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1 Introduction

The problem of quantized consensus consists in the design of a decentralized algorithm to steer a set of quantized
state variables toward a common value. One of the early formulations of the quantized consensus problem was in
[1] where the issue of quantization to implement consensus algorithms was brought to attention and a solution
inspired by distributed load balancing of quantized indivisible tasks was proposed [2–5]. Since then, several ap-
proaches were developed to study the issues of quantization for the consensus problem [6–11]. All these approaches
consider undirected connected graphs with the exception of [7] where the quantized consensus on directed graphs is
investigated.

In [10] we proposed a generalization of the quantized consensus problem called discrete consensus, i.e., the problem
of distributing evenly a set of indivisible tokens of different weight. Thus, quantized consensus is a special case of
discrete consensus where all tokens are of equal weight.

The first approaches to the study of the convergence time of quantized consensus problems [1,8,9] are based on the
computation of the average meeting time between two random walks in a graph. This derives from the necessity
of swapping loads – that cannot be balanced due to their discrete nature – between nodes. In [11] we proposed
an efficient algorithm for discrete consensus that executes swaps along a preassigned direction thus significantly
reducing the expected convergence time. This approach required the existence in the graph of a known Hamiltonian
cycle and only adjacent nodes along this cycle may swap their loads. However, in many applications the requirement
that a Hamiltonian cycle exists is not satisfied and furthermore, even when it exists, the computation of such a cycle
may not be feasible due to the network size or the absence of global information.

In this paper, we propose a novel decentralized algorithm based on gossip to solve the discrete consensus problem.
The proposed algorithm improves the convergence time of previous approaches, including [11], and in particular it
converges in linear time with respect to the number of nodes for graphs of given diameter. Furthermore, it does
not make any assumption on the structure of the network topology which is considered unknown. The proposed
approach can be used in all applications discussed in the quantized consensus literature, such as the distributed
averaging in sensor networks. Furthermore, it can also be applied in a wider setting that includes problems such as
distributed load balancing or task assignment in networks of processors or mobile robots, where a set of indivisible
tasks of different size is to be assigned so that the maximum execution time is minimized, exploiting only local state
information exchange between the processing units.

Summarizing, the contributions of this paper are the following.

• A novel algorithm based on gossip that solves the discrete consensus problem is proposed.
• We compute an upper bound for the expected convergence time, showing that it is E [Tconv] ≈ O (n) d(G) in

normalized time units, which improves the state of the art with respect to the mentioned literature.
• With respect to [11], we remove all assumptions on the structure of the network topology which is only required

to be an undirected connected graph.
• The proposed algorithm has an embedded stopping criterion so that token exchanges stop within a finite time

interval after the discrete consensus state has been achieved.
• Simulations are provided to compare the theoretical upper bound to the convergence time with the simulated

convergence time for random graphs and line graphs with increasing number of nodes. An empirical comparison
of convergence time between Fast Discrete Consensus and Discrete Consensus algorithms is provided to highlight
the increased performance with respect to the state of the art.

Related works

In [6] the quantized consensus problem is formulated with nodes with continuous states but capable of transmitting
only a finite number of symbols. The authors study algorithms in the framework of randomized gossip algorithms
[12] by applying deterministic and probabilistic uniform quantizers with a combination of three local state update
rules defined as partially quantized, totally quantized and compensating. They proved that, with a totally quantized
state update rule, finite time consensus is achieved almost surely but the initial states’ average is not preserved.
On the other hand, a compensating update rule that preserves the initial state average at each iteration does not
guarantee to reach consensus. In [6] and [12] the state variables in the networks are quantized but they are not
considered as indivisible tokens or tasks as in this paper.
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All the above mentioned works investigate the quantized consensus problem in undirected graphs. Notably, in [7] a
quantized consensus algorithm for networks described by directed graphs is proposed. The authors design a local state
update strategy that applied randomly by the nodes achieves quantized consensus exploiting only mono-directional
quantized communications while preserving the average of the initial states during the updates.

The issue of good characterization of the convergence time of quantized consensus algorithms is investigated in [9] and
[8]. In [8] the quantized consensus problem is investigated by considering nodes with arbitrarily quantized states.
For the special case of uniform quantization, bounds on the convergence time related to the spectral properties
of the principal sub-matrices of the Laplacian matrix of the graph describing the network are given. In [9] the
quantized consensus problem for nodes with uniformly quantized states is investigated and a general formulation for
the convergence time of a class of distributed quantized consensus algorithms is presented. The derivation is based
on the computation of meeting times of random walks in a graph that can be of fixed or time-varying topology. The
proposed bounds on convergence times are all polynomial in the number of nodes.

In [10] the discrete consensus problem is introduced, it differs from the other approaches in that it considers the
state of each node as composed by a set of indivisible tasks with different weight, size or cost, to be exchanged by
the nodes with different execution speed. In [11] an upper bound on the convergence time of the discrete consensus
problem presented in [10] is improved by a factor O(n), where n is the number of nodes. In [13] the problem of
distributed task assignment is formalized as a distributed consensus algorithm. The authors consider tasks of different
cost and type which can be executed only by subsets of nodes in the network. Furthermore, the authors consider a
constraint on the maximum number of tasks executable by each single node and prove that almost surely the task
assignment converges to a feasible and time-invariant configuration. With respect to this paper, in [13] task execution
constraints and tasks with node-dependent weight are considered. On the other hand, their characterization of the
convergence time is preliminary and requires several working assumptions on the network topology which do not
allow to guarantee the convergence properties in general undirected graphs. In [14] the distributed task assignment
in a network of heterogeneous mobile robots with heterogeneous tasks is investigated. The authors exploit gossip
based local optimizations to both assign tasks located in a plane and compute optimized routes for the robots.

Finally, we mention that in [15] a variant to the load balancing problem on multi-processors systems called token
distribution problem is investigated. The token distribution problem can be addressed as a discrete consensus prob-
lem. In [15] the token distribution problem is addressed by assuming that all the nodes know the average load of
the network and compute in a decentralized way the total number of nodes. Furthermore the network topology is
assumed to be a known connected tree. In our work we do not assume that nodes have access to any kind of global
information about the network state.

The paper is structured as follows. In Section 2 the problem of discrete consensus is formalized. In Section 3 the
proposed algorithm is presented. In Section 4 the convergence properties are characterized. In Section 5 the expected
convergence time is characterized. In Section 6 simulations are provided to corroborate the theoretical results. In
Section 7 final remarks are discussed.

2 Problem Statement

Consider a network of n nodes whose connections can be described by an undirected connected graph G = (V, E),
where V = {1, . . . , n} is the set of nodes and E ⊆ {V × V} is the set of edges that represent the existence of
a communication link. We consider K indivisible tokens to be assigned to the nodes, and a weight cj ∈ N+,
j = 1, . . . ,K, is associated with each token. We define a weight vector c ∈ NK whose j-th component is equal to
cj and n binary vectors yi ∈ {0, 1}K such that yi,j = 1 if the j-th token is assigned to node i, yi,j = 0 otherwise.
Finally, cmax = maxj=1,...,K cj . To each node i ∈ V is allocated a load xi = cT yi consisting of the sum of the weight
of tokens assigned to node i.

Denoting Y (t) = [y1(t) y2(t) . . . yn(t)] the state of the network at time t, we wish to minimize the maximum load in
the network, which may equivalently correspond to a maximum execution time or makespan. An optimal solution to
this problem requires complete knowledge of the network state and the solution of an integer programming problem
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with binary variables 
min F (Y ) = max

i∈V
cT yi

s.t. Y 1 = 1

yi,j ∈ {0, 1} ∀i ∈ V, j = 1, . . . ,K.

(1)

Since in our framework we consider networks with large number of nodes and tokens, the computational complexity
of the integer programming problem (1) can be extremely high. In particular, Problem 1 is a formulation of the
makespan minimization problem on identical parallel machines. The complexity of finding an exact solution to this
problem is known to be NP-hard (see [16] for reference). Furthermore, it requires a centralized coordinator with
full knowledge of the network state and ability to communicate with all the nodes. To address these disadvantages
we look for a distributed solution based only on randomized local state updates with limited available information.
Exploitation of randomized and asynchronous local state updates simplifies greatly the network design since it
avoids the need for synchronization in a large network and does not require knowledge of the network topology. The
assumption that the network topology is unknown is needed in large scale systems and applications which involve
networks of mobile robots, whose pattern of interaction may be time-varying. The necessary tradeoff to address this
problem in a distributed and randomized fashion consists in not being able to guarantee an optimal solution. On
the other hand, in this paper we are able to characterize an absolute performance guarantee which does not depend
on the network size. This can be achieved by aiming at finding an assignment which belongs to the set

Y = {Y = [y1 . . . yn] |
∣∣cT yi − cT yj

∣∣ ≤ cmax,

∀i, j ∈ V} .
(2)

We say that discrete consensus is achieved when the state of all nodes in the network satisfies condition (2). There
are several reasons for defining the discrete consensus set as in eq. (2). Consider the following cases:

• If all tokens have equal weight, it is easy to show that when the number of tokens is not a multiple of the number
of agents then, due to the discrete nature of the tokens, the optimal assignment is one in which the maximum
difference between the agents’ loads is exactly cmin = cmax.

• If set Y is defined via a constant smaller than the maximum token weight, then the considered problem may not
be feasible and a network state inside Y may not be reached even by solving a centralized optimization problem
with full knowledge of the network state and structure. To prove this, consider the case in which the number of
tokens is less than the number of nodes. In this case, the maximum load difference between nodes in the network
cannot be smaller than cmax since there exist empty nodes.

• An optimal solution to problem (1) may not be found if we are constrained to exploit only gossip based pairwise
optimizations, as shown in [17]. On the contrary, set Y in eq. (2) can be reached through pairwise optimizations
as proven in this paper.

By denoting Y ∗ the optimal solution of problem (1), F (Y ∗) the value of the objective function for an optimal solution
of (1) and F (Y ) the value of the objective function for an assignment Y ∈ Y within the set of discrete consensus, it
can be shown (see [18]) that ∑K

j=1 cj

n
≤ F (Y ∗) ≤ F (Y ) ≤

∑K
j=1 cj

n
+ cmax, Y ∈ Y.

Therefore, a solution Y ∈ Y represents an absolute performance guarantee with bounded error which does not
depend on the size of the network since

F (Y ) ≤ F (Y ∗) + cmax, Y ∈ Y.

It is easy to show (see [1]) that if all tokens have the same weight and Y ∈ Y either F (Y ∗) = F (Y ) = ⌊
∑K

j=1
cj

n ⌋+cmax

or F (Y ∗) = F (Y ) = ⌊
∑K

j=1
cj

n ⌋, therefore in this case a solution Y ∈ Y corresponds to an optimal solution. If all
tokens have the same weight, our problem is formally equivalent to that of quantized consensus [1].

In the following we denote an arbitrary node as the sink node and without loss of generality we assume that it is
the node with id i = 1. The sink node is chosen prior to the execution of our algorithm. There are several ways
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and methods to choose a node arbitrarily in a network in a distributed way. One is for instance to let every node
extract a number at random and then execute a consensus on the maximum value algorithm which converges in a
finite number of steps less then the diameter of the network. Since the selection of such node is not related to our
major contribution, we consider the existence of a sink node as a working assumption, similar to the existence of a
leader in a leader-follower network.

Let di be the length of the shortest path from node i to the sink node, i.e., node 1. Note that d1 = 0 and di > 0 for
i ̸= 1.

Definition 2.1 Given a graph G = (V, E) we call depth of the graph with respect to the sink node, or shortly
depth, the length of the greatest distance di from any node i and the sink node, i.e., d(G) = maxi∈V di.

Obviously, for any choice of the sink node the depth is always smaller than or equal to the diameter of G.

3 Proposed Algorithm

In this section we present the main result of the paper, i.e., the Fast Discrete Consensus (FDC) algorithm. We first
present a heuristic able to partition a set of tokens into two balanced sets with linear complexity, then we describe a
local state update rule which exploits such heuristic and specifies how two given nodes should cooperate to exchange
tokens. Finally, we present the FDC algorithm, based on the proposed local state update rule, together with an
intuitive explanation of how it works and an example of execution.

To each node i ∈ V we associate the three state variables xi(t), zi(t), hi(t) defined in Table 1. Let Ki(t) be the set

xi(t) Load associated with the i-th node at time
t (sum of token weights assigned to node
i).

zi(t) Local estimation of the sink node load
(node 1) at time t of node i.

hi(t) Local estimation of the distance di between
node i and the sink node (node 1).

Table 1
Notation table

of indices of tokens assigned to node i at time t. In Algorithm 1 it is presented a simple balancing rule to average
the load of two nodes incident on the selected edge. Variations of this simple and widely known heuristic have been
investigated in the context of load distribution between two parallel machines and as polynomial time approximation
of the 2-partitioning problem [19]. This rule computes two partitions of tokens Ka, Kb given two sets of tokens Ki

and Kj .

Remark 3.1 The balancing rule in Algorithm 1 is completed in |K| steps, thus with linear complexity with respect
to the number of tokens contained in nodes i and j. This heuristic is a slight modification of the very well known
Johnson’s algorithm for the 2-machine N job problem [20]. This heuristic has the advantage of being extremely simple
and easy to implement while guaranteeing that the maximum difference in cost between the two sets of tokens given
as output is at most equal to cmax, which is sufficient for our purposes.

Let us now introduce a local state update rule which exploits Algorithm 1 to locally balance the tokens between
pairs of nodes, such a rule is presented in Algorithm 2. In the following we denote xi(tk) = cT yi(tk) the sum of the
costs of tasks assigned to node i at time tk.

In simple words, in Step 2 of Algorithm 2 if the load difference between two nodes is bigger than cmax a new partition
of tokens between the two nodes is computed using Algorithm 1. In Step 3 the node j estimated to be furthest from
the sink node updates its estimate of the sink node load by adopting the estimate of node i, which is assumed to be
closer to the sink. Node i keeps its estimate of the sink load unaltered. If the sink node itself is involved, then both
nodes update their estimation with the actual value of the load of the sink node. Furthermore, in Step 3 the shortest
distance between nodes i and j from the sink node is estimated. In particular, during each update each node verifies
to be either the closest one to the sink node, and then leaves its distance estimation unchanged, or the furthest, and
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Algorithm 1. Balancing rule
Input : Sets Ki and Kj .
Output: Sets Ka and Kb

1 Initialize: Let K = Ki ∪ Kj , let Ka := ∅ and Kb := ∅.
2 while K ≠ ∅ do

let δ := argmaxj∈Kcj ;

if
∑
r∈Ka

cr ≤
∑
r∈Kb

cr then

let Ka := Ka ∪ {δ}, Kb := Kb;
(if the load of Kb is greater than that of Ka, then assign the token to Ka)

else
let Ka := Ka, Kb := Kb ∪ {δ}.

K := K \ {δ}.

3 if

∣∣∣∣∣∣
∑
j∈Ka

cj −
∑
j∈Kb

cj

∣∣∣∣∣∣ >
∣∣∣∣∣∣
∑
r∈Ki

cr −
∑
r∈Kj

cr

∣∣∣∣∣∣ ,
(A partition less balanced than the one given as input is found) then

let Ka := Ki, Kb := Kj .

Algorithm 2. Local State Update Rule
Input : An edge (i, j) ∈ E, variables zi, zj and sets Ki and Kj . Without loss of generality, assume in the following

that estimated distance hi between node i and the sink node 1 is smaller than or equal to that of node j.
Output: zi, zj , hi, hj , sets Ki and Kj which correspond to the new assignment of tokens and variables to node i and

node j.
1 Initialize: Let xa, xb be respectively the load of partitions Ka,Kb.
2 if |xi(tk)− xj(tk)| > cmax then

compute sets Ka and Kb with the Balancing Rule in Algorithm 1

else
let Ka = Ki and Kb = Kj .

3 if i = 1 (sink node) then
zj := xi.

else
zj := zi, hj := min(hj , hi + 1).

4 if zi − xa > cmax or zi − xb > cmax then
assign the smallest load between Ka and Kb to node i and assign the largest load to node j.

else
assign the largest load between Ka and Kb to node i and assign the smallest load to node j.

then updates its current estimate with that of the neighbor plus one. Finally, in Step 4, node loads are ordered in
decreasing order with respect to their presumed distance from the sink node unless the load difference between the
estimated load of the sink node in variable zi and the load in the computed partitions Ka and Kb is greater than
cmax. In this case, the partition with the smallest load is assigned to the node closer to the sink. By iterating this
behavior it is possible to ensure that if the network is globally unbalanced, in finite time a balancing involving the
sink node which improves the considered global objective function will occur.

The main contribution of this paper is presented in Algorithm 3.

The stopping criterion of Algorithm 3 is discussed in Proposition 5.5, where it is shown that after discrete consensus
has been achieved there exists a maximum interval of time after which no more load exchanges between nodes may
happen. Algorithm 3 iterates on the number of selected edges. This implies that several edges may perform the state
update rule simultaneously. If a state update fails because the selected edge is incident on a node which is busy
performing a state update with another node, then the edge selection can simply be discarded and the algorithm
execution proceeds with further edge selections until a feasible one is found. The proposed algorithm is robust
against communication failures because it is asynchronous and is not based on the order in which state updates are
performed. Moreover, Algorithm 3 exploits only locally available information at each step. Next we show an example
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Algorithm 3. Fast Discrete Consensus (FDC)
Input : Sets Ki for i = 1, . . . , n ( Tokens are assigned arbitrarily to nodes).
Output: Updated sets Ki for i = 1, . . . , n.
1 Initialize: Let k = 0, tk = 0, h1(tk) = 0, z1(tk) = x1(tk), hi(tk) = ∞, zi(tk) = 0 for i = 2, . . . , n. Without loss of
generality, let node 1 be the sink node.
2 while TRUE do

3 Let t = tk.
4 A random node selects an edge (i, j) according to a given stochastic selection process.
5 Update the state of nodes i and j according to the Local State Update Rule in Algorithm 2.
6 Let k = k + 1.

2

Sink node

Node 1 Node 2 Node 3 Node 4

t
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t
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t
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t
2

2
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1

Update

Update

Update
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5 5 0 4 5 1 4 5 2 4 5 3

Update

Fig. 1. Example of execution of Algorithm 3 described in Example 3.2.

of execution of Algorithm 3 to further clarify its functioning.

Example 3.2 Consider the network of 4 nodes depicted in Fig. 1. Nodes are labeled from 1 to 4. The sink node is
node 1. Thus, node 2 has distance 1 with respect to the sink node, node 3 has distance 2 and node 4 has distance
3. In this example for sake of clarity we consider tokens of unit weight cj = 1 for j = 1, . . . ,K, thus representing a
standard quantized consensus problem. The initial state of the network is at t = t0: x1(t0) = 2, x2(t0) = 8, x3(t0) = 4,
x4(t0) = 3. All variables containing the estimation of the sink load are initialized to zero except for the sink node,
thus z1(t0) = 2, z2(t0) = z3(t0) = z4(t0) = 0. The estimated distance from the sink node is set to h1 = 0 by the sink
node and hi = ∞ by all other nodes. In this example we consider an arbitrary edge selection sequence for sake of
clarity.

(1) At t0 edge (1, 2) is selected. Since |x1 − x2| > cmax, the nodes balance their load leading to x1 = x2 = 5. Then,
they update their estimations of the sink load that are set to z1 = z2 = 5 and the estimated distance of node 2
is set to h2 = 1.

(2) At t1 edge (2, 3) is selected. Since |x2−x3| ≤ cmax and the largest load is already the closest to the sink therefore
the nodes update only the estimates to z2 = 5 and z3 = 5 and the estimated distance of node 3 is set to h3 = 2.

(3) At t2 edge (3, 4) is selected. Since |x3 − x4| ≤ cmax no balancing occurs but estimations are updated as z3 = 5
and z4 = 5. Furthermore, since z4−x4 > cmax the smallest load is put closer to the sink. The estimated distance
of node 4 is set to h4 = 3.

(4) At t3 edge (2, 3) is selected. Since |x2 − x3| > cmax the nodes balance their load.
(5) At t4 the discrete consensus condition (2) is reached.

4 Convergence Properties

In this section we study the convergence properties of Algorithm 3. In particular, we now formally define a stochas-
tically persistent edge selection process. In the following, without loss of generality, let node 1 be the sink node.
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Definition 4.1 (Edge Selection Process) An edge selection process e : R+ ×E → {0, 1} maps each time instant
t ∈ R+ and each edge (i, j) ∈ E to a binary value: if e(t, (i, j)) = 1 then edge (i, j) is active at time t, not active
otherwise.

We denote as Ê(t, t+ T ) = {(i, j) ∈ E : e(τ, (i, j)) = 1 for some τ ∈ [t, t+ T ]}, the set of edges selected at least once
during the time interval [t, t + T ]. We now recall a definition that has been used in [14] to prove almost sure finite
time stability in gossip based vehicle routing problems.

Definition 4.2 (Stochastic persistence) An edge selection process e is said to be stochastically persistent if
∀t ≥ 0 there exist a finite T > 0 and a probability p ∈ (0, 1) such that

Pr(Ê(t, t+ T ) = E) ≥ p (3)

where Pr(·) denotes a probability.

Stochastic persistence implies that, if we consider a finite but sufficiently large time interval, then each edge has a
probability greater than or equal to a finite value p of being selected during such an interval. In particular, the case
in which p = 1 is called deterministic persistence. Deterministic persistence implies that, if we consider a finite but
sufficiently large time interval, then for sure all edges are selected at least once during such interval. Deterministically
persistent edge selection processes can be easily implemented in a networked system if algorithms for distributed time
synchronization are implemented as well. We refer the reader to the works by J. He et al. [21,22] for a representative
example of distributed time synchronization approaches based on consensus on the maximum value algorithms.

Definition 4.3 Given a stochastically persistent edge selection process we define a continuous random variable τ
that represents the smallest interval of time in which Ê(t, t+ τ) ≡ E.

An upper bound to the expected value E [τ ] of the random variable τ can be computed directly from Definition 4.2
of stochastically persistent edge selection process as E [τ ] ≤

∑∞
i=1 iTp(1 − p)i−1. The particular case in which the

edge selection process is deterministically persistent, clearly implies that τ ≤ T with probability p = 1 and thus
E [τ ] ≤ T . Next, we state a definition of convergence time.

Definition 4.4 We define convergence time the quantity

Tconv = inf
{
T ∈ R+ : Y (t) ∈ Y, ∀t ≥ T

}
.

Thus, according to Definition 4.4, the convergence time Tconv is the minimum time it takes for the network to reach
the discrete consensus set Y.

In the following, let τi, i = 1, . . . , k, represent k realizations of the continuous random variable τ defined as in
Definition 4.3. Now, let us present two propositions needed to prove our main result. We first show that, in finite
time, each node estimates correctly its distance with respect to the unknown sink node.

Proposition 4.5 Consider a stochastically persistent edge selection process e. Let Td(G) =
∑d(G)

i=1 τi. Let di be the
minimum distance of node i from the unknown sink node and let hi(t) be its estimated distance at time t. Let t0 be
the initial instant of time. It holds

hi(t) = di(t) ∀t ≥ Td(G) + t0, ∀i ∈ V.

Proof: See Appendix A. �

We now consider the case in which the load of the sink node does not change for some time. Proposition 4.6
characterizes in what interval of time the generic node estimates correctly the load of the sink node under such
assumption.
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Proposition 4.6 Consider a stochastically persistent edge selection process e. Let Td(G) =
∑d(G)

i=1 τi. If the sink
node’s load x1(t) = x1 for t ∈ [t1, t2] with t2 − t1 ≥ Td(G), then

zi(t) = x1 ∀t ∈
[
t1 + Td(G), t2

]
, ∀i ∈ V.

Proof: See Appendix B. �

The following proposition guarantees that if the number of nodes whose load is maximum in the network remains
constant for a sufficiently long time, then the sink node within a given time interval is guaranteed to hold the
maximum load in the network. In the next result, 2d(G) occurrences of the continuous random variable τ are
necessary as opposed to d(G) as in Proposition 4.6 because two processes involving both the dynamics of variables
zi and the dynamics of the nodes which hold the maximum value in the network need to be considered.

Proposition 4.7 Consider a stochastically persistent edge selection process e. Let T2d(G) =
∑2d(G)

i=1 τi. If in a time
interval [t1, t2] with t2− t1 ≥ T2d(G), both the maximum load and the number of nodes with the maximum load remain
constant, then

x1(t) = max
i∈V

xi(t) ∀t ∈
[
t1 + T2d(G), t2

]
.

Proof: See Appendix C. �

We now prove that, in the case of a stochastically persistent edge selection process, Algorithm 3 converges almost
surely in finite time to discrete consensus. The proof of Theorem 4.8 is based on the results introduced in Propo-
sitions 4.5, 4.6 and 4.7. These results are exploited to state an upper bound to the interval of time between two
consecutive decrements of the maximum load in the network until the discrete consensus condition is achieved.
The basic idea is to consider the scenario in which by chance no decrement of the maximum load occurs and thus
show that after a sufficiently long but finite interval of time, almost surely i) every node is aware of its distance
with respect to the unknown sink node (Proposition 4.5), ii) the sink node holds the maximum load in the network
(Proposition 4.7), iii) every node correctly estimates the actual load of the sink node (Proposition 4.6). As soon as
the sink node holds the maximum load, the smallest load in the network is ensured to filter through the network up
to the sink node in finite time to allow a decrement of the maximum load. The occurrence of these events ensures
in Theorem 4.8 that if a decrement of the maximum load is possible then it will occur in the characterized interval
of time until the discrete consensus condition is achieved.

Theorem 4.8 Consider a network G of n nodes that executes Algorithm 3. If the edge selection process e is stochas-
tically persistent, then

Pr
(
∃Tconv ∈ R+ : ∀t ≥ Tconv, Y (t) ∈ Y

)
= 1

where Y is defined as (2) and Pr (·) denotes a probability.

Proof: See Appendix D. �

5 Expected convergence time

In this section we determine the expected convergence time of the Algorithm 3 when edges are selected according
to a stochastically persistent process.

Proposition 5.1 Let τ be the continuous random variable introduced in Definition 4.3. If the edge selection process
e is stochastically persistent, then

E [Tconv] ≤ (4(M −m)(n− 1) + 1)d(G)E [τ ] , (4)

where M = ∥x(0)∥∞, m = 1T x(0)
n and E [·] denotes the expected value.

Proof: The proof is carried out in three steps.
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(a) Following the arguments of the proof of Theorem 4.8, due to Proposition 4.5 after Td(G) units of time every
node estimates correctly its distance from the unknown sink node, therefore the corresponding expectation is
E
[
Td(G)

]
≤ d(G)E [τ ]. From this instant of time, the maximum number of improvements (decrements) of V (t) =

∥cTY (t)∥∞ = ∥x(t)∥∞ occurs in an interval of time at most equal to Tconv ≤
∑4N(n−1)d(G)

i=1 τ , where N is the
maximum number of improvements of function V (t), needed by any realization of Algorithm 3 to reach the set Y,
starting from any initial token assignment.

(b) We now prove that N ≤ M−m. By definition M−m is the difference between the maximum load and the average
load at the initial configuration. Therefore, since the smallest decrement of V (t) is equal to one, the maximum
number of decrements of V (t) is less or equal to M −m.

(c) Finally, if edges are selected by independent and identically distributed (i.i.d.) stochastic processes, the expected
convergence time depends on the expected value of Tconv which can be bounded as

E [Tconv] ≤ (M −m)E
[
T4(n−1)d(G)

]
+ E

[
Td(G)

]
≤ (4(M −m)(n− 1) + 1)d(G)E [τ ] .

�

The next corollary shows that if the initial load is distributed in the network in such a way that the number of tokens
is distributed evenly, for instance the case in which in the starting configuration each node contains at most ⌈ k

n⌉
tokens, then it is possible to state an upper bound to the expected convergence time which is better with respect to
the general case by a factor O(n).

Corollary 5.2 Let k be the total number of tokens. Assume that tokens are initially distributed at random in the
network so that the node with the greatest number of tokens has at most ⌈ k

n⌉ of them. If the edge selection processes
e are i.i.d. and stochastically persistent, then

Tconv ≤ (4 ((cmax − cmin) k + cmax) + 1)d(G)E [τ ] (5)

Proof: The proof follows from Proposition 5.1. If the maximum initial load consists in ⌈ k
n⌉ tokens of arbitrary

size, then parameters M and m are respectively bounded by M ≤ cmax
k+1
n and m ≥ cmin

k
n . Therefore, since

n−1
n < 1, we can manipulate the bound in eq. (6) into eq.(5). �

Since Algorithm 3 consists only of local and asynchronous state updates between nodes, we now consider the case
where there exists an independent stochastic process for each edge in the network that in parallel governs the
activation of each edge.

Corollary 5.3 Let τe be a random variable that represents the time interval between two consecutive selections of a
given edge by its own stochastic process. If edges are selected according to i.i.d. stochastically persistent processes,
then

E [Tconv] ≤ (4(M −m)(n− 1) + 1)d(G)E [τe] , (6)

where M = ∥x(0)∥∞, m = 1T x(0)
n , and E [·] denotes the expected value.

Proof: The proof follows from Proposition 5.1 and the fact that we are considering i.i.d. stochastically persistent
processes to activate each edge. This implies that the average time for the selection of all edges is equal to the average
interval of time for activation of any given edge, i.e., the expected value of random variable τe corresponds to the
expected value of random variable τ in Definition 4.3. �

We now consider as an example the case where edges are chosen according to Poisson stochastic processes with
parameter λe, which is a stochastically persistent process. The probability that a given edge e ∈ E is selected k

times in the unit of time is P [k] = e−λe λk
e

k! , k = 0, 1, . . .. As a consequence the continuous random variable τe
defining the waiting time among two consecutive selections of the same edge follows an exponential distribution and
its expected value is E [τe] =

1
λe
. Summarizing, the expected convergence time of Algorithm 3 if edges are selected

according to a Poisson process with parameter λe is upper bounded by

E [Tconv] ≤ 4(M −m)(n− 1)
d(G)
λe

≈ O (n) d(G). (7)
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Let us now define the instant of time Tstop in which no further token exchanges between nodes may occur.

Definition 5.4 We define stopping time the quantity Tstop ∈ R+ such that it holds

Tstop = inf
{
T ∈ R+ : Y (t) = Y (T ), ∀t ≥ T

}
.

The next proposition characterizes the existence of a stopping time as in Definition 5.4.

Proposition 5.5 If the edge selection process e is stochastically persistent, then

P (∃Tstop : ∀t ≥ Tstop, Y (t) = Y (Tstop)) = 1.

Proof: By Theorem 4.8 after at most Tconv units of time the network reaches discrete consensus. Using the
same arguments as in the proof of Theorem 4.8, by Propositions 4.6, and 4.7 at most at time Tconv + T4d(G) the
sink node holds the maximum load of the network and each node has a correct estimation of the sink load. At this
point, no more balancing may occur since no pair of nodes has load difference less than cmax and therefore the local
balancing rule is never triggered. Thus, according to the local state update rule, the loads are ordered in decreasing
order from largest (in the sink node) to smallest (in nodes at maximum distance). It is easy to show that after at
most Td(G)2 units of time, corresponding to the time it takes to order a set of d(G) loads with random swaps of a
pair of loads, all nodes reach a local equilibrium in which no condition of the local state update rule that motivates a
load exchange is triggered. Therefore, Tstop ≤ Tconv + Td(G)2 . Since Tconv and Td(G) exist almost surely with unitary
probability the statement is proved. �

6 Numerical simulations

A series of numerical simulations has been carried out to compare the convergence time of Algorithm 3 resulting
from numerical simulations with the discrete consensus algorithm [10] which generalizes quantized consensus [1].
Simulations have been performed by considering tokens with random size between 1 and 10, thus cmax = 10. Each
token is initially assigned to a random node with uniform probability. Two graphs topologies have been considered
to highlight the scalability of the algorithm with respect to the number of nodes: random graphs and line graphs. For

random graphs, the probability of edge existence between any pair of nodes has been chosen to be p = 1.1 ln(n)
n , where

n is the number of nodes and ln(n) is the natural logarithm. This choice was made to ensure a high chance of graph
connectivity with high probability of a diameter equal to 6. Simulations have been repeated 100 times for graphs size
from 10 to 200 nodes. For each simulation a total of K = 4n tokens have been considered so that the average load is
kept constant for different network sizes. Figure 2 shows the average convergence time, in number of local updates,
of FDC (continuous line) and Discrete Consensus (dashed line). In the simulation edges are chosen sequentially at
random with equal probability to allow a fair comparison with previous results that characterize the convergence
time of quantized consensus and discrete consensus in terms of number of local state updates. Simulations show that
the FDC algorithm has greatly improved convergence time. The difference between convergence times in random
graphs for the two algorithms shown in Figure 2 scales as O(n). In Figure 3 the worst case convergence time over
the same simulations is shown. It can be seen that also the worst case convergence time of FDC scales similarly as
the average convergence time for random graphs with roughly the same performance gap with respect to discrete
consensus.

In Figure 4 and Figure 5 simulations for a line graph with a number of nodes varying from 10 to 200 is shown.
Each algorithm execution has been repeated 100 times with random initial conditions. Figure 4 shows a comparison
of average convergence time, in number of local updates with semi-logarithmic scale, of FDC (continuous line) and
Discrete Consensus (dashed line). For line graphs, where the diameter of the network is equal to n − 1, the worst
case expected convergence time of Discrete Consensus grows as O(n4) while FDC grows as O(n2). Figure 5 shows a
comparison of the maximum convergence time between the two algorithms.

Finally, Figure 6 shows a very significant feature of the proposed algorithm. Simulations are performed on random
graphs with depth equal to 6. In this case we express the convergence time in normalized units of time as function of
the random variable τe, which represents the interval of time between two consecutive selections of the same edge.
By choosing E [τe] = 1, in Figure 6 is shown a comparison between the predicted upper bound on the convergence
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Fig. 2. Comparison of average convergence time between FDC and Discrete Consensus on random graphs (average over 100
executions.)
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Fig. 3. Comparison of maximum convergence time between FDC and Discrete Consensus over random graphs (maximum over
100 executions).

time, which varies depending on the initial condition according to parameters M and m as in Proposition 5.1, and
the simulated convergence time for the FDC algorithm. In this simulation it appears that convergence time does not
depend on the number of nodes for random graphs. There are multiple reasons for this behavior. First, the chosen
network topologies are random graphs which exhibit constant diameter as n grows. Second, the simulation takes
into account parallelism of execution of the local state updates, i.e., to an increased number of edges it corresponds
an increased number of local state updates in the unit of time. In particular, if each stochastic process that governs
activation of each single edge is identical and independent, then as discussed in Section 4 the expected value of the
random variable τ in Definition 4.3 does not increase with the number of nodes. Third, the upper bound on the
convergence time discussed in Proposition 5.1 is conservative because it is computed for a worst case scenario and
appears to be higher than the actual expected convergence time by a factor O(n) as observed in simulations.

Thus, simulations show that the discrete consensus problem can be solved in an interval of time independent from
the number of nodes when considering random graphs of bounded diameter and exploiting the inherent parallelism
of local state updates.

7 Conclusions

In this paper we have presented a novel decentralized algorithm, the FDC algorithm, that solves the discrete consensus
problem, a generalization of the quantized consensus problem. It has been shown that the proposed algorithm has
improved convergence time with respect to other discrete and quantized consensus algorithms in the literature.
Furthermore, the proposed algorithm can be implemented in any undirected connected network topology as opposed
to other approaches which require Hamiltonian graphs [11]. A stochastic characterization of the algorithm in terms
of different stochastic edge/node selection processes has been presented taking into account the inherent parallelism
of local state updates in large networks. Simulations have been provided to compare the theoretical upper bound
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Fig. 4. Comparison of average convergence time between FDC and Discrete Consensus over a line graph (average over 100
executions), with semi-logarithmic scale.

20 40 60 80 100 120 140
10

2

10
3

10
4

10
5

10
6

10
7

Number of nodes

M
ax

im
um

 c
on

ve
rg

en
ce

 ti
m

e 

 

 

Fast Discrete Consensus
Discrete Consensus

Fig. 5. Comparison of maximum convergence time between FDC and Discrete Consensus over a line graph (maximum over
100 executions), with semi-logarithmic scale.
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Fig. 6. Comparison between the upper bound on the average convergence time of Proposition 5.1 and simulated convergence
time of FDC for random graphs expressed in normalized time with expected interval time between selection of the same edge
equal to E[τe] = 1, the y-axes differ by 103 in scale.

to the convergence time with the simulated convergence time for random graphs and line graphs with increasing
number of nodes. An empirical comparison of convergence time between FDC and Discrete Consensus has been
provided to highlight the increased performance with respect to the state of the art.

Future work will consist in addressing time-varying network topologies.

13



References
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Appendix

A Proof of Proposition 4.5

The random variable τ in Definition 4.3 represents the length of the interval of time in which all edges have been
selected at least once, including those edges incident on the sink node. The sink node has h1 = d1 = 0 and never
changes this value. As a result of the local state update rule all nodes at unit distance from the sink node estimate
correctly their distance from it as hi = 1 after a time interval equal to τ . Iteratively, whenever Step 3 of the local
state update rule in Algorithm 2 is executed, the nodes compare their estimated distance with that of their neighbor
and update it accordingly. After q realizations of the random variable τ , corresponding to Tq =

∑q
i=1 τi units of

time, all nodes that are at a distance less or equal to q with respect to the sink node have a correct estimation of
their distance, i.e., for such nodes it is hi(t) = di for all t ≥ t0 + Tq. Since the distance between any node and the

sink node is at most equal to the depth d(G) of graph G, after Td(G) =
∑d(G)

i=1 τi units of time, every node in the
network knows its correct distance from the unknown sink node.

14



B Proof of Proposition 4.6

The random variable τ in Definition 4.3 represents the length of the interval of time in which all edges have been
selected at least once, including those edges incident on the sink node. As a result of the local state update rule
and the assumption that the load of the sink node is not changing in the considered time interval, all nodes at unit
distance from the sink node have an exact knowledge of the sink load after a time interval equal to τ1. For the same
reason, after q realizations of the random variable τ , corresponding to Tq =

∑q
i=1 τi units of time, all nodes that are

at a distance less or equal to q with respect to the sink node have a correct estimation of the sink load, i.e., for such
nodes it is zi(t) = x1 for all t ∈ [t1 + Tq, t2]. Therefore, since the distance between any node and the sink node is at

most equal to the depth d(G) of graph G, after Td(G) =
∑d(G)

i=1 τi units of time, it is zi(t) = x1 ∀i ∈ V.

C Proof of Proposition 4.7

The sink load is by definition at most equal to the maximum load x1 ≤ maxi∈V xi(t). On the other hand, during the
algorithm execution, the sink load is time-varying, thus other nodes’ estimations of the sink load may be incorrect
after each change. If the maximum load of the network is constant in the considered time interval, then in at most
Td(G) units of time it holds zi(t) ≥ x1 for all i ∈ V and zi ≤ maxi∈V xi(t), i.e., every node knows an upper bound
to the actual value of the sink load. Consider now the selection of edge (i, j), in which node j holds the maximum
value in the network. Two cases may occur.

(1) xi < xj − cmax: The nodes balance their load and the number of nodes which hold the maximum value is
reduced by one, contradicting the assumption that the number of nodes with maximum value is constant in the
considered interval of time.

(2) xi ≥ xj − cmax: This implies that zi − xi < cmax, thus the largest load in the two nodes is moved closer to the
sink node according to the Local State Update Rule in Algorithm 2.

Now we consider an interval of time in which the number of nodes which hold the maximum load is constant. After
Td(G) units of time an estimation by every node of the sink load which cannot be greater than the maximum load
in the network is ensured. If the edge selection process is stochastically persistent every τ units of time with τ as in
Definition 4.3, then the distance between the sink node and a node with load equal to the maximum is reduced by
at least one due to Step 4 of the local state update rule in Algorithm 2. It follows that in at most after a further
Td(G) units of time the statement of the proposition holds, i.e., x1(t) = maxi∈V xi(t) ∀t ∈

[
t1 + T2d(G), t2

]
, where

i = 1 is the index of the sink node.

D Proof of Theorem 4.8

Consider function
V (t) = ∥cTY (t)∥∞ = ∥x(t)∥∞. (D.1)

The proof is based on four main arguments.

(1) Due to Proposition 4.5 after Td(G) units of time, every node correctly estimates its distance from the unknown
sink node. In the following we consider the case in which t ≥ Td(G) and the nodes have already estimated their
distance.

(2) We now prove that ∀tk ≥ 0 it holds V (tk+1) ≤ V (tk).

If there is only one node with the maximum load and such a node is one of the two selected nodes at Step 5 of
Algorithm 3, when the local state update rule in Algorithm 2 is executed, it holds V (tk+1)≤V (tk) for all tk ≥ 0
due to Step 3 of the Balancing rule which prevents any increase of the maximum value of load between any pair
of nodes involved in a state update. If none of the selected nodes has the maximum load in the network, it holds
V (tk+1) = V (tk). The same occurs when one of the selected nodes has the maximum load but there also exist other
nodes with the maximum load.

(3) Whenever the maximum load is reduced it holds V (tk+1) < V (tk), the local maximum must decrease of at least
1 being cj ∈ N for all j = 1, . . . ,K, thus V (tk+1) ≤ V (tk)− 1.
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(4) We now prove that if at a given time instant tk it is

max
i,j∈V

|xi(tk)− xj(tk)| > cmax (D.2)

then Algorithm 3 after a finite interval of time at most equal to ∆ = (n − 1)T4d(G) it holds V (tk + ∆) < V (tk).
Let τi, i = 1, . . . , d(G), be d(G) realizations of the continuous random variable τ defined as in Definition 4.3. Let
Ts =

∑s
i=1 τi.

By Proposition 4.7 if the maximum load and the number of nodes with the maximum load remain constant, then

if the edge selection process is stochastically persistent there exists T2d(G) =
∑2d(G)

i=1 τi such that after T2d(G) units
of time the sink node holds the maximum load. By Proposition 4.6 after at most a time equal to Td(G) all nodes
have an exact estimation of the sink load. If inequality (D.2) holds, then there exists at least one node whose load
is smaller than the maximum load of a quantity larger than cmax. After further Td(G) units of time such load is
brought closer to the sink node by at least one node due to Step 4 of the local state update rule in Algorithm 2.
The maximum distance that such load needs to travel to get close to the sink node is at most equal to the graph
depth d(G). Thus, after at most Td(G) units of time a local balancing involving the sink node occurs, thus reducing
the number of nodes verifying inequality (D.2). The same reasoning can be iterated until there exists some node
verifying inequality (D.2). The number of nodes whose load corresponds to the maximum while the network is not
in the discrete consensus state may be at most equal to n− 1. It follows that, after at most ∆ = (n− 1)T4d(G) units
of time, V (tk + ∆) ≤ V (tk) − 1. According to Definition 4.2, ∀t ≥ 0 there exist a finite T > 0 and a probability

p ∈ (0, 1) such that Pr(Ê(t, t + T ) ≡ E) ≥ p. Therefore, the probability that the event Ê(t, t + T ) ≡ E occurs at
least (n− 1)4d(G) times in a finite interval of time is at least

Pr
(
Ê(ti, ti + T ) ≡ E, i = 1, . . . (n− 1)4d(G),

with t(n−1)4d(G) ≤ (n− 1)T4d(G)
)
≥ p(n−1)4d(G).

Since function V (tk) has integer values, it may decrease only a finite number of times before the state of discrete
consensus is achieved, the condition |xi(t)−xj(t)| ≤ cmax ∀i, j ∈ V is achieved with a finite number of occurrences of

the event Ê(ti, ti + T ) ≡ E. It follows that with probability one (almost surely), ∃Tconv ∈ R+ such that ∀t ≥ Tconv,
and ∀i, j ∈ V, it is |xi(t)− xj(t)| ≤ cmax, thus proving the statement. �
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