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Abstract

This note shows by means of simple counterexamples that some key results presented by Luo et al. on

the synthesis of maximally permissive supervisors based on the Uncontrollable Transition Gain Transfor-

mation method are incorrect. As a result, the transformation of inadmissible generalized mutual exclusion

constraints for Petri nets is still an open issue.
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1 Introduction

Recently, Luo et al. have presented an original approach to design maximally permissive supervisors [2] for

Petri nets. In their approach, an algorithm based on an efficient iterative method is presented to transform a

given generalized mutual exclusion constraint (GMEC) [1,3] which is not admissible into a set of admissible

GMECs, the disjunction of which is equivalent to the original constraint.

In this note, we show through a series of counterexamples that some key results in [2] are incorrect.

Although we believe that the transformation of an inadmissible GMEC into an equivalent set of admissible

constraints is an interesting and potentially fruitful technique for Petri net control, the GMEC transformation

problem in arbitrary Petri nets remains open.

In the the rest of the paper, for consistency we use the term GMEC to refer to the linear constraint in [2].

2 Counterexample for Theorem 2 in [2]

A fundamental result in [2], from which all subsequent results are derived, is Theorem 2 that shows how an

inadmissible GMEC (w,k) can be transformed into a disjunction of equivalent GMECs
∨
(W ).

The notion of equivalence used in [2] implies that the sets of admissible markings of the original and

transformed constraints are identical, i.e., A(w,k) = A∨
(W ), where

A∨
(W ) =

∪
(w,k)∈W

A(w,k). (1)

The following counterexample presents a case in which A(w,k) ̸= A∨
(W ), thus showing that the theorem

is incorrect.

Figure 1: Counterexample 1.

Example 1 Consider the Petri net in Figure 1 with set of controllable transitions Tc = {t1, t4, t6} and set

of uncontrollable transitions Tu = {t2, t3, t5}. We want to enforce the GMEC (w,k) = ([0,0,0,1]T ,0), i.e.,

M(p4)≤ 0. Note that in what follows C(p, t) denotes the incidence relation of a place p and a transition t.
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Since wT ·C(·, t5) = 1, by applying the Uncontrollable Transition Gain Transformation (UTGT, see [2]

for its definition) function we have:

W = µ((w,k), t5)

= {ρ((w,k), t5, p2)}∪{ρ((w,k), t5, p3)}

= {([0,1,0,1]T ,0),([0,0,1,1]T ,0)}

(2)

Therefore two new GMECs (w1,k1) = ([0,1,0,1]T ,0) and (w2,k2) = ([0,0,1,1]T ,0) are obtained.

One can readily verify that the set of admissible markings, from which no sequence of uncontrollable

transitions can lead to a marking violating the original constraint, is

A(w,k) ={[0,0,x,0]T |x ≥ 0}

∪{[0,y,0,0]T |y ≥ 0}

∪{[1,0,0,0]T}

(3)

while for the transformed constraints A(w1,k1) and A(w2,k2) are

A(w1,k1) = {[0,0,x,0]T |x ≥ 0}

and

A(w2,k2) = {[0,y,0,0]T |y ≥ 0}.

Hence A∨
(W ) = A(w1,k1)∪A(w2,k2) ( A(w,k). �

Remark 1 We will point out where the flaw in the proof of Theorem 2 in [2] lies. In part (b) of the proof, the

authors want to show that

Aw,k ⊆ A∨
(W ) (4)

and assume by contradiction that Aw,k * A∨
(W ). They say that this condition is equivalent to the following

condition:

∃M ∈ Aw,k,
∧

(w′,k)∈W

w′T ·M > k (5)

However, Eq. (5) does not imply M /∈A∨
(W ) but M /∈L∨

(W ). Therefore the correct conclusion of part (b)

is:

Aw,k ⊆ L∨
(W ) (6)

By A∨
(W ) ⊆ L∨

(W ), from Eq. (6) we cannot conclude Eq. (4). Theorem 2 in [2] holds in the particular
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case in which A∨
(W ) = L∨

(W ), e.g., if all constraints in the complement weight set (CWS, see [2] for its

definition) are controllable (a GMEC is said to be controllable if the firing of any uncontrollable transition

does not increase its token count). �

3 Redefining admissibility for disjunctions

We believe that the definition of the admissible markings set for a disjunction of GMECs
∨
(W ) given in

Eq. (1) is not sound. In fact, there may exist a marking M that is not admissible for each single constraint in∨
(W ) and yet from M only legal markings in L∨

(W ) are reachable by firing uncontrollable transitions. This

is the case of marking M = [1,0,0,0]T in Example 1.

A reasonable definition of A∨
(W ) could be the following one (we will denote the correct solution with a

hat to avoid any confusion).

Definition 1 Given a disjunction of GMECs
∨
(W ) with the set of legal markings L∨

(W ), its set of admis-

sible markings consists of all those markings which will never violate
∨
(W ) by only firing uncontrollable

transitions, i.e.,:

ˆA∨
(W ) = {M ∈ R(N,M0)|RTu(N,M)⊆ L∨

(W )} (7)

�

We briefly explain the key difference between ˆA∨
(W ) in this paper and A∨

(W ) in Definition 2 in [2]. Under

the new definition ˆA∨
(W ), a marking M is illegal if it may uncontrollably evolve to M′ which violates all

(w1,k1), . . . ,(wr,kr) in W . However, under the original definition of A∨
(W ) in [2], a marking M is illegal if it

may uncontrollably evolve to several markings M1, . . . ,Mr which violates (w1,k1), . . . ,(wr,kr), respectively.

Since the trajectory from M to Mi (1 ≤ i ≤ r) may be different, it may happen that from M the system may

violate each single GMEC by firing uncontrollable transitions, but cannot violate all of them at the same time.

This is exactly the case in Example 1: M = [1,0,0,0]T may uncontrollably evolve to [0,0,1,0]T or [0,1,0,0]T

which violate (w1,k1) and (w2,k2), respectively, indicating M /∈A∨
(W ). However, M ∈ ˆA∨

(W ) holds since M

can never evolve to a marking which violates both (w1,k1) and (w2,k2).

In the following we show that under this new definition, Theorem 2 in [2] holds.

Theorem 2rev. Let (w,k) be a GMEC to be implemented on an ordinary PN, tx be an uncontrollable

transition such that w(tx) ·C > 0 and •tx ̸= /0, and tx’s CWS be W = µ((w,k), tx). Then A(w,k) = ˆA∨
(W ).

Proof: (a) A(w,k) ⊆ ˆA∨
(W ). We prove this by showing that if a marking M is not in ˆA∨

(W ), then

from M it is possible to uncontrollably reach a marking M′′ not in L(w,k) and thus M is not in A(w,k). In
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fact, if M /∈ ˆA∨
(W ), then from M by firing uncontrollable transitions it is possible to reach a new marking

M′ /∈ L∨
(W ), i.e., M′ violates all GMECs in W . If M′ violates (w,k), then the proof is concluded with

M′′ = M′.

If M′ does not violate (w,k) but violates all GMECs (wi,k) = ρ((w,k), tx, pi) ∈ W , then we show that

tx is enabled at M′. In fact, M′ satisfies wT ·M′ ≤ k while for each (wi,k) in W , the equation wT
i ·M′ +

M′(pi)> k holds, where pi ∈ •tx. Then we can conclude that M′(pi)> 0 necessarily holds for all pi ∈ •tx and

consequently tx is enabled, since the net is ordinary.

If tx is repetitive, i.e., its firing does not decrease the marking of any place in •tx, then tx can fire infinitely

often from M′ to continuously increase the token count of (w,k) (because its weight is positive, i.e., wT ·

C(·, tx) > 0) until (w,k) is violated. If tx is not repetitive, by firing it a suitable number of times from M′,

a marking M′′ is reachable where some place pi ∈ •tx is empty. Now consider the constraint (wi,k): by

definition of the UTGT function, wT ·M′′ = wT
i ·M′′ = wT

i ·M′ > k holds. In fact the first equality holds since

place pi is not marked at M′′, while the second equality holds since the firing of tx does not modify the token

count of (wi,k). Hence M′′ /∈ L(w,k).

(b) A(w,k) ⊇ ˆA∨
(W ). If M ∈ ˆA∨

(W ), no marking M′ /∈ L∨
(W ) is reachable from it by only firing un-

controllable transitions. Note that from the definition of the UTGT function, if a marking violates (w,k),

then it must violate
∨
(W ), which implies the following relationship between the sets of legal markings:

L(w,k) ⊃ L∨
(W ). Since no marking M′ violating

∨
(W ) is reachable from M by only firing uncontrollable

transitions, we can conclude that no marking M′ /∈ L(w,k) is reachable from M by only firing uncontrollable

transitions. Therefore M ∈ ˆA(w,k) holds. �

4 Counterexample to Algorithm 1

The main result presented in [2] is Algorithm 1 that proposes a computationally efficient procedure to design

a supervisor by repeated constraint transformation. It is claimed in [2] that this algorithm determines a

maximally permissive supervisor: here we show that this is not the case.

For easy comprehension we briefly sketch the main steps of Algorithm 1 in [2].

• (Step 1) Consider a Petri net and a set W initially containing a single GMEC (w,k) as inputs.

• (Step 2) If all (w,k) ∈W are admissible1 then stop.

• (Step 3) Select a GMEC (w,k) ∈ W that is not admissible due to a transition tx and let W ′ be the set

1The algorithm in [2] also considers the notion of weak admissibility but for the sake of simplicity here we ignore this distinction,
assuming that all considered constraints are either admissible or not admissible.
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obtained from W replacing (w,k) with the CWS µ((w,k), tx).

• (Step 4) Let W =W ′ and goto 2.

When the algorithm halts, the set W will contain admissible GMECs only, and Theorem 3 in [2] claims

that L∨
(W ) = A(w,k). The following counterexample shows, however, that the claim is unfounded.

Example 2 Consider again the Petri net in Figure 1 and the initial GMEC in W is (w,k) = ([0,0,0,1]T ,0).

In the first iteration (w,k) will be replaced by (w1,k1) = ([0,1,0,1]T ,0) and (w2,k2) = ([0,0,1,1]T ,0). S-

ince (w1,k1) and (w2,k2) are not admissible, in the second and the third iteration (w1,k1) will be replaced

by (w3,k3) = ([1,1,0,1]T ,0) and (w2,k2) will be replaced by (w4,k4) = ([1,0,1,1]T ,0), respectively. S-

ince (w3,k3) and (w4,k4) are admissible, Algorithm 1 in [2] halts. The output is W = {(w3,k3),(w4,k4)}.

However, we have already shown that M = [1,0,0,0]T is a marking in A(w,k) but it is forbidden by W.

Remark 2 The reason why Algorithm 1 in [2] fails to give an optimal solution is stated as follows. In the first

iteration Theorem 2rev in this note ensures that ˆA∨
(W ′) = ˆA∨

(W ) =A(w,k) since W contains only one GMEC.

However, if W contains more than one GMECs, this theorem does not guarantee that
∨
(W )≡

∨
(W ′) at each

iteration.

We also note that this problem cannot be corrected by minor modifications. Algorithm 1 in [2] is based

on the UTGT function, which assumes that for all transformed constraints (w′,k′), k′ = k holds. Therefore in

this example all GMECs in the output W are in the form (w′,0). Since the legal marking M1 = [1,0,0,0]T

and the illegal marking M2 = [2,0,0,0]T will simultaneously satisfy or violate (w′,0) regardless of the value

w′, M1 = [1,0,0,0]T and M2 = [2,0,0,0]T will simultaneously satisfy or violate
∨
(W ). Therefore the solution

must be suboptimal. �

Finally we remark that the two GMECs obtained by Algorithm 1 in the previous example are exactly the

two possible solutions obtained by Moody and Antsaklis’ approach [3]. We believe that Algorithm 1 in [2]

is simply another way of constructing all suboptimal solutions in Moody and Antsaklis’ approach whose

disjunction, however, is not an optimal solution, i.e., it is not always maximally permissive.

5 Counterexample to Lemma 3 in [2]

The last result in [2] that we claim is not correct pertains to the procedure of identifying a class of useless

constraints that can be removed from a disjunction without changing the legal marking set. In [2] Definition 5

introduces the notion of zero constraint, denoted as 0, while Lemma 3 (whose proof is omitted) states that a

constraint (w,k) that satisfies wT ·M0 > k is equivalent to the zero constraint.
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This result is obviously incorrect. In fact, according to Definition 5 in [2], a GMEC (w,k) is the zero

constraint with respect to a net system (N,M0) if R(N,M0)∩A(w,k) = /0. On the contrary, the condition

wT ·M0 > k only implies that the initial marking is inadmissible, i.e., M0 ̸∈A(w,k) while it may well be possible

that some other reachable marking is admissible, i.e., R(N,M0)∩A(w,k) ̸= /0, which obviously implies that

(w,k)≡ 0 does not hold.

Example 3 Consider again the Petri net in Figure 1 and let (w,k) = ([0,0,0,1]T ,0). Assume that the initial

marking is M0 = [2,0,0,0]T . This marking is obviously not admissible but by firing, say, t2 twice, we reach

M = [0,2,0,0]T that is admissible. �

Erroneous Lemma 3 in [2] is used to justify a simplification of the constraint transformation procedure. In

fact, in Algorithm 1 in [2], when a GMEC (w,k) is added to the set W ′ (see step 3 in the previous section) the

authors suggest testing if wT ·M0 > k is true. If it is true, (w,k) would be discarded as redundant. However,

as the next example shows, discarding such a constraint may lead (once more) to a suboptimal solution, thus

providing an additional reason for Algorithm 1 in [2] to fail.

Figure 2: Counterexample 2.

Example 4 Consider the net N in Figure 2 with set of controllable transitions Tc = {t1, t4, t5, t6} and set of

uncontrollable transitions Tu = {t2, t3}. We want to enforce the GMEC (w,k) = ([0,0,0,1]T ,1), i.e., M(p4)≤

1 on this net. After applying the UTGT three times, we determine the optimal solution that contains the

disjunction of two admissible GMECs: (w1,k1) = ([1,1,0,1]T ,1) and (w2,k2) = ([1,0,1,1]T ,1). Since wT
1 ·

M0 > k1, following Lemma 3 in [2] one may consider the GMEC (w1,k1) as a zero constraint and remove

it. Therefore one would erroneously conclude that A(w,k) coincides with A(w2,k2) = {M|M(p1)+M(p3)+

M(p4) ≤ 1}, and the marking M = [0,0,2,0]T /∈ A(w2,k2) will be forbidden by the control policy. However

M is a legal marking that belongs to both A(w,k) and A(w1,k1) and can be legally reached by firing t4 twice at

M0. �

6 Summary

We summarize what we feel are the main problems with the approach presented in [2].
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(1) Definition of A∨
(W ): the definition of the admissible set A∨

(W ) for a disjunction of constraints in

[2] is not sound. We have provided a counterexample to show that Theorem 2 in [2] is not correct under

such a definition. We have proposed a proper definition of this set ˆA∨
(W ) in Definition 1 in this note. In

Theorem 2rev presented in this note, we have shown that Theorem 2 in [2] holds under this new definition. We

believe that the additional result discussed in [2], namely the characterization of weakly admissible GMECs,

still holds under the new definition, but a formal proof is still needed.

(2) Maximal permissiveness: we have presented a counterexample to show that the output of Algorithm 1

in [2] is not optimal as claimed. The reason is that the two GMEC sets W and W ′ before and after an

iteration process are not always equivalent. The solution would be optimal in the particular case in which

Algorithm 1 in [2] halts after the first iteration. Our counterexample also shows that a GMEC transformation

procedure based on the UTGT function cannot find an optimal solution in all cases. Solving this problem is

not straightforward: it needs a major revision of the UTGT function and the CWS computation.

(3) Zero constraints: the last counterexamples show that Lemma 3 in [2] is not correct, which also leads to

a suboptimal output of Algorithm 1 in [2]. We believe that this problem can be fixed by removing this lemma

and removing the corresponding simplification procedure in the algorithm, i.e., all GMECs in which M0 is

not admissible should be preserved in W ′. This would remove one of causes of suboptimality of Algorithm 1

in [2].

The sound contribution of [2] is thus reduced to a stopping criterion (called weakly admissible GMECs) in

the constraint transformation approach. We also believe that Algorithm 1 in [2] based on the UTGT function

and the CWS computation is meaningful since it gives a suboptimal but more permissive control policy with

respect to Moody and Antsaklis’s approach, where an inadmissible GMEC is only transformed into a single

admissible constraint [3]. However, the constraint transformation problem in arbitrary Petri nets still remains

open.
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