal to a given integer k.

We want to identify a faulty net system ⟨NF ,M0⟩ satisfying (A1) and (A2) and such that for

each σ ∈ LF
k it holds Po

−1(σ) ∩ L(NF ,M0) ̸= ∅. �

In simple words, our goal is to identify the structure of the faulty system, based on the knowl-
edge of its observed language, namely the projection of its �ring sequences (that include fault
transitions) over the set of observable transitions T . Note that, since we are solving an identi�-
cation problem, the language L(NF ,M0) may also contain sequences that do not belong to the
set Po

−1(LF
k ) (and thus produce a sequence of observations that does not belong to LF

k ).

Example 3.2 Consider the fault-free net system in Fig. 1(a), whose language is L = {(t1t2)n |
n ≥ 0} ∪ {(t1t2)nt1 | n ≥ 0}. Assume that a fault f may occur, and that the observable language

of the system with faults having length smaller than or equal to k = 2 is LF
2 = {ε, t1, t2, t1t2}. We

want to identify a net system that coincides with the net system in Fig. 1(a) if the fault transition

and its connected arcs are removed, and whose language projected on {t1, t2} and restricted to

only sequences of length smaller than or equal to k = 2 includes all sequences in LF
2 .

One solution to this is given by the net system in Fig. 1(b); however, this is not the only possible

solution. Thus, we have to associate an appropriate performance index to select a solution, within

the set of admissible ones, that best matches some given criteria. Note that, for the Petri net

in Fig. 1(b) we have L(NF ,M0) = {ε, t1, f, t1t2, t1f, ft1, ft2, ff, t1t2t1, t1t2f, t1ft2, t1ff, ft1t2,
ft1f, ft2t1, ft2f, fft1, fft2, fff, . . .} that strictly includes Po

−1(LF
2 ) = {ε, t1, f, t1t2, t1f, ft1, ft2,

ff, t1t2f, t1ft2, t1ff, ft1t2, ft1f, ft2f, fft1, fft2, fff, . . .} but also includes other strings; e.g.

ft2t1 /∈ Po
−1(LF

2 ) but ft2t1 ∈ L(NF ,M0). �

The next proposition characterizes the existence of a solution for this problem.

Proposition 3.3 Given a fault-free system ⟨N,M0⟩, a necessary and su�cient condition for the
existence of a solution to Problem 3.1 is that Lk(N,M0) ⊆ LF

k .

Proof: The necessity follows from the fact that assumptions (A1) and (A2) guarantee that all
sequences �rable in ⟨N,M0⟩ can also be �red in ⟨NF ,M0⟩. Thus Problem 3.1 is well-posed only
if LF

k contains all the sequences in Lk(N,M0).

The su�ciency of the condition follows from the fact that a trivial solution to Problem 3.1 may
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Figure 1: A motivational example.

also be computed by simply adding to the non-faulty net one fault transition with no input place
and connected to all places that are input places for the transitions of T . Such a transition is
always enabled and may �re as many times as necessary to enable all words in Lk(N,M0). �

The above proposition clearly makes evident that a trivial solution to the identi�cation problem
always exists that consists of a source fault transition, i.e., a transition with no input places, that
may �re as many times as necessary to enable the sequences in LF

k that are not in Lk(N,M0).
Obviously, such a solution is in general not signi�cant in real applications.

Note that, depending on the cost function that we use, we can select one solution or another. As
an example if we choose a cost function that minimizes the number of fault transitions and the
arcs weight we would obtain a solution with a unique fault transition having a set of post arcs
in those places that need more tokens to enable a word in LF

k \ Lk.

In the rest of the paper we assume that the condition Lk(N,M0) ⊆ LF
k stated in Proposition 3.3

holds.

The following section formalizes the synthesis problem. Note that for such a problem computing
a solution is not trivial. Indeed, in this case we cannot simply enable additional sequences that
were forbidden with no fault, but we also have to simultaneously disable other sequences.

3.2 Case II: fault model synthesis

Problem 3.4 Consider a fault-free net system ⟨N,M0⟩ and let LF
k ⊆ T ∗ be a �nite pre�x-closed

language over T whose strings have length less than or equal to a given integer k.

We want to synthesize a faulty net system ⟨NF ,M0⟩ satisfying (A1) and such that

Po,k(L(N
F ,M0)) = LF

k .

�

In such a case, since we are solving a synthesis problem, the net needs to generate exactly the
observable sequences of length less than or equal to k that are contained in LF

k .
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Figure 2: A Petri net system where L = LF
1 = {ε, t1}.

Example 3.5 Consider again the fault-free net system in Fig. 1(a), whose language is L =

{(t1t2)n | n ≥ 0} ∪ {(t1t2)nt1 | n ≥ 0}. Assume that a fault f may occur, and the observable

language of the system with faults is LF = {((t1+ε) t2)
n | n ≥ 0}∪{((t1+ε) t2)

nt1 | n ≥ 0}. We

want to synthesize a net system that retains the structure of the fault-free Petri net in Fig. 1(a),

and whose language projected on T = {t1, t2} is equal to LF . The Petri net in Fig. 1(b) is no

longer an acceptable solution. A solution to this problem is given by the net system in Fig. 1(c),

but again this is not the only possible solution. Thus, we have to associate an appropriate perfor-

mance index to select a solution, within the further set of admissible solutions, that best matches

some given criteria. This issue will be discussed further in the following sections. �

Note that the necessary condition provided by Proposition 3.3 for the identi�cation problem also
applies to the synthesis problem. However, in the case of synthesis such a condition is obviously
no longer su�cient.

As a �nal remark, note that for both identi�cation and synthesis we can only reconstruct faults
generating strings whose observable projection is not contained in the language of the nominal
system. The following example clari�es this.

Example 3.6 Let us consider the net system in Fig. 2, where T = {t1} and Tf = {f}. Here

k = 1 and L = LF
1 = {ε, t1}, i.e., the nominal language coincides with the observable language

of the faulty system. This means that after the �ring of fault transition f no anomalous string

will be observed, thus this fault cannot be identi�ed. In fact after the fault occurrence only the

the empty word ε will be observed. This, however, can be explained by a nominal evolution where

transition t1 has not (yet) �red. �

A possible solution for problems such as the one in the previous example may be o�ered by the
notion of forcible events. The idea is that an operator can force the occurrence of an observable

event, i.e., it can make it occur (assuming it is enabled). In the previous example, if no string is
observed the operator may force event t1: if it �res, one can infer that f has not occurred, while
if it does not �re, one may infer that it has been disabled by the �ring of f .
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4 A linear algebraic characterization of the solutions of the fault

identi�cation problem

In this section we solve Problem 3.1 using the approach in [8]. We make the following assumption
that holds for the rest of the paper.

(A3) The Tf -induced subnet is acyclic.

This assumption is justi�ed by the fact that our approach is based on the incidence matrix and
on the state equation of the net. As a consequence of Assumption (A3), all fault transitions are
loop-free so the incidence matrix contains all the information on the net structure. Moreover, it
guarantees necessary and su�cient conditions for reachability in the unobservable subnet.

In this section we provide an algebraic characterization of the set of admissible faulty systems. In
particular, we show that if an upper bound is given on the number of times each fault transition
may �re, then the characterization is linear.

4.1 Preliminary characterization

De�nition 4.1 Let L be the pre�x-closed language of the fault-free net system ⟨N,M0⟩, and LF
k

be the projection over the set of observable transitions T of the pre�x-closed language of the faulty

net system we want to identify.

We de�ne the following sets:

E = {(σ, tj) | σ ∈ L, |σ| < k, tj ∈ T, σtj ∈ L},
EF = {(σ, tj) | σ ∈ LF

k−1, tj ∈ T, σtj ∈ LF
k },

ẼF = EF \ E .
(1)

�

In simple words, E includes all couples (σ, tj) where σ is in the language L of the fault-free net
system, with length smaller than k, and transition tj ∈ T such that the sequence σtj also belongs
to the language L of the fault-free net system.

The set EF includes all couples (σ, tj) where σ is in the projection of the language of the faulty
net system on the set of observable transitions T , with length smaller than k, and transition
tj ∈ T such that the sequence σtj also belongs to the projection of the language of the faulty
net system on the set of observable transitions T .

Clearly, it is E ⊆ EF . Therefore the set EF \ E contains only those couples (σ, tj) in EF that
originate from the occurrence of some fault.
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Proposition 4.2 Consider a pair (σ, tj) ∈ ẼF . Under assumption (A3), the faulty net ⟨NF ,M0⟩
generates a word (σtj)

F ∈ Po
−1(σtj) such that |(σtj)F |fi = αi

σ,j, i = {1, . . . , q}, i� the following

conditions are both veri�ed:

(a) The net ⟨NF ,M0⟩ generates a word σF ∈ Po
−1(σ) with |σF |fi = αi

σ, where i = {1, . . . , q}.

(b) For each fault transition fi, with i = {1, . . . , q}, there exists integer αi
σ,j such that{

M0 +
∑q

i=1 α
i
σ,j(Postfi − Prefi) + C · π(σ) ≥ Pre(·, tj)

αi
σ,j ≥ αi

σ, ∀i ∈ {1, . . . , q}.
(2)

Proof. (If part) If the net ⟨NF ,M0⟩ generates a word whose projection is σtj , then there exists
a �ring sequence

M0[σ
F ⟩M [ν⟩M ′[tj⟩,

where σF ∈ Po
−1(σ) and ν ∈ T ∗

f , where |ν|fi = αi
j , with αi

j ≥ 0 and i ∈ {1, . . . , q}, are
additional occurrences of fi, that may be necessary to enable transition tj after σF has �red.
Let |σF |fi = αi

σ; then according to the state equation it holds

M ′ = M0 + C · π(σ) +
∑q

i=1 α
i
σ · (Postfi − Prefi)

+
∑q

i=1 α
i
j · (Postfi − Prefi)

= M0 + C · π(σ) +
∑q

i=1 α
i
σ,j · (Postfi − Prefi)

with αi
σ,j = αi

σ + αi
j , with i ∈ {1, . . . , q}, and, since M ′ enables tj , we obtain (2).

(Only if part) Assume condition (a) is veri�ed so that there exists a marking M such that
M0[σ

F ⟩M . This allows us to rewrite (2) as{
M +

∑q
i=1 α

i
j · (Postfi − Prefi) ≥ Pre(·, tj)

αi
j ≥ 0, ∀i = {1, . . . , q}

where αi
j = αi

σ,j − αi
σ for any i ∈ {1, . . . , q}. Consider now the unobservable subnet obtained

from N by removing all transitions except fi, with i = {1, . . . , q}, with initial marking M . By
assumption (A3) the unobservable subnet is acyclic, hence inequality

M +

q∑
i=1

αi
j · (Postfi − Prefi) ≥ Pre(·, tj) ≥ 0⃗

implies that there exists a sequence of fault transitions, and a marking M ′ such that M [ν⟩M ′[tj⟩
[10]. This means that a sequence (σtj)F ∈ Po

−1(σtj) is �rable in the faulty net with |(σtj)F |fi =
αi
σ,j = αi

σ + αi
j , for all i ∈ {1, . . . , q}. �

4.2 IPP formulation

In this section we provide a linear algebraic characterization of the set of net systems that
satisfy a given identi�cation problem. Note that, as already discussed earlier, a solution to
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the identi�cation problem can be easily found by adding fault source transitions that pump an
appropriate number of tokens to enable all sequences in LF \ L. However, the importance of
a linear algebraic characterization is twofold: �rst it is useful if an appropriate cost function is
given, second it provides the starting point for the synthesis problem addressed later on.

Proposition 4.3 Consider the following set of algebraic constraints:

Gid(ẼF ) ,

M0 +
∑q

i=1 α
i
σ,j · (Postfi − Prefi) + C · π(σ) ≥ Pre(·, tj)

αi
σ,j ∈ N

Postfi , P refi ∈ Nm

∀ (σ, tj) ∈ ẼF , ∀i ∈ {1, . . . , q}

 (a)

Prefi(pk)− zik ·K ≤ 0

Postfi(pk)− (1− zik) ·K ≤ 0

zik ∈ {0, 1}
∀i ∈ {1, . . . , q}, ∀k ∈ {1, . . . ,m}

 (b)

(3)

whose unknowns are αi
σ,j, ∀ (σ, tj) ∈ ẼF and ∀i ∈ {1, . . . , q}; Postfi , P refi ∈ Nm, ∀i ∈ {1, . . . , q};

the binary variables zik ∀i ∈ {1, . . . , q} and ∀k ∈ {1, . . . ,m}. Finally, K is a very large constant,

greater than the largest admissible value of the weight of any pre and post arc associated with

fault transitions.

Any couple of matrices PreF and PostF satisfying such a set of constraints constitutes a solution

of Problem 3.1, provided that the resulting Tf induced subnet is acyclic, namely assumption (A3)

is satis�ed.

Proof:We �rst prove that, under assumptions (A1) to (A3), the net system ⟨NF ,M0⟩ satis�es

Pk(L(N
F ,M0)) ⊇ LF

k if and only if the set of algebraic constraints in (3) holds.

Provided that the Tf induced subnet is acyclic, therefore state equation describes all traces, con-

straints (a) are the enabling constraints relative to those sequences that can only be observed when

faults occur, i.e., a transition tj is enabled at M0+
∑q

i=1 α
i
σ,j ·(Postfi−Prefi)+(Post−Pre)·π(σ)

if and only if M0+
∑q

i=1 α
i
σ,j · (Postfi −Prefi)+(Post−Pre) ·π(σ) ≥ Pre ·π(tj). They trivially

follow from Proposition 4.2. Indeed, by Proposition 4.2, for any couple (σ, tj) ∈ ẼF , there exists

a couple (σ′, t′j) ∈ ẼF such that σ′t′j = σ (e.g. if (t1, t2) ∈ ẼF then also (ε, t1) ∈ ẼF ).

Constraints (b) force each fault transition fi to be loop-free. In fact, they imply that if Prefi(pk) >

0, then Postfi(pk) = 0, and viceversa. �

As mentioned in the statement of Proposition 4.3 the resulting Tf induced subnet has to be
acyclic. Thus once we obtain a solution, we need to check for the acyclicity of the Tf induced
subnet, and if this condition is not respected we need to add some constraint to avoid such a
solution (e.g imposing one pre or post arc of the Tf induced subnet obtained as a solution equal
to zero) and run again the simulation.

11



4.3 Constraints linearization

The nonlinearity of constraints (3), due to the product of αi
σ,j and Postfi , P refi , can be removed

by assigning an upper bound Γi, for each fault transition fi, on the number of times the fault
transition fi must �re to justify the anomalous behavior2. Obviously, Γi can be chosen di�erently
for each fault transition fi.

Let c⃗i, i = 1, . . . , q, be q m-dimensional vectors of integer numbers, each one associated with a
di�erent fault. Constraint (a) for the generic couple (σ, tj) ∈ ẼF can be translated into an OR
constraint that can be written as the following set of 1+

∑q
i=1[2(Γi+1)+1]+1 = 2+2

∑q
i=1 Γi+2q

linear constraints involving mq integer variables and
∑q

i=1 Γi + q binary variables:

M0 +
∑q

i=1 c⃗i + C · π(σ)− Pre(·, tj) ≥ 0

c⃗i − h(Postfi − Prefi) ≤ zi,hK⃗

c⃗i − h(Postfi − Prefi) ≥ −zi,hK⃗∑Γi
h=0 zi,h = Γi

zi,h ∈ {0, 1}, c⃗i ∈ Zm

 i = 1, . . . , q, h = 0, 1, . . . ,Γi

∑q
i=1 zi,0 ≥ 1

(4)

where, as usual, K is a very large constant (see [4] for a description of this procedure to convert
OR constraints into a conjunction of linear ones), and K⃗ = K · 1⃗m. In simple words, we de�ne
an m-dimensional vector c⃗i = h(Postfi −Prefi) for each fault i ∈ {1, . . . , q}. The �rst constraint
means that provided that a su�ciently large number of faults occur interleaved with σ, then
transition tj is enabled in the faulty net system. The second and third constraint in (4) are
redundant if zi,h = 1 while they impose that c⃗i = h(Postfi − Prefi) if zi,h = 0. The forth
constraint means that we have Γi constraints of the previous form for each fault class i. The
�fth constraint speci�es that zi,h are binary variables, while c⃗i are integer vectors. Finally the
sixth constraint imposes that at least one fault has to occur to enable tj after σ.

We conclude this section by noting that it may happen that the set of constraints (4) is infeasible.
This obviously means that the values of the Γi's have not been selected su�ciently large, since,
as already discussed earlier, the identi�cation problem always has a solution.

4.4 Analysis of number of constraints and unknowns in the linear set (4)

Let n be the cardinality of T , k the length of the longest string in LF
k , and νr, for r = 0, . . . , k,

the number of strings in LF
k \ L of length r.

Then the nonlinear constraint set (3) contains

2Note that a tradeo� should be made when choosing Γi: a large value of Γi makes the linearization less

restrictive but results in higher computational complexity. We assume here that a tentative value of Γi is initially

taken, and it is then increased if the resulting set of linear constraints is infeasible.
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• m
k∑

r=1

νr constraints of type (a),

• 2 ·m · q constraints of type (b).

When linearized, the number of constraints (a) becomes equal to

m ·

(
2 + 2

q∑
i=1

Γi + 2q

)
·

k∑
r=1

νr.

The total number of unknowns in the nonlinear set is equal to

unl-id = 2mq + q ·
k∑

r=1

νr +mq = 3mq + q ·
k∑

r=1

νr,

where the right-side terms in the �rst equality are due, respectively, to the number of pre� and
post�incidence arcs for all fault transitions fi with i = 1, . . . , q, the integer variables αi

σ,j in (a),
and the binary variables zik in (b), with i = 1, . . . , q and k = 1, . . . ,m.

The total number of unknowns in the linearized set is

ul-id = 2mq +

(
(m+ 1)q +

q∑
i=1

Γi

)
·

k∑
r=1

νr +mq.

The total number of unknowns in the nonlinear set in the worst case is

unl-idMAX ≤ 3mq + q ·
∑k

r=1 n
r = O(mq + qnk),

and, considering Γ̄ = max(Γi), for all i = 1, . . . , q, the total number of unknowns in the linear
set in the worst case is

ul-idMAX ≤ 3mq + ((m+ 1)q + qΓ̄) ·
∑k

r=1 n
r = O(((m+ 1)q + qΓ̄) · nk),

i.e., this problem has exponential complexity with respect to k.

5 Fault synthesis

In this section we focus on Problem 3.4. The proposed solution is based on a linear algebraic
characterization of the set of possible solutions of the synthesis problem that can be seen as an
extension of the results in Section 4. Indeed in this case we assume to have complete knowledge
of the language of the faulty system at least for observable words of length less than or equal
to a given integer k, thus we need to consider not only examples but also counterexamples.
Assumptions (A1)�(A3) still hold.

13



5.1 Preliminary characterization

De�nition 5.1 Let L be the pre�x-closed language of the fault-free net system, and LF
k be the

pre�x-closed observed language of the faulty net system we want to identify.

In addition to the sets in equation (1), we de�ne the set

D̃F = {(σ, tj) | σ ∈ LF
k−1, tj ∈ T, σtj ̸∈ LF

k }. (5)

�

In simple words, D̃F includes all couples (σ, tj) where σ is the projection of a string in the
language of the faulty net system on the set of observable transitions T , with length at most
equal to k − 1, and tj is a transition in T such that σtj does not belong to the projection of the
language of the faulty net system on the set of observable transitions T .

De�nition 5.2 Let (σ, tj) be a pair in D̃F . We de�ne Υσ as the set of the minimum �ring

vectors of fault transitions necessary to enable σ:

Υσ = {γ⃗σ ∈ Nq | π(Pu(σ
F )) = γ⃗σ ∧ @ γ⃗′σ � γ⃗σ,where π(Pu(σ

F )) = γ⃗′σ and σF ∈ Po
−1(σ)}. (6)

�

The characterization given in Proposition 4.2 still holds. Let us now give a characterization for
the set D̃F .

Proposition 5.3 Under assumption (A3) the faulty net ⟨NF ,M0⟩ disables a transition tj after

all sequences σF ∈ Po
−1(σ) that are enabled at M0, i� ∃γ⃗σ ∈ Υσ such that ∀ γ⃗M ∈ Nq, with

γ⃗M ≥ γ⃗σ, it holds

M0 + C · π(σ) +
q∑

i=1

γM (i) · (Postfi − Prefi) ̸≥ Pre(·, tj). (7)

Proof. Let us show the if part. As well known, a transition t is not enabled at a marking
M ′ ∈ R(N,M0) i� M ′ � Pre(·, t).

Now, if tj is not enabled after the �ring of all sequences σF ∈ Po
−1(σ) at M0, then ∀ γ⃗F =

π(Pu(σ
F )) it should be

M0 + C · π(σ) +
∑q

i=1 γ
F (i) · (Postfi − Prefi) � Pre(·, tj),

or, equivalently, equation (7) should be veri�ed for all γ⃗M ≥ γ⃗σ, where the set of γ⃗σ is de�ned
as in equation (6).

Let us now prove the only if part. Since the unobservable subnet is acyclic, the state equation
gives conditions that are necessary and su�cient for the reachability (and for non-reachability
as well) [19]. Thus, if equation (7) is satis�ed for all γ⃗M ∈ Nq, with γ⃗M ≥ γ⃗σ, then it means that
any marking M such that M0[σ

F ⟩M satis�es M � Pre(·, tj). �
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5.2 IPP formulation

Proposition 5.4 Let us consider Problem 3.4 under assumptions (A1)�(A3), and let

g(PreF , PostF ) =

m∑
s=1

q∑
i=1

[
bs,iPrefi(ps, ·) + cs,iPostfi(ps, ·)

]
be a given linear performance index, where bs,i, cs,i ∈ R+

0 , s = 1, . . . ,m, i = 1, . . . , q.

A solution that minimizes g(PreF , PostF ) can be computed by solving the following nonlinear

(IPP)

{
min g(PreF , PostF )

s.t. Gsyn(ẼF , D̃F ) holds for the given M0

(8)

where
Gsyn(ẼF , D̃F ) ,

Gid(ẼF )

−KSfi
σ,j +M0 + C · π(σ)

+
∑q

i=1 γM (i) · (Postfi − Prefi)− Pre(·, tj) ≤ −1⃗m

1⃗ TSfi
σ,j ≤ m− 1, ∀i ∈ {1, . . . , q}

Sfi
σ,j ∈ {0, 1}m, ∀i ∈ {1, . . . , q}

∀(σ, tj) ∈ D̃F

γ⃗M ∈ Nq


(c)

(9)

where Gid(ẼF ) is de�ned as in (3) and K (as usual) is a very large constant [4].

Proof:We already proved in Proposition 4.3 that, under assumptions (A1)�(A3), the net system

⟨NF ,M0⟩ satis�es Po,k(L(N
F ,M0)) ⊇ LF

k if and only if the set of algebraic constraints in (3)

holds.

Thus, we only need to prove that, under assumptions (A1) and (A2), the net system ⟨NF ,M0⟩
satis�es Po,k(L(N

F ,M0)) ⊆ LF
k if and only if the set of algebraic constraints in (9) holds. To do

this, we need to show that constraints (c) disable all those sequences of length less than or equal

to k that do not belong to LF
k .

Constraints (c) are the disabling constraints relative to those sequences that are not enabled even

if a fault transition occurs. They follow from Proposition 5.3 and their equivalence to constraints
M0 + C · π(σ) +

∑q
i=1 γM (i) · (Postfi − Prefi) ̸≥ Pre(·, tj)

∀(σ, tj) ∈ D̃F

∀γ⃗M ∈ Nq

can be proved as follows.
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We �rst observe that, if tj is not enabled at M0 +C · π(σ) +
∑q

i=1 γM (i) · (Postfi −Prefi), then

there exists at least one place p ∈ P such that

M0(p) + C(p, ·) · π(σ) +
∑q

i=1 γM (i) · (Postfi(p, ·)− Prefi(p, ·)) ≤ Pre(p, tj)− 1. (10)

This holds for all p such that Sfi
σ,j(p) = 0, where Sfi

σ,j is a binary vector having as many entries

as the number of places of the net. Having 1⃗TSfi
σ,j ≤ m − 1 this implies that this occurs for at

least one place p ∈ P . Note that the set of constraints (c) disable the sequence σtj even when all

fault transitions fi with i ∈ {1, . . . , q} �re γM (i) times. For this reason the binary vector Sfi
σ,tj

has the upper index fi.

Finally, we observe that assuming γ⃗M ∈ Nq in (c) rather than γ⃗M ≥ γ⃗σ (see equation (7)),

introduces no spurious markings. In fact, by de�nition of γ⃗σ, constraints (c) are redundant for

all γM (i) ∈ [0, γσ(i)), with i ∈ {1, . . . , q}. �

Two remarks need to be made concerning the above IPP formulation.

• It is reasonable to assume that in several real applications it is known a priori that a fault
that may a�ect a given subnet, has no e�ect on some parts of the net. In such a case it is
su�cient to impose that some entries in the PreF and PostF matrices are null, thus also
reducing the number of unknowns.

• The second remark concerns the performance index g(PreF , PostF ) that assigns di�erent
weights to arcs. In particular, a high weight associated with a given arc is equivalent to
assuming a low probability of having such an arc in the faulty system. On the contrary,
small weights are associated with those arcs that are more likely to appear in the faulty
system, e.g., on the basis of some a priori information on the considered system and/or
some considerations on its layout. As a particular case, we may look for a solution that
assumes a small number of additional fault transitions. In such a case, we can assign a
unitary weight to all entries in the �rst column of matrices PreF and PostF . Then, we can
assign a weight equal to a given α > 1 to all entries in the second column of such matrices.
The weight assigned to arcs in the third column can be taken equal to α2 and so on.

5.3 Constraints linearization

The set of constraints (9) that are necessary to characterize the set of admissible solutions are
nonlinear (see constraints (a) and (c)). In Subsection 4.3 we already presented a way to linearize
constraints (a). In this subsection, we present a way to remove the nonlinearity of the disabling
constraints.

In this case the nonlinearity can also be removed by assigning to each fault transition fi an upper
bound Γi on the number of times the fault transition fi may �re. This upper bound Γi is the
same as the one used to linearize constraints (a) in Subsection 4.3. Constraint (c) for the generic
couple (σ, tj) ∈ D̃F can be translated into an AND constraint that can be written as follows in
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terms of linear constraints:{
−KSfi

σ,j +M0 + C · π(σ) +
∑q

i=1 λi · (Postfi − Prefi)− Pre(·, tj) ≤ −1⃗m (l2)

1⃗ TSfi
σ,j ≤ m− 1

where λi is a natural number that can take values from 0 to Γi, i.e., λi = 0, 1, . . . ,Γi. Note that
we have to write Πq

i=1(Γi + 1) − 1 constraints of the form (l2) where we consider all possible
combinations of values of λi, except for the one where all λi's are equal to zero.

An important remark needs to be made concerning the linearization of the disabling constraints.
Indeed it may happen that a solution to the linerarized set of constraints is found for a given
set of Γi's. However, if there exists some fault fi that may actually �re a number of times larger
than Γi, it may occur that the resulting net system violates some of the disabling constraints,
i.e., the net obtained solving the linearized set of constraints violates the nonlinear constraints.
To be sure that disabling constraints are satis�ed we need to limit the number of times a fault
transition can �re. Thus, once the linearization is performed and the upper bound on the number
of �rings each fault transition may �re to satisfy the enabling and disabling constraints is known,
an input place to each fault transition should be added having as initial marking the upper bound
associated to the fault transition.

5.4 Complexity of the synthesis procedure

Since the set of constraints (9) is a superset of the set of constraints (3) and for such a set we
have already computed the number of constraints and unknowns in Subsection 4.4, we just need
to evaluate the number of constraints and unknowns coming from constraints (c) in (9).

Let n be the cardinality of T , k the length of the longest string in LF
k , and νr (ν ′r, resp.), for

r = 0, . . . , k, the number of strings in LF
k \ L (LF

k , resp.) of length r.

Then the number of nonlinear constraints (c) in (9) is equal to

(m+ 1)
k−1∑
r=0

(n · ν ′r − ν ′r+1).

The way to see this is as follows. The faulty language LF
k contains a certain number νr of strings

of length r. The number of strings of length r+1 that have to be disabled is equal to the number
of strings of length r in LF

k multiplied by the number of transitions n minus the number of strings
of length r + 1 in LF

k . Since for each string we have m+ 1 disabling constraints (c) (where m is
the number of places of the Petri net), the total number of constraints is as given above.

When linearized, the number of constraints (c) becomes equal to

(m ·Πq
i=1[(Γi + 1)− 1] + 1)

k−1∑
r=0

(n · ν ′r − ν ′r+1).
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The total number of unknowns in the nonlinear IPP (9) is

unl−syn = unl−id +mq
k−1∑
r=0

(n · ν ′r − ν ′r+1)

= 3mq + q ·
k∑

r=1

νr +mq
k−1∑
r=0

(n · ν ′r − ν ′r+1),

where the last term of the right-side terms is due to the binary vectors Sfi
σ,j , with i = 1, . . . , q.

The total number of unknowns in the linear IPP is

ul−syn = ul−id +mq·Πq
i=1Γi·

k−1∑
r=0

(n · ν ′r − ν ′r+1)

= 3mq + ((m+ 1)q +

q∑
i=1

Γi) ·
k∑

r=1

νr +mq ·Πq
i=1Γi ·

k−1∑
r=0

(n · ν ′r − ν ′r+1).

Note that for given values of k and n, it is possible to �nd a worst case bound for ρ =
∑k−1

r=0(n ·
ν ′r − ν ′r+1). In fact, it holds:

ρ =

k−1∑
r=0

(n · ν ′r − ν ′r+1)

= n · ν ′0 + (n− 1) ·

(
k−1∑
r=1

ν ′r

)
− ν ′k

= n+ (n− 1) ·

(
k−1∑
r=1

ν ′r

)
− ν ′k.

This expression is maximized if we assume ν ′k = 0 while all other ν ′r take the largest possible
value, i.e., ν ′r = nr. Hence, we have

ρ ≤ n+ (n− 1) · (n+ · · ·+ nk−1) = nk,

so that the total number of unknowns in the nonlinear IPP in the worst case is

unl-synMAX
≤ 3mq + q ·

∑k
r=1 n

r + qm · nk = O(m q nk),

and, considering Γ̄ = max(Γi), for all i = 1, . . . , q, the total number of unknowns in the linear
IPP in the worst case is

ul-synMAX
≤ 3mq + ((m+ 1)q + q(Γ̄)) ·

∑k
r=1 n

r +mqΓ̄q · nk = O(m q Γ̄q nk),

i.e., this problem has exponential complexity with respect to q and k.
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5.5 Numerical examples

In this section we present two examples. First, we provide an example to better explain the pro-
posed procedure, then we discuss the problem of acyclicity and the necessity of Assumption (A3).

Example 5.5 Let us consider the net in Fig. 3(a) that models a simple manufacturing system.

The complexity of the example is limited on purpose to clearly illustrate the procedure and to

show how physical information on the system layout can be easily taken into account to obtain a

realistic faulty model.

Place p1 models a bu�er containing parts that have not been correctly assembled. Such parts need

to be �rst disassembled and this corresponds to the �ring of transition t1. As a result of the

disassembly process, 4 parts of type A, 1 part of type B and 1 part of type C are obtained. Such

parts are put in a new bu�er where a machine process them before being assembled again. In

particular, such operations on parts of type A (B and C, respectively) are modeled by place p2
(p3 and p4, respectively), while the assembly operation corresponds to the �ring of transition t2.

At this point, parts are put in a bu�er (place p5) and a �nal operation, e.g., cleaning or painting,

is performed, modeled by transition t3.

Assuming as in Fig. 3(a) that only one part is initially present in the �rst bu�er, the language

representing the regular behavior of the system is L = {ε, t1, t1t2, t1t2t3}.

Now, let LF
4 = {ε, t1, t1t2, t1t2t3, t1t2t2, t1t2t2t2}, i.e., sequences t1t2t2 and t1t2t2t2 also be-

come �rable. We have E = {(ε, t1), (t1, t2), (t1t2, t3)}, EF = {(ε, t1), (t1, t2), (t1t2, t3), (t1t2, t2),
(t1t2t2, t2)}, ẼF = {(t1t2, t2), (t1t2t2, t2)} and D̃F = {(ε, t2), (ε, t3), (t1, t1),(t1, t3), (t1t2, t1),
(t1t2t2, t1), (t1t2t2, t3)}.

If we look for a solution that only assumes the presence of one fault transition and that minimizes

the arc weights associated with the fault transition, we obviously get the solution where f is a

transition with no input places, one output arc to p3 and one output arc to p4. However, such

a solution has clearly no physical meaning, since we cannot assume in�nite capacity bu�ers

connected to places p3 and p4.

If we impose that at least one input place to f exists, e.g., given

PreF = [PreF (p1, f) . . . P reF (p5, f)]
T

we impose that
∑5

i=1 PreF (pi, f) ≥ 1, we get the solution in Fig. 3(b).

Note however, that such a solution may also not be realistic because it implies that from one part

coming from p2 we get two parts, one in p3 and one in p4. To avoid this we can impose the

additional constraint:
∑5

i=1 PreF (pi, f) =
∑5

i=1 PostF (pi, f). In such a case we get the solution

in Fig. 3(c) where the weight of the input arc to f is set equal to 2.

If the same problem is solved assuming two fault transitions the net in Fig. 3(b) is still a solution.

Another possible solution is the faulty net system in Fig. 3(d) that is probably the most realistic

solution if we assume that operations on parts of type A, B and C are performed on adjacent
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Figure 3: (a) The fault-free net system, and (b), (c) and (d) three di�erent faulty net systems.
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Figure 4: (a) The fault-free net system of Example 5.6, (b) the faulty net system where tf is not
loop-free, (c) the equivalent net of the one represented in (b).

lines, so it is unlikely that one part (and even more two) are dropped from the �rst to the third

line. Also such a constraint can be easily imposed using: PreF (p2, f2) = 0. Note that the solution

shown in Fig. 3(d) can be obtained only imposing Γ1 ≥ 2 and Γ2 ≥ 1; in fact, with the net system

in Fig. 3(d), transition f1 has to �re twice to satisfy the set of constraints (9) with ẼF and D̃F

de�ned above. �

Example 5.6 Let us consider the net in Fig. 4(a) and the two languages L3 = {ε, t1, t1t1, t1t1t2}
and LF

3 = {ε, t1, t1t1, t1t2, t1t1t2, t1t2t1}. Assume that we want to synthesize the Petri net system

that minimizes the arc weights associated with the fault transition. Assume that the problem is

solved assuming only one fault transition tf . This requires the solution of a linearized IPP of the

form (9) where E = {(ε, t1), (t1, t1), (t1t1, t2)}, EF = {(ε, t1), (t1, t1), (t1, t2), (t1t1, t2), (t1t2, t1)},
ẼF = {(t1, t2), (t1t2, t1)}, and D̃F = {(ε, t2), (t1t1, t1), (t1t2, t2)}.

We note that a solution for these two languages exists and is represented by the faulty net system

in Fig. 4(b), but if we apply the identi�cation procedure proposed we obtain no integer solution

even if the constraints relative to the acyclicity of the fault transition, i.e., the constraints (b) in

(3), are removed. Since our constraints are based on the incidence matrix, the two nets shown

in Fig. 4(b) and Fig. 4(c) are equivalent as far as our procedure is concerned. The problem is

that for the net in Fig. 4(c) the disabling constraint on the couple (ε, t2) is not veri�ed, since

transition t2 can be enabled at M0 after tf has �red twice. �

6 Conclusions and future work

We presented the problem of identi�cation and synthesis of the faulty model of a Petri net whose
nominal behavior is known. We started from our previous results where, given the language
of a Petri net system, we identify the Petri net structure and its initial marking by solving an
integer programming problem. We assume that the fault-free system is known and we want to
identify the structure of the faulty part of the system, speci�cally the additional transitions that
comprise the faulty behavior are unobservable. We addressed both the identi�cation and the
synthesis problem.
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There is a number of future directions of our research in this topic. First, we would like to study
how the computational complexity can be reduced when considering particular net structures.
Second, we plan to apply this procedure to some real application examples, possibly depending
on some parameters. Then, we plan to investigate the possibility of having a bound on the
number of times a fault can occur in the cost criterion. Moreover, we plan to generalize the
approach considering the case of some silent transitions in the nominal model. Finally, we plan
to consider the case where the faulty net includes additional places and transitions.

References

[1] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms for the synthesis
of bounded nets. Lecture Notes in Computer Science, 915:647�679, 1995.

[2] E. Badouel and P. Darondeau. Theory of regions. Lecture Notes in Computer Science,
1491:529�586, 1998.

[3] F. Basile, P. Chiacchio, J. Coppola, and G. De Tommasi. Identi�cation of Petri nets us-
ing timing information. In 3rd Int. Workshop on Dependable Control of Discrete Systems,
Saarbrücken, Germany, 2011.

[4] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics and constraints.
Automatica, 35(3):407�429, 1999.

[5] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri nets from in�nite
partial languages. In Proc. 8th Int. Conf. on Application of Concurrency to System Design,
Xi�an, China, 2008.

[6] M.P. Cabasino, P. Darondeau, M.P. Fanti, and C. Seatzu. Model identi�cation and syn-
thesis of discrete-event systems. Contemporary Issues in System Science and Engineering,
IEEE/Wiley Press Book Series, 2014.

[7] M.P. Cabasino, A. Giua, C.N. Hadjicostis, and C. Seatzu. Fault model identi�cation with
Petri nets. In Proc. 9th IFAC Work. on Discrete Event Systems, Gotheborg, Sweden, 2008.

[8] M.P. Cabasino, A. Giua, and C. Seatzu. Identi�cation of Petri nets from knowledge of their
language. Discrete Events Dynamic Systems, 17(4):447�474, 2007.

[9] J. Carmona, J. Cortadella, A. Kishinevsky, L. Lavagno, A. Kondratyev, and A. Yakovlev.
A symbolic algorithm for the synthesis of bounded Petri nets. In Proc. Int. Conf. on

Application and Theory of Petri Nets and Other Models of Concurrency, Xian, China, 2008.

[10] D. Corona, A. Giua, and C. Seatzu. Marking estimation of Petri nets with silent transitions.
IEEE Trans. Automatic Control, 52(9):1695�1699, 2007.

[11] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri nets from �nite
transition systems. IEEE Transactions on Computers, 47(8):859�882, 1998.

22



[12] M. Dotoli, M.P. Fanti, and A.M. Mangini. Real time identi�cation of discrete event systems
using Petri nets. Automatica, 44(5):1209�1219, 2008.

[13] M. Dotoli, M.P. Fanti, A.M. Mangini, and W. Ukovich. Identi�cation of DES unobservable
behaviour by Petri nets. In Proc. 2nd IFAC Workshop on Dependable Control of Discrete

Systems, Bari, Italy, 2009.

[14] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2. Acta

Informatica, 27(4):315�368, 1989.

[15] R. Lorenz, G. Juhás, and S. Mauser. How to synthesize nets from languages � a survey. In
Proc. 2007 Winter Simulation Conference, Washington DC, USA, 2007.

[16] R. Lorenz and G. Juhás. Towards synthesis of Petri nets from scenarios. Lecture Notes in

Computer Science, 4024:302�321, 2006.

[17] M.E. Meda-Campaña and E. López-Mellado. Incremental synthesis of Petri net models for
identi�cation of discrete event systems. In Proc. 41th IEEE Conf. on Decision and Control,
Las Vegas, Nevada USA, 2002.

[18] M.E. Meda-Campaña and E. López-Mellado. Required event sequences for identi�cation of
discrete event systems. In Proc. 42th IEEE Conf. on Decision and Control, pages 3778�3783,
Maui, Hawaii, USA, 2003.

[19] T. Murata. Petri nets: properties, analysis and applications. Proceedings of the IEEE,
77(4):541�580, 1989.

23


