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Abstract

Synchronizing sequences have been proposed in the late 60’s to solve testing problems

on systems modeled by finite state machines. Such sequences lead a system, seen as a black

box, from an unknown current state to a known final one.

This paper presents a first investigation of the computation of synchronizing sequences for

systems modeled by synchronized Petri nets. In the first part of the paper, existing techniques

for automata are adapted to this new setting. Later on, new approaches, that exploit the net

structure to efficiently compute synchronizing sequences without an exhaustive enumeration

of the state space, are presented.

Note to practitioners

Driving a system to a known state when its current state it is not known is a very impor-

tant problem in many practical applications, such as checking communication protocols, part

orienteers, digital reset circuit, etc. This topic has received a lot of attention in the past few

decades. The classic approach to solve this problem considers systems modeled by automata.

In particular a standard technique requires the computation of a synchronizing sequence, i.e.,

a sequence of inputs that drives the system to a unique final state independently of the initial

state and does not require the observation of the system’s outputs.

This paper presents a first investigation on the computation of synchronizing sequences

for systems modeled by synchronized Petri nets. Petri nets are a very intuitive model that

is widely used in automation. Many analysis problems can be efficiently solved using Petri

nets by taking into account the net structure, without an exhaustive enumeration of its state

space. The techniques we propose for computing synchronizing sequences exploit the net

structure and lead to viable algorithms that can be applied to large scale systems.
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1 Introduction

Due to increasingly larger size and rising complexity, the need of checking systems’ performance

increases and testing problems periodically resurface. Several testing problems for discrete event

systems (DES) have been introduced in the pioneering paper of Moore [1] using automata,

while Lee and Yannakakis [2] have presented a review of different techniques to solve them.

Five fundamental classes of testing problems have been defined: i) determining the final state

after a test; ii) state identification; iii) state verification; iv) conformance testing; v) machine

identification.

We consider the problem of determining the final state after a test. This has many important

applications and is of general interest in several areas [3, 4], including robotics and robotic

manipulation, industrial automation, etc.

A classical solution to this problem, assuming the system has no measurable outputs, consists

in determining a synchronizing sequence (SS), i.e, an input sequence that drives the system

to a known state no matter what current unknown state is. The main disadvantage of using

automata in this context is the fact that the algorithms for computing SSs are polynomial in

the number of states [2], and it is well known that in a discrete event system the state space

grows exponentially with the number of subsystems that compose it (state space explosion) [5].

Looking for a more efficient way to solve such a problem, we turn to Petri nets (PNs), a powerful

discrete event model. Petri nets provide several techniques to overcome the state space explosion

problem, by means of structural analysis, i.e., algorithms that work on the net structure rather

that its reachability set [5]. As far as we know, our results are the first concerning the use of

Petri nets to compute SSs.

A review of the literature on SSs can be found in the next section, while in the section that

follows the main contributions of the paper are described.

1.1 Literature review

Synchronization protocols have been developed to address global resource sharing in hierarchical

real-time scheduling frameworks [6–8]. Synchronization experiments have been done also in

biocomputing, where Benenson et al. [9, 10] have used DNA molecules as both software and

hardware for finite automata of nano-scaling size. They have produced a solution of 3 × 1012

identical automata working in parallel. In order to synchronously bring each automaton to its

”ready-to-restart” state, they have spiced it with a DNA molecule whose nucleotide sequence

encodes a reset word. Jürgensen [11] has surveyed synchronization issues from the point of view

of coding theory in real life communication systems. Synchronization is an important issue in

network time protocol [12,13], where sharing of time information guaranties the correct internet

system functioning. Most of real systems, natural or man-built, have no integrated reset or

cannot be equipped with. That is the case of digital circuits, where a reset circuit not only

involves human intervention but increases the cost of the device itself reducing its effectiveness.
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In this field Cho et al. [14] have shown how to generate test cases for synchronous circuits with no

reset. When classic procedures fail due to large circuit size or because a synchronizing sequence

does not exist, Lu et al. [15] propose a technique based on partial reset, i.e., special inputs that

reset a subset of the flip-flops in the circuit leaving the other flip-flops at their current values.

Hierons [16] has presented a method to produce a test sequence with the minimum number

of resets. Nowadays the synchronizing theory is a field of very intensive research, motivated

also by the famous C̆erný conjecture [17]. In 1964 Ján C̆erný has conjectured that (n − 1)2 is

the upper bound for the length of the shortest SS for any n−state machine. The conjecture is

still open except for some special cases [18], [4]. Synchronization allows simple error recovery

since, if an error is detected, a SS can be used to initialize the machine into a known state.

That is why synchronization plays a key rôle in scientific contexts, without which all system

behavior observations may become meaningless. An interesting challenge is represented by the

road coloring problem, where one is asked whether there exists a coloring, i.e., an edge labeling,

such that the resulting automaton can be synchronized. It was first stated by Adler in [19]. It

has been investigated in various special cases and finally a positive solution has been presented

by Trahtman in [20], for which complexity analysis are provided [21].

At present the problem of determining a synchronizing sequence has not yet been investigated

for Petri net models and only few works have addressed the broad area of testing in the PN

framework.

The question of automatically testing PNs has been investigated by Jourdan and Bochmann

in [22]. They have adapted methods originally developed for Finite State Machines (FSMs)

and, classifying the possible occurring types of error, identified some cases where free choice

and 1-safe PNs [23] provide more significant results especially in concurrent systems. Later

the authors have extended their results also to k-safe PNs [24]. Zhu and He have given an

interesting classification of testing criteria [25] — without testing algorithms — and presented

a theory of testing high-level Petri nets by adapting some of their general results in testing

concurrent software systems.

In the PN modeling framework, one of the main supervisory control tasks is to guide the sys-

tem from a given initial marking to a desired one similarly to the synchronization problem.

Yamalidou et al. have presented a formulation based on linear optimization [26, 27]. Giua et

al. have investigated the state estimation problem, proposing an algorithm to calculate an es-

timate — and a corresponding error bound — for the actual marking of a given PN based on

the observation of a word. A different state estimation approach has been presented by Corona

et al. [28], for labelled PNs with silent transitions, i.e., transitions that do not produce any

observation. Similar techniques have been proposed by Lingxi et al. in [29] to get a minimum

estimate of initial markings, aiming to characterize the minimum number of resources required

at the initialization for a variety of systems.
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1.2 Contribution of our work

This paper deals with the construction of SSs for systems described by bounded synchronized

PNs. Synchronized PNs, as introduced by Moalla et al. [30], are nets where a label is associated

with each transition. A label corresponds to an input event whose occurrence causes the firing

of all enabled transitions associated with it.

We present several original contributions.

• First, we show that the classic automata approach [2], with minor changes, can be applied

to the reachability graph (RG) of a net. While this approach is fairly general, working for

arbitrary bounded nets, it does not offer any computational advantage.

• Looking for more efficient solutions, a special class of bounded Petri nets called state

machines (SMs) [23] is considered. This model, albeit simple, allows a more compact

description than automata: in fact if such a net has k tokens, its reachability graph may

have up to km−1/(m − 1)! states, where m is the number of places in the net. We define

k-SS a SS constructed for such a net under the assumption that it contains k tokens.

For SMs we present several techniques for SS computation that are based on structural

analysis and do not require the analysis of the whole RG. We address first the case of

strongly connected nets with a single token and present a path based approach, called STS,

to compute a 1−SS. We also show how one may construct a k-SS from an arbitrary 1-SS,

computed either by STS or by RG analysis. This result offers significant computational

advantages with respect to the automata case. The case of non strongly connected SM is

also similarly addressed and several results concerning the existence of SS in such a case

are given.

• We extended these results to possibly unbounded nets that are not state machines but

that contain SM subnets: this family includes several classes of nets that have been used

to model resource allocation systems [31, 32].

• In several experimental results — including randomly generated nets and a manufacturing

example — we compare the performances of the different approaches discussed in the

paper, in terms of computation times, sequence lengths and number of times the approach

finds a solution. The results show the viability of the structural based approaches that in

almost all cases result more efficient that the RG based approaches.

The paper is organized as follows. In Section 2 the background on automata with inputs and

PNs is provided. Section 3 presents the classic SS construction method for automata with in-

puts. Section 4 shows how to obtain SSs by adapting the classic method developed for automata

with inputs to bounded synchronized PNs, via RG construction. Section 5 proposes an orig-

inal technique, based on path analysis, for efficiently determining SSs on strongly connected

SMs. Section 6 presents a short discussion of algorithm complexity. The case of non-strongly

connected SMs is investigated in Section 7. In Section 8 our approaches are extended to nets
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containing state machine subnets. In Section 9 numerical results are presented, applying our tool

to randomly generated SMs and to a manufacturing example. Finally, in Section 10, conclusions

are drawn and open areas of research are outlined.

2 Background

2.1 Automata with inputs

An automaton with inputs Λ is a structure

Λ = (χ,E, δ),

where χ and E are finite and nonempty sets of states and input events respectively, and δ ∶

χ ×E → χ is the state transition function.

When the automaton is in the current state x ∈ χ and receives an event e ∈ E, it reaches the

next state specified by δ(x, e).

Note that δ is usually assumed to be a total function, i.e., a function defined on each element

(x, e) of its domain. In such a case the automaton is called completely specified.

The number of states and input events are respectively denoted by n = ∣χ∣, p = ∣E∣. One can

extend the transition function δ from input events to sequences of input events as follows: a) if

ε denotes the empty input sequence, δ(x, ε) = x for all x ∈ χ; b) for all e ∈ E and for all w ∈ E∗

it holds that δ(x,we) = δ(δ(x,w), e)1 .

The transition function δ can also be extended to a set of states as follows: for a set of states

χ′ ⊆ χ, an input event e ∈ E yields the set of states χ′′ = δ(χ′, e) = ⋃x∈χ′ δ(x, e).

A simple way to represent any automaton is a graph, where states and input events are respec-

tively depicted as nodes and labelled arcs.

An automaton with inputs is said strongly connected if there exists a directed path from any

node of its graph to any other node.

The set of nodes of a non-strongly connected automaton can be partitioned into its maximal

strongly connected components. A component is called ergodic, if its set of output arcs is

included in its set of input arcs, transient, otherwise.

An automaton contains at least one ergodic component and a strongly connected automaton

consists of a single ergodic component.

1Here ∗ denotes the Kleene star operator and E
∗ represents the set of all sequences on alphabet E.
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(a)

(b)

Figure 1: A synchronized PN (a) and a possible behavior (b).

2.2 Place/Transition nets

In this section, it is recalled the PN formalism used in the paper. For more details on PNs the

reader is referred to [23,33].

A Petri net (PN), or more properly a Place/Transition net, is a structure

N = (P,T,Pre,Post) ,

where P is the set of m places, T is the set of q transitions, Pre ∶ P ×T → N and Post ∶ P ×T → N

are the pre and post incidence functions that specify the weighted arcs.

A marking is a vector M ∶ P → N that assigns to each place a nonnegative integer number of

tokens; the marking of a place p is denoted with M(p). A marked PN is denoted ⟨N,M0⟩.

A transition t is enabled at M iff M ≥ Pre(⋅, t). An enabled transition may be fired yielding the

marking M ′ =M +Post(⋅, t) − Pre(⋅, t). The set of enabled transitions at M is denoted E(M).

M[σ⟩ denotes that the sequence of transitions σ = t1 . . . tk is enabled at M and M[σ⟩M ′ denotes

that the firing of σ from M yields M ′.

A marking M is said to be reachable in ⟨N,M0⟩ iff there exists a firing sequence σ such that

M0[σ⟩M . The set of all markings reachable from M0 defines the reachability set of ⟨N,M0⟩ and
is denoted with R(N,M0).
The preset and postset of a place p are respectively denoted ●p and p●. One can define the set

of input transitions for a set of places P̂ as the set ●P̂ = {t ∶ ∀p ∈ P̂ , t ∈ ●p}. Analogously the

set of output transitions for a set of places P̂ is the set P̂ ● = {t ∶ ∀p ∈ P̂ , t ∈ p●}.

6



2.3 Synchronized Petri nets

A synchronized PN [33] is a structure ⟨N,E,f⟩ such that: i) N is a P/T net; ii) E is an alphabet

of input events; iii) f ∶ T → E is a labeling function that associates with each transition t an

input event f(t).
Given an initial marking M0, a marked synchronized PN is a structure ⟨N,M0,E, f⟩.
One extends the labeling function to sequences of transitions as follows: if σ = t1t2 . . . tk then

f∗(σ) = f(t1)f(t2) . . . f(tk).
The set Te of transitions associated with input event e is defined as follows: Te = {t ∣ t ∈ T, f(t) =
e}. Equivalently all transitions in Te are said to be receptive to input event e.

The evolution of a synchronized PN is driven by input sequences as it follows. At marking M ,

transition t ∈ T is fired iff:

1. it is enabled, i.e., t ∈ E(M);
2. the event e = f(t) occurs.

On the contrary, the occurrence of an event associated with a transition t /∈ E(M) does not

produce any firing. Note that a single server semantic is here adopted, i.e., when input event e

occurs, the enabled transitions in Te fire only once regardless of their enabling degree.

One writes M
w
Ð→M ′ to denote that the application of input event sequence w = e1 . . . ek from

M drives the net to M ′.

In Figure 1(a) is shown an example of synchronized PN. Note that labels next to each transition

denote its name and the associated input event. In Figure 1(b) the net evolution is presented

over a possible input sequence w = e2e1e1e2e2 starting from marking M0.

In the rest of the paper, the reader will only deal with the class of bounded synchronized PNs

that also satisfy the following structural restriction, that is common in the literature to ensure

the determinism of the model:

∄p s.t. t, t′ ∈ p● and f(t) = f(t′). (1)

When an event occurs in a deterministic net, all enabled transitions receptive to that event

can simultaneously fire. Thus an input sequence w = e1e2⋯ek ∈ E
∗ drives a deterministic net

through the sequence of markings M0, M1, M2, ⋯, Mk where M0 is the initial marking and

Mi+1 =Mi + ∑
t∈Tei+1

⋂E(Mi)

(Post(⋅, t) − Pre(⋅, t)) .

Example 1 Consider the PN of Figure 1(a) and let M = [201]T be the current marking.

Transitions t1 and t3 are enabled and upon the occurrence of event e1 will simultaneously fire,
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yielding marking M ′ = [110]T . Note that markings [011]T and [300]T , respectively obtained

by the independent firing of t1 and t3, are never reachable. ∎

A marked PN ⟨N,M0⟩ is said to be bounded if there exists a positive constant k such that for

all M ∈ R(N,M0), M(p) ≤ k ∀p ∈ P . Such a net has a finite reachability set. In this case, the

behavior of the net can be represented by the reachability graph (RG), a directed graph whose

vertices correspond to reachable markings and whose edges correspond to the transitions and

the associated event causing a change of marking.

The graph in Figure 3(a) (disregarding the dashed edges) is the reachability graph of the PN in

Figure 1(a).

2.4 State machine Petri nets

Let first recall the definition of a state machine PN.

Definition 2 (State machine PN) [23] A state machine (SM) PN is an ordinary PN such

that each transition t has exactly one input place and exactly one output place, i.e.,

∣●t∣ = ∣t●∣ = 1 (∀t ∈ T ) ∎

Observe that a SM N = (P,T,Pre,Post) may also be represented by an associated graph GN =(V,A) whose set of vertices V = P coincides with set of places of the net, and whose set of arcs A

corresponds to the set of transitions of the net, i.e., A ⊆ P ×P = {(pi, pj) ∣ ∃t ∈ T, pi = ●t, pj = t●}.
Such a graph can be partitioned into its maximal strongly connected components, analogously

to the automata with inputs. These components induce also a partition of the set of places of

the corresponding SM.

Definition 3 (Associated graph) Given a SM N = (P,T,Pre,Post), let GN = (P,A) be its

associated graph. P can be partitioned into components as follows:

P = P1 ⊍⋯⊍Pk

such that for all i = 1, . . . , k and Ai = A ∩ (Pi × Pi) it holds that (Pi,Ai) is a maximal strongly

connected sub-graph of GN . ∎

As discussed in Section 2.1, components P1, . . . Pk can be classified as transient or ergodic com-

ponents.

Definition 4 (Condensed graph) Given a SM N = (P,T, Pre,Post), its corresponding con-

densed graph C(N) is defined as a graph where each node represents a maximal strongly con-

nected component and whose edges represent the transitions connecting these components. ∎

In Figure 2(a) it is shown an example of a synchronized SM which is not strongly connected.

Transient and ergodic components are respectively identified by dashed and dotted boxes. For
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(a)

(b)

Figure 2: A not strongly connected PN (a) and its condensed graph (b).

such a net the transient components are TR1 = {p1}, TR2 = {p2, p3}, TR3 = {p4} and the

ergodic components are ER1 = {p5, p6} and ER2 = {p7}. The corresponding C(N) is shown in

Figure 2(b), where subnets induced by each component are represented by single nodes.

3 Synchronizing sequences for automata with inputs

In this section, the SS classic construction is presented by the aid of finite automata.

Definition 5 (SSs on automata) Consider an automaton with inputs Λ = (χ,E, δ) and a

state x̄ ∈ χ. The input sequence w̄ is called synchronizing for state x̄ if it drives the automaton

to x̄, regardless of the initial state, i.e., ∀x ∈ χ it holds that δ(x,w) = x̄. ∎

The information about the current state of Λ after applying an input sequence w is defined

by the set φ(w) = δ(χ,w), called the current state uncertainty of w. In other words w is a

synchronizing sequence (SS) that takes the automaton to the final state x̄ iff φ(w) = {x̄}.
The synchronizing tree method [34, 35] has been proposed to provide shortest SSs. Such a

method is suitable only for small size systems, since the memory required to build up the tree

is high, and becomes useless when the size grows. As a matter of fact the problem of finding

shortest SSs is known to be NP-complete [18].

Two polynomial algorithms have been mainly used to provide SSs that are not necessarily the

shortest. The so-called greedy and cycle algorithms, respectively of Eppstein [18] and Trahtman

[36], that have equivalent complexity.
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(a)

(b)

Figure 3: The completely specified RG (a) and the corresponding AG (b) of the PN in Fig-

ure 1(a).

The greedy algorithm [18] determines an input sequence that takes a given automaton, regardless

of its initial state, to a known target state: note that the target state is determined by the algo-

rithm and cannot be specified by the user. Here we propose a slightly different implementation

of the greedy algorithm (see Algorithm 7), that takes as input also a state x̄ and determines a

sequence that synchronizes to that state.

This algorithm is later used as a building block to determine a SS to reach a given marking

among those in the reachability set of a bounded PN.

Definition 6 (Auxiliary graph) Given an automaton with inputs Λ with n states, let A(Λ)
be its auxiliary graph AG. A(Λ) contains n(n+1)/2 nodes, one for every unordered pair (x′, x′′)
of states of Λ, including pairs (x,x) of identical states. There exists an edge from node (x′, x′′)
to (x̂′, x̂′′) labeled with an input event e ∈ E iff δ(x′, e) = x̂′ and δ(x′′, e) = x̂′′. ∎

Algorithm 7 (Greedy computation of SSs on automata with inputs)

Input: An AG A(Λ), associated with an automaton with inputs Λ = (χ,E, δ), and a target

state x̄ ∈ χ.

Ouput: A SS w̄ for state x̄.

1. Let i = 0.

2. Let w0 = ε, the empty initial input sequence.

3. Let φ(w0) = χ, the initial current state uncertainty.

4. While φ(wi) ≠ {x̄}, do
4.1. i = i + 1.
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M0 [200]T
M1 [010]T
M2 [101]T

Table 1: Markings of the PN in Figure 1(a).

4.2. Pick two states x,x′ ∈ φ(wi−1) such that x ≠ x′.

4.3. If there does not exist any path in A(Λ) from node (x′, x′′) to (x̄, x̄), stop the

computation, there exists no SS for x̄.

Else find the shortest path from node (x′, x′′) to (x̄, x̄) and let w be the input

sequence along this path, do

4.3.1. wi = wi−1w

4.3.2. φ(wi) = δ(φ(wi−1),w).
5. w̄ = wi. ∎

The following theorem provides a necessary and sufficient condition for the existence of a SS for

a target final state.

Theorem 8 The following three propositions are equivalent.

1. Given an automaton with inputs Λ = (χ,E, δ), there exists a SS for state x̄ ∈ χ;

2. A(Λ) contains a path from every node (x′, x′′), where x′, x′′ ∈ χ, to node (x̄, x̄);
3. Algorithm 7 determines a SS w̄ for state x̄ ∈ χ at step 5., if there exists any SS.

Proof: [1) implies 2)] If there exists a SS for state x̄ ∈ χ, there exists an input sequence w for x̄

s.t. for any x′, x′′ ∈ χ it holds that δ(x′,w) = δ(x′′,w) = x̄. Hence there exists a path labeled w

from any (x′, x′′) to (x̄, x̄).
[2) implies 3)] Consider iteration i of the while loop of Algorithm 7. If there exists a path

labeled w from any (x′, x′′) to (x̄, x̄), then it holds that δ({x′, x′′},w) = {x̄}. Hence the following
inequality holds:

∣φ(wi)∣ = ∣δ(φ(wi−1)/{x,x′},w) ∪ {x̄}∣ ≤ ∣φ(wi)∣ − 1.
The existence of such a sequence for every couple of states x′, x′′ ∈ χ assures that the current

state uncertainty will be reduced to singleton {x̄} after no more than n iteration.

[3) implies 1)] Since Algorithm 7 requires the current state uncertainty to be singleton and uses

it as a stop criterium, if it terminates at step 5., then the sequence found is clearly a SS. ◻

One can easily understand that, when the automaton is not strongly connected, the above

reachability condition will be verified only when there exists only one ergodic component and

there may exist a SS only for those states belonging to this ergodic component.
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4 Synchronizing sequences for bounded synchronized PNs

When computing a SS for real systems modeled by automata, it is assumed that a complete

description of the model in terms of space-set, input events and transition function is given. The

idea is that the test generator knows all possible states in which the system may be.

A similar notion can be given for Petri nets, where equivalently one can say that the test

generator knows a ”starting state”, i.e., a possible state, of the system and the initial uncertainty

coincides with the set of states reachable from this starting state.

In a synchronization problem via PNs, it is given a Petri net N and a starting marking M0. The

current marking M is unknown, but it is assumed to be reachable from M0.

This starting marking, together with the firing rules, provides a characterization of the ini-

tial state uncertainty, given by M0 = R(N,M0). The goal is to find an input sequence that,

regardless of the initial marking, drives the net to a known marking M̄ ∈ R(N,M0).
Given a synchronized PN ⟨N,E,f⟩, a straightforward approach to determine a SS consists in

adapting the existing approach for automata to the reachability graph (RG).

It is easy to verify that this direct adaptation presents one shortcoming that makes it not always

applicable: the greedy approach requires the graph to be completely specified, while in a RG of

a PN this condition is not always true. In fact, from a marking not all transitions are necessarily

enabled, causing the RG of the PN to be partially specified. In order to use the aforementioned

approach it is necessary to turn its RG G into a completely specified G̃.

Example 9 Consider the PN in Figure 1(a). The current marking M = [2 0 0]T enables only

transition t1, then all events not associated with t1 are not specified. Hence for that marking

one adds a self loop labelled e2 and so on for the rest of the reachable markings. ∎

In Figure 3(a) is shown the RG of the PN in Figure 1(a). Note that dashed edges are added in

order to make it completely specified. In Figure 3(b) is shown the AG corresponding to the RG

in Figure 3(a).

One can summarize the modified approach for PNs in the following algorithm.

Algorithm 10 (RG computation of SSs on synchronized PNs)

Input: A bounded synchronized PN ⟨N,E,f⟩, a starting marking M0 and a target marking M̄ .

Ouput: A SS w̄ for marking M̄ ∈ R(N,M0).

1. Let G be the reachability graph of ⟨N,M0⟩.
2. Let G̃ be the modified reachability graph obtained by completing G, then by adding a self

loop labelled e, i.e., ∀M ∈ G and ∀e ∈ E s.t. ∄t ∈ Te ∩ E(M).
3. Construct the corresponding AG A(G̃).
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4. A SS for marking M̄ , if such a sequence exists, is given by the direct application of Algo-

rithm 7 to A(G̃), having M̄ as target. ∎

The following proposition can now be stated.

Proposition 11 Given a bounded synchronized PN N and a starting marking M0, there exists

a SS leading to a marking M̄ ∈ R(N,M0) iff the reachability condition on its AG A(G̃) is verified,
i.e., there is a path from every node (Mi,Mj), with Mi,Mj ∈ R(N,M0), to node (M̄, M̄).
Proof: Consider a marked PN net ⟨N,M0⟩ and its RG G. Given a marking M ∈ R(N,M0),
a sequence σ = tj1tj2 . . . tjp generates the trajectory M[tj1⟩M1[tj2 . . . tjp⟩Mp iff there exists an

oriented path γ =Mtj1M1tj2 . . . tjpMp in G. The same equivalence holds between a synchronized

PN and its completely specified RG G̃. Thus an input sequence w = ej1ej2 . . . ejp drives the net

from M to Mp iff there exists an oriented path γ =Mej1M1ej2 . . . ejpMp in G̃.

Since the completely specified RG G̃ can be considered as an automaton whose behavior is

equivalent to that of the synchronized PN, one can obtain a SS via Algorithm 7. ◻

5 Synchronizing sequences on strongly connected state machines

Consider a strongly connected SM defined in Section 2.4. Knowing the number of tokens k

initially contained in the net — regardless of their initial distribution — is sufficient to exactly

determine the reachability set of the net: in fact, the number of tokens will remain constant as

the net evolves and any distribution of the k tokens can be reached.

If a SM is not strongly connected, knowing the number of tokens k initially contained in the net

— but not their initial distribution — will give a larger approximation of the reachability set

that may be used to design a SS. The knowledge of the number of tokens initially contained in

each component — but not their initial distribution within each component — will provide an

exact characterization of the reachability set.

This new setting aims to determine a SS without constructing the whole state-space. Hence a

new formal definition of SS for SMs has to be given.

Definition 12 (SS on state machine PNs) Given a synchronized SM ⟨N,E,f⟩, assume that

the initial marking M0 is not given but is known to belong to a set

M0 = {M ∈ Nm ∣∑
i

M(pi) = k}.

w̄ is called a k-SS if for all M ∈M0 it holds M
w̄
Ð→ M̄ . ∎

In this section, we first analyze the problem of determining a 1-SS and then address the more

general k-SS, starting from 1-SS.
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Figure 4: A strongly connected synchronized SM

5.1 1-SS on strongly connected state machines

In this subsection we present a particular technique to determine 1-SSs via sufficient conditions

over the net structure. Such a technique can be more efficient than the approach presented in

Algorithm 10, as discussed later in Section 6.

Let us first give the definition of directed path.

Definition 13 (Directed path) Given a SM PN N = (P,T, Pre,Post), an alternated sequence

of places and transitions ρ = ⟨p′
0
t′
1
p′
1
t′
2
⋯t′rp

′
r⟩ is called a directed path if ∀i = 0,1, . . . r and

∀j = 1, . . . r it holds: i) p′i ∈ P and t′j ∈ T ; ii) p′j−1 ∈
●t′j and t′j ∈

●p′j . A path non-containing any

repeated place is called elementary. ∎

The notion of synchronizing transition sequence for a set of places P̂ and a specific place p̄ ∈ P̂

can now be given.

Definition 14 (Synchronizing transition sequence) Given a synchronized SM ⟨N,E,f⟩, let

ρ(P̂ , p̄) = ⟨p′
0
t′
1
p′
1
t′
2
⋯t′rp

′
r⟩, with p̄ = p′r, be a directed path in N = (P,T,Pre,Post) that vis-

its all places in P̂ ⊆ P and ends in p̄ ∈ P̂ , with p̄ ≠ pj for j = 0,1, . . . , r − 1. Let σ be the firing

sequence obtained by removing all places from ρ(P̂ , p̄). Such a sequence is called a synchronizing

transition sequence for P̂ and p̄ if

C1) ∄t, t′ ∈ P̂ ● such that t ∈ σ, t′ /∈ σ, and f(t) = f(t′).
C2) ∀p′i, p

′
k ∈ ρ(P̂ , p̄) ∶ if p′i = p′k and i < k it holds that f(t′j) ≠ f(t′k) for j = 1, . . . k − 1. ∎

In simple words, condition C1) requires that there is no transitions exiting P̂ and sharing the

same label of a transition in σ. Condition C2) requires that if a place is visited multiple times,

its ingoing transition does not share the same label with any of the transitions in the path.

A first result related to the existence of a SS for SMs with a single token can now be stated.

Proposition 15 Consider a strongly connected synchronized SM ⟨N,E,f⟩ containing a single

token. Let σ be a synchronizing transition sequence for P and p̄ ∈ P . Then w̄ = f∗(σ) is a 1-SS
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for marking M̄ that assigns the token to place p̄, i.e.,

M̄ ∶ M̄(p) =
⎧⎪⎪⎨⎪⎪⎩

1 if p = p̄,

0 otherwise.

Proof: Let σ = t′
1
⋯t′r be the synchronizing transition sequence found and ρ(P, p̄) = ⟨p′

0
t′
1
p′
1
t′
2
⋯t′rp

′
r⟩,

with p̄ = p′r, be the corresponding path (not necessarily elementary).

Let w̄ be the corresponding input event sequence, i.e., w̄ = f∗(σ) = e′
0
⋯e′r.

We first prove that after the occurrence of event e1 the token can only be in a place p′k such

that k ≥ 1. Assume, in fact, the token is initially in place p′i and event e′
1
occurs. Two different

cases have to be treated. If i = 0, then by definition of σ, the token is certainly driven to place

p′
1
. If i ≥ 1, two further sub-cases are possible: a) no output transition of p′i has label e1, i.e.,

Te1 ∩ p
′
i
● = ∅, and the token will not not move; b) an output transition of p′i has label e1 and its

firing moves the token to some place p′j, with j > i.

The last result follows from conditions C1) and C2) of Definition 14. In fact, condition C1)

assures that only transitions belonging to σ are receptive to e1; thus the token can only be

driven along the chosen path. Besides condition C2) assures that the token cannot go back in

the upstream path along the sequence.

By repeating this argument, we can show that after the application of event ei, for i = 2, . . . , r,

the token can only be in a place p′k such that k ≥ i, hence this ensures that when all events in

the input sequence w̄ have been applied the token will be in place p̄. ◻

Next algorithm shows how Proposition 15 can be effectively used to compute a 1-SS. In this,

function τ ∶ P × T → T (resp. π ∶ P × T → P ) returns the set of transitions (resp. places) visited

by directed path ρ. Function start ∶ P × T → P determines the last place has been added to

ρ. For instance, consider the path ρ = ⟨prtrpr−1tr−1⋯t1p0⟩. It holds that τ(ρ) = {t1, t2,⋯, tr},
π(ρ) = {p0, p1, . . . , pr} and start(ρ) = pr.
Algorithm 16 (STS computation of 1-SSs on synchronized PNs)

Input: A SM PN N = (P,T,Pre,Post) and a target place p̄.

Ouput: a 1-SS w that drives the token to place p̄.

1. ρ = p̄, R = {ρ};
2. flag ∶= false;

3. while flag = false ∨ R ≠ ∅

a. pick ρ ∈R ∶ ∣ρ∣ =max
ρ′∈R
∣ρ′∣;

b. p ∶= start(ρ);
c. T ∶= ●p/(τ(ρ) ∪ p̄●);
d. while flag = false ∨ T ≠ ∅,
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i. pick t ∈ T , ρ′ ∶= ●ttρ;

ii. if ρ′ does not satisfiy C2), then goto step 3.d.v.

end if

iii. if π(ρ) = P ,

− if ρ′ satisfies C1), then flag ∶= true.

else, goto step 3.d.v.

end if

end if

iv. R ∶=R ∪ {ρ′}
v. T ∶= T /{t};
end while

e. R ∶=R/{ρ}.
end while

4. if flag = false,

a then no STS exists;

else

b pick ρ ∈R ∶ ∣ρ∣ =max
ρ′∈R
∣ρ′∣;

c let σ be the firing sequence obtained removing all places from ρ;

d w ∶= f∗(σ).
end if ∎

The algorithm computes a synchronizing transition sequence. It starts from desired place p̄

(step 1.) and puts the path of zero length ρ = p̄ into R, which contains the set of path to be

analyzed. The net is explored using a backward search until either a STS has been found, i.e.,

the flag is true, or there are no more paths to analyze, i.e., R ≠ ∅ (step 3.).

Once a path ρ is selected, we consider the set of transitions T inputting its start place p that i)

have not already been visited in the path; ii) do not output from the final place p̄ (step 3.c.).

For all new paths ρ′, obtained adding to ρ one transition in T and its input place (step 3.d.i.),

we do the following. First, we check condition C2) (step 3.d.ii), which must hold for all prefixes

of the final path. If it does not hold, we discard the path going to step 3.d.v.. Then we check if

ρ′ contains all places: in this case, if it satisfies condition C1) (step 3.d.iii) we stop the algorithm

(flag=true), else we discard it, going to step 3.d.v.. All new not discarded paths, are added to

set R to be later explored (step 3.d.iv).

When all transitions in T have been evaluated, path ρ is then removed from R (step 3.e.).

In step 4., if the flag is set to false, there is no 1-SS constructible via the STS approach.

Otherwise the path of maximum length is contained in R and it defines an STS.
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Paths are constructed via a depth-first-search, as ensured by the condition of step 3.a. that

always picks (one of) the longest path(s). We could implement a breadth-first-search by picking

— at the same step — the shortest ρ ∈R, to ensure for the shortest STS solution if found.

Example 17 Consider the strongly connected SM in Figure 4. The objective is to find a 1-SS

that leads the system to the marking [0001]T . Let ρ = ⟨p1t1p2t2p3t5p2t4p4⟩ be the directed path

that contains all the places, ending in p4, and σ = t1t2t5t4 the synchronizing transition sequence

for P and place p4. Sequence w̄ = f∗(σ) = e1e2e5e4 is a 1-SS. ∎

Note that condition C1) of Definition 14 is sufficient to assure the sequence to be a synchronizing

one if ρ is an elementary path.

The conditions given by Proposition 15 for the existence of a 1-SS are sufficient but not necessary.

Although one determines a 1-SS by just analyzing the net structure — avoiding then the RG

and the AG construction and consistently reducing the complexity —, the conditions required

are very restrictive.

In fact there are SMs for which those conditions do not hold but that still have a 1-SS.

Example 18 Consider again the strongly connected SM in Figure 4 with one token and suppose

f(t5) = f(t2) = e2. This time one aims to find a 1-SS that leads the system to the marking

[1000]T . There clearly exists no synchronizing transition sequence with such a change of the

labeling function, hence no 1-SS can be determined by Proposition 15. Despite this, one easily

finds the 1-SS w̄ = e4e3 by the way of Algorithm 10. ∎

Note that, when conditions required by Proposition 15 do not hold, one can always determine

a SS using Algorithm 10, obviously with an increased complexity as shown later in Section 6.

5.2 k-SS on strongly connected state machines

We now consider the problem of determining a k-SS for nets with k tokens.

Proposition 19 Consider a strongly connected synchronized SM ⟨N,E,f⟩ containing k tokens.

Let σ be a synchronizing transition sequence for P and p̄ ∈ P and w = f∗(σ) a 1-SS. wk is a

k-SS that moves all k tokens to place p̄, such that:

M̄ ∶ M̄(p) = ⎧⎪⎪⎨⎪⎪⎩
k if p = p̄,

0 otherwise.

Proof: Consider a first application of w, at least one token is driven to p̄. Because of condition

C2) and of the fact that the directed path does not pass through p̄, none of the output transitions

of this place is receptive to some event in w. Hence every application of w does not move the

token from p̄ and takes the k tokens at least one by one to place p̄. ◻
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Example 20 Consider the SM of Example 17, where w = e1e2e5e4 is the 1-SS previously found.

Let the PN have 2 tokens. It holds that w2 = e1e2e5e4e1e2e5e4 is a 2-SS, leading the net to the

desired final marking M̄ = [0002]T . ∎

The previous propositions show that determining a synchronizing transition sequence allows to

readily construct not only a 1-SS but a k-SS for an arbitrary k. However not all SSs can be

obtained in this way.

Thus we consider the following problem: given any arbitrary 1-SS, constructed not from a

synchronizing transition sequence but by using Algorithm 10, does Proposition 19 apply so that

we can use it to construct a k-SS? Unfortunately this is not the case, as shown by the next

example.

Example 21 Consider the SM of Example 17 and let w = e3e1e2e5e4 be a 1-SS for p4. Let the

PN have 2 tokens. It is easy to see that w2 is not a 2-SS, since only one token out of two would

be driven to p4. ∎

It is however possible to provide a sufficient condition for an arbitrary 1-SS to ensure that,

concatenating it k times, a k-SS is obtained.

Proposition 22 Consider a strongly connected synchronized SM ⟨N,E,f⟩ containing k tokens.

Let w be a 1-SS for a target marking M̄ , such that M̄(p) = 1 if p = p̄, otherwise M̄(p) = 0.
If for all t ∈ p̄ ● it holds that f(t) /∈ w, i.e., sequence w does not contain any symbol labeling an

output transition of place p̄, then wk is a k-SS for a target marking M̄k, such that M̄k(p) = k if

p = p̄, otherwise M̄k(p) = 0.
Proof: After the first application of w, at least one of the tokens is driven to p̄. Any further

application of w moves to p̄ at least one of the tokens not in this place, and does not move the

tokens already in p̄, as none of its output transitions is receptive to any event in w. Thus wk

takes the k tokens to place p̄. ◻

6 A discussion on computational complexity

In this section we give an estimate of the computational complexity of both RG and STS

approaches for 1-SS construction.

6.1 Complexity via reachability graph analysis

The greedy and the cycle algorithms work both in O(n3 + ∣E∣n2) time, where n and ∣E∣ are,
resp., the number of states and the input alphabet cardinality of the automaton. Proofs can be

respectively found in [18] and [36].

Such algorithms are applicable to synchronized PNs by first exhaustively enumerating the state
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space of the net, i.e., constructing its RG. Although alternative techniques are proposed to

decrease its complexity (e.g. [37, 38]), the RG generation suffers from the problem of exponen-

tial space and time complexity. In particular, for a SM the reachability set of markings can

significantly increase with the number of tokens under the following expression.

Theorem 23 Given a strongly connected SM N = (P,T,Pre,Post), with k tokens, let m be

the number of its places. The RG G of this net has a number of nodes equal to:

(m + k − 1
m − 1

) ≤ 1

(m − 1)!km−1

Proof: Consider the given net once a new node is added. It can be easily shown that the

reachability set cardinality is given by the following formula:

∣G(m + 1, k)∣ = k

∑
i=0

∣G(m, i)∣ =
= ∣G(m,0)∣ + ∣G(m,1)∣ + . . . + ∣G(m,k)∣,

where ∣G(m, i)∣ is either the cardinality of the new obtained PN with k − i tokens in the added

place or that one of the initial PN with i tokens. Such results can be reported in a matrix

form, obtaining the well known Pascal matrix, that comes out from the Pascal’s triangle. The

elements of the symmetric Pascal matrix are the binomial coefficients, i.e., it holds that

(i + j − 2
i − 1

)
having i =m, j = k + 1. ◻

Considering the above result, one can state the following lemma.

Lemma 24 Consider a strongly connected SM with k tokens. Let m be the number of its places

and E be its input alphabet. For such a net, Algorithm 10 requires a time

O(∣G(m,k)∣3 + ∣E∣∣G(m,k)∣2)
≤ O
⎛
⎝[

km−1

(m − 1)!]
3

+ ∣E∣ [ km−1

(m − 1)!]
2⎞
⎠ . ∎

6.2 Complexity via synchronizing transition sequences

We have shown in Proposition 15 a technique to compute a 1-SS on a strongly connected

net based on synchronizing transitions sequences. Here we discuss the complexity of such a

procedure.

To compute a synchronizing transition sequence one can proceed using a backward depth-first

search from place p̄ and verifying the conditions of Definition 14 over the labeling function.
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It is known that a depth first search requires O(bd) time [39], for explicit graphs traversed with

repetition, having a branching factor b and a depth search of d.

Assume that a SM has a backward branching factor (the number of transitions inputting in a

place) bounded by φ = maxp∈P ∣●p∣. While exploring the net with possible repetitions of places,

an upper bound for the depth search length is q − 1, where q is the number of net transitions.

Thus a first very rough approximation of the needed time is given by O(φq−1).
This time only depends on structural net parameters, does not grow with the number of tokens

and is typically smaller than the time required by Algorithm 10.

7 Synchronizing sequences on non-strongly connected state ma-

chines

Consider now connected — but not necessarily strongly connected — state machines. It can be

shown how the existence of a SS depends on the interconnection between ergodic and transient

components.

Proposition 25 Consider a synchronized SM ⟨N,E,f⟩ with µ transient components and η

ergodic components. If η > 1 there exists no SS for such a net.

Proof: Let the net have two ergodic components ER′ and ER′′. Consider two initial markings

M ′
0
and M ′′

0
both with k tokens such that M ′

0
(resp., M ′′

0
) assigns all tokens to the component

ER′ (resp., ER′′). Clearly there exists no marking M̄ reachable from both M ′
0
and M ′′

0
, hence

no SS exists according to Definition 12. ◻

It is now proposed an algorithm to determine sequences for not strongly connected state machines

having a single ergodic component where the interconnection between transient components can

be arbitrary.

It is first stated the following result.

Proposition 26 Consider a SM N = (P,T,Pre,Post) with a single component ER and let

C(N) be its condensed graph. For each node vi of C(N) associated with a transient component

TRi (with i > 0), let li be the length of the longest path from vi to node v0 associated with the

ergodic component ER. Then if there is an edge (vi, vj) in C(N) it holds li > lj.
Proof: First observe that C(N) is acyclic by construction and the node v0 is reachable from any

other node, hence lj ∈ N is well defined for each node vj (with j > 0). By definition, if (vi, vj) is
an edge of C(N), then li ≥ lj + 1. ◻

The following algorithm for the one-token case allows to obtain a SS, such that a place p̄ in the

single ergodic component is marked.

Algorithm 27 (Computing a SS leading to p̄ ∈ ER)
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Input: A synchronized PN ⟨N,E,f⟩ containing 1 tokens, with µ transient components and 1

ergodic component.

Ouput: A SS w̄ for place p̄.

1. Let C(N) be the condensed graph of N and associate ER with node v0.

2. Label every other node vi of C(N) with li, where li is the length of the longest path from

vi to v0.

3. Let Σk be the set of nodes such that Σk = {vi ∶ li = k}, thus for construction Σ0 = {v0}.
4. Let w = ε.

5. For k=lmax:1

5.1. for all vi ∈ Σk,

5.1.1. pick any transition t′ connecting vi to vj, being vj ∈ Σk′ and k′ < k;

5.1.2. consider the strongly connected subnet associated with node vi. Determine a

1-SS w′ for place p′, where p′ ∈ t′●;

6. Consider the strongly connected subnet associated with node v0. Let w be a 1-SS for place

p̄.

7. Let w = wf∗(σ). ∎

The algorithm starts taking into account the farthest nodes from ER. By definition of condensed

graph, transient nodes with the same label value are not connected. Hence at step 5.1.2. the

application of each couple (w′, t′), step by step, drives the token always nearer to ER until it

reaches it.

We have remarked that a net with more than one ergodic component cannot have a SS, at least

according to Proposition 25. However, the knowledge of the initial token distribution among the

net components may lead to other interesting characterizations, provided of course the initial

state uncertainty is redefined according to this new information.

8 Synchronizing sequence on nets with state machine subnets

In the following we discuss how our approach can be applied in the more general setting of

arbitrary nets, possibly unbounded, that contain SM subnets. This family includes several

classes of nets used to model resource allocation systems (RAS) [32, 40] including S3PR nets,

S4PR nets, S∗PR nets, NS −RAP , ERCN−merged nets or PR nets. A survey of the field can

be found in [32].

Proposition 28 Consider a synchronized PN ⟨N,E,f⟩. Let P = Ps ∪Pz and T = Ts ∪ Tz, such

that Ns = (Ps, Ts, P res, Posts) is a strongly connected SM subnet, where Pres and Posts are the

restrictions of Pre and Post to Ps × Ts.
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(a)

(b)

Figure 5: A synchronized PN (a) and its RG

Given an initial marking M0 of N , let w̄ be a SS that drives the subnet Ns to a target marking

M̄s. This sequence w̄ drives N to a target marking M̄ such that:

M̄(p) = M̄s(p) if p ∈ Ps,

if the two following conditions hold:

i) {T ●z ∪● Tz} ∩Ps = ∅;

ii) (∀e ∈ w̄) Te ∩ P
●
z ∩ Ts = ∅.

Proof: Condition i) states that no transition t ∈ Tz is connected to any place p ∈ Ps. This

ensures that the firing of a transition in Tz cannot affect the marking of places in Ps. Hence,

given the special structure of Ns, the following condition holds for any initial marking M0:(∀M ∈ R(N,M0)) ∑
p∈Ps

M(p) = ∑
p∈Ps

M0(p), i.e., the token count in the SM component remains

constant, even if in the whole net N does not.

Let w̄ = e1e2⋯ek be a SS for subnet Ns that yields a known marking M̄s from any reachable

marking M of the subnet. To prove the result, it is sufficient to show that at each step i = 1, . . . , k

the same sequence, applied to N from any marking M ′, with M ′(p) =M(p) if p ∈ Ps, produces

exactly the same transition firings that it produces in Ns.

In fact, when a input symbol ei ∈ w̄ is applied:

• by condition i), all transitions that can fire in Ns can also fire in N , because the additional

places Pz in N cannot disable these transitions since they do not belong to ●Ts;

• by condition ii), no transition in P ●z can fire, because no transition in P ●z has label ei. ◻
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(a) ∣NSTS ∣/∣NRG∣

❍
❍
❍
❍
❍
❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 0,8 1 1 1 1 1 1 1 0,8 1

6 1 1 1 1 0,8 1 1 1 1 1

7 1 1 0,6 0,66 0,8 1 0,88 1 1

(b) ∣T̂STS ∣/∣T̂RG∣

❍
❍
❍
❍
❍
❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.22 0.14 0.24 0.17 0.20 0.15 0.13 0.18 0.15 0.18 0.12 0.12 0.10

3 0.23 0.23 0.21 0.26 0.23 0.26 0.36 0.48 0.54 0.30 0.33 0.40 0.74

4 0.43 0.20 0.32 0.37 0.50 0.62 0.54 0.52 0.65 0.61 0.75 0.93

5 0.6 0.30 0.32 0.41 0.53 0.60 0.90 0.59 0.78 0.72 1.52

6 0.45 0.21 0.29 0.45 0.72 0.73 0.54 1.03 0.76 1.08

7 0.62 0.16 0.22 0.27 0.88 0.78 1,15 1,6 2,54

(c) ∣L̂STS ∣/∣L̂RG∣

❍
❍
❍
❍
❍
❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.83 0.91 0.91 0.91 0.83 1.00 1.10 0.83 1.00 0.91 0.77 1.10 1.00

4 0.65 0.85 0.89 1.00 0.77 0.85 0.95 0.84 1.00 0.94 0.89 1.06

5 0.8 0.85 0.85 0.70 0.91 0.91 0.96 0.75 1.00 0.87 0.92

6 0.6 0.53 0.90 0.79 0.90 0.80 0.74 0.86 0.81 0.70

7 0.54 0.61 0.57 0.50 0.88 0.59 0,76 0,85 0,69

Table 2: Numerical results for randomly generated SM PNs (k = 1)
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(a) ∣T̂STS ∣/∣T̂RG∣

❍
❍
❍
❍
❍
❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 0.26 0.12 0.23 0.16 0.17 0.13 0.11 0.16 0.14 0.15 0.11 0.11 0.10

3 0.27 0.16 0.14 0.14 0.14 0.21 0.28 0.35 0.42 0.24 0.27 0.24 0.54

4 0.28 0.12 0.20 0.23 0.31 0.41 0.35 0.11 0.39 0.20 0.36 0.40

5 0.17 0.08 0.08 0.19 0.01 0.28 0.44 0.27 0.35 10−3 0.75

6 10−3 10−3 0.09 0.02 10−3 10−3 0.20 10−3 0.29 0.39

7 10−3 10−3 10−3 0.05 0.05 10−3 10−3 10−4 10−3

(b) ∣L̂STS ∣/∣L̂RG ∣

❍
❍
❍
❍
❍
❍

m

q
3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71

3 1.5 1.60 1.41 1.60 1.33 1.71 1.89 1.50 1.71 1.60 1.41 1.89 1.76

4 1.5 1.41 1.42 1.64 1.46 1.57 1.60 1.54 1.54 1.50 1.54 1.77

5 1.1 1.42 1.35 1.26 1.44 1.50 1.55 1.36 1.65 1.37 1.65

6 1.3 0.92 1.52 1.32 1.64 1.27 1.33 1.28 1.39 1.30

7 0.85 0.97 0.97 0.92 0.88 0.77 0,79 0,64 0,79

Table 3: Numerical results for randomly generated SM PNs (k = 2)
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Such a result can be further generalized to nets containing more than one state machine subnets.

Proposition 29 Consider a synchronized PN ⟨N,E,f⟩. Let Ps∪Pz = P and Ts∪Tz = T , where

Ps =
n

⊍
i=1

Ps,i and Ts =
n

⊍
i=1

Ts,i (here ⊍ denotes the union of disjoint subsets). These sets are such

that for i = 1,2, . . . n Ns,i = (Ps,i, Ts,i, P res,i, Posts,i) is a strongly connected SM subnet. Pres,i

and Posts,i are the restrictions to Pre and Post to Ps,i × Ts,i.

For every subnet Ns,i, let w̄i be a SS that drives the subnet Ns,i to a target marking M̄s,i. The

sequence w̄ = w̄1w̄2 . . . w̄n drives N to a target marking M̄ such that:

M̄(p) = M̄ ′
s,i with M̄s,i

w̄i+1w̄i+2⋯w̄nÐÐÐÐÐÐÐ→ M̄ ′
s,i if p ∈ Ps,i,

if the two following conditions hold:

i) {●Tz ∪ T
●
z } ∩Ps = ∅;

ii) (∀e ∈ w̄i) Te ∩ P
●
z

i

⋂
j=1

Ts,j = ∅.

Proof: The proof follows along the same lines of the proof of Proposition 28 with just an addi-

tional consideration. First we observe that condition ii) in Proposition 29 is a generalization of

condition ii) in Proposition 28: the condition now must hold not only for the transitions of net i

but also for those of all nets j with j < i. In fact, the overall SS is composed by concatenation of

the SSs for each state machine subnet. When we apply the SS wi to the net, we assume that the

markings of all subnets j, for j < i are known but may change, as some transitions in the already

synchronized subnets may be receptive to an event e ∈ w̄i. However, condition ii) ensures that

the enabling condition of these transitions does not depend on the places in Pz, whose marking

is unknown, and the marking reached after the application of event e is computable. ◻

Sequence w̄ determined in the previous proposition is a SS for the subnet Ns. It also drives

the complete model N to a state where the marking of places in Ps is known, while in general

nothing can be said about the marking of places in Pz.

Example 30 Consider the net in Figure 5(a). Let Ps,1 = {p1, p2}, Ps,2 = {p3, p4}, Pz = {p5, p6},
Ts,1 = {t1, t2}, Ts,2 = {t3, t4} and then Tz = ∅. Ns is then the net depicted in Figure 5(a), without

taking into account dashed places and arcs. Let w̄1 and w̄2 be SSs that drives respectively Ns,1 =(Ps,1, Ts,1, P res,1, Posts,1) to M̄s,1 = [01]T and Ns,2 = (Ps,2, Ts,2, P res,2, Posts,2) to M̄s,2 = [01]T .
By separately analyzing the two subnets, w̄1 = w̄2 = e1 are obtained. w̄ = w̄1w̄2 respects conditions

i) and ii) of Proposition 29 and is therefore a SS for Ns, i.e., it drives the net to a marking M̄

that is either [101010]T or [101001]T , as can be seen by its RG in Figure 5(b). ◻
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9 Experimental results

This section has two objectives. First, we compare the two algorithms we have presented for

SS computation of state machine Petri nets (reachability based versus path based) by applying

them to a series of randomly generated nets and analyzing their performance. Second, we show

the effectiveness of our approach by applying it to a manufacturing system modeled by a PN

which is not a SM. The model data and MATLAB programs can be downloaded from [41].

All simulations have been run on a mini Mac intel core Duo 2, 2.53 GHz processor, with 4 GB

1067 MhZ DDR3 RAM.

9.1 Numerical results for randomly generated PNs

Randomly generated models have been previously adopted as a validation method for synchro-

nizing sequence construction also by Roman [42].

For selected values of m places, q transitions and k = 1,2 tokens, we randomly generate 100

deterministic and strongly connected synchronized SMs having m = 2 ÷ 7 places, q = m ÷ 15

transitions and k = 1,2 tokens. In all cases the input alphabet has cardinality f randomly

chosen in q
m
÷ q. Note that q

m
is the minimal alphabet cardinality to ensure the determinism for

a SM having m places and q transitions. For each net a place is randomly selected and we use

both Algorithm 10 (denoted RG) and Algorithm 10 (denoted by STS) to determine a SS to this

place. The algorithms are compared by means of three performance indexes:

NRG, NSTS: number of times the algorithm successfully terminates returning a SS;

T̂RG, T̂STS: average time required to compute the sequence;

L̂RG, L̂STS: average length of the sequences.

Finally the performance of the two approaches is evaluated by computing the ratio of NSTS

(resp. T̂STS and L̂STS) to NRG (resp. T̂RG and L̂RG).

Results are shown in Table 2 for nets with one token and in Table 3 for the two token case.

Note that the table showing NSTS/NRG does not depend on the number of tokens and thus it

is shown only for k = 1. Black cells denote parameter values for which no strongly connected

SM can be generated, i.e., for m > q.

Table I(a) shows the ratio NSTS/NRG between the number of times a SS has been found using

the STS and the RG approach. In the previous sections we have mentioned that while the RG

approach always determines a SS if any exists, the STS approach may fail to do so. Hence the

value in the table should be contained in the interval [0,1]. We can observe, however, that over

88% of the table entries show a value of 1, hence confirming that the STS approach can find a

solution in most cases and thus this result is not too restrictive.
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Figure 6: Suggested way to determine a SS for strongly connected SMs.

Table I(b) shows the ratio TSTS/TRG between the execution time to compute a SS using the

STS and the RG approach for nets with one token. Here we expect the STS approach to be

more efficient, as discussed in Section 6, and this is confirmed from the fact that in almost all

cases the table entries are smaller than one. Only in a few cases, for very large values of m and

q, we have that the RG method is faster than the STS one. This, we believe, it is due to our

implementation of the STS approach that uses a brute force depth-first search.

Table II(a) shows the ratio TSTS/TRG between the execution time to compute a SS using the

STS and the RG approach for nets with two tokens. Here we see the main advantage of the

STS method, that can use a 1-SS to determine a k-SS, while the RG method had a complexity

that grows polynomially with k (and exponentially with m), as discussed in Section 6. Here

the advantage of the STS method is more noticeable for large values of m and q. Table I(c)

and Table II(b) show the ratio LSTS/LRG between the average length of a SS computed using

the STS and the RG approach for nets with one or two tokens. This index is probably less

significant than the previous ones, although one may argue that the shortest the SS the less

expensive is the synchronization (in terms of costs or of time required). Here we can see that

in the case of one token the STS approach in most of the cases produces shorter SS, while the

situation is the opposite for 2 tokens. This is due to the fact that the k-SS obtained by STS is

always k times longer than the corresponding 1-SS, while shorter solutions may be obtained by

the RG approach.

On the base of these results, we can say that to compute a SS for strongly connected Petri nets

it is convenient to first search for a STS based solution using Algorithm 16 and then, if this fails,

to use Algorithm 10. This is summarized in the flowchart in Figure 6.
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Figure 7: Layout of the manufacturing system.

9.2 A manufacturing example

We consider a manufacturing plant consisting of two production lines, that produce two different

kinds of final product. The two lines are symmetric and run in parallel. Each line i has a fixed

number of k pallets, that limit the number of parts that can be under processing at a given

time. A raw piece entering the system waits in the buffer (not modeled) until a pallet becomes

available. Robot R0 feeds the two lines alternatively, taking one part from the buffer and

mounting it on an empty pallet.

In each line there are two workstations, which are composed by two machines and one robot. A

workstation can process several pallets at a time.

For instance consider line 1. The pallet entering the system is deposed by R0 on a conveyor belt

and is moved to the first workstation where machines M ′
1,1 and M”1,1 perform their operation

as requested. Robot R11 moves the pallet from the conveyor belt to the machines and viz.

Once the operations required on the first workstation have been completed, the pallet is put

again onto the conveyor belt and moved to the second workstation where the processing is

repeated. After processing, parts are unloaded from the pallets by robot R1,2 and put on an

AGV that moves them to the output buffer O1.

The system’s layout is shown in Figure 7: we say that such a plant has production length l = 2

because each line is composed by a series of two workstations. We can consider a parameterized

family of plants of this type, assuming that the number of pallets k and length l of the production

lines may vary. For this family of plants, we obtain the synchronized Petri net depicted in

Figure 8.

This Petri net has 4+6l places and 2+10l transitions. The marking of places p1 and p2 represents

number of the empty pallets in each line, the marking of place p3 (resp. p4) denotes that robot
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Figure 8: PN model of the actuactors of the manufacturing system in Figure 7

R0 is ready to move a pallet to the left (resp. right) production line.

Consider machines M ′
ij and M”ij , which compose workstation j in line i. Transition n′i,j (resp.

n”i,j) represents the loading of a pallet from the conveyor belt queue to machine M ′
ij (resp.

M”ij) while transition t′i,j (resp., t”i,j) represents the unloading. Tokens in place p′ij (resp. p”ij)

denote pallets loaded on machine M ′
ij (resp. M”ij).

The firing of transition ti,j denotes the transfer of a pallet to the next workstation.

Although the considered PN is not a state machine, the proposed approach is still applicable.

The PN in Figure 8, without taking into account dashed places and arcs, is composed by two SMs.

Hence, according to Proposition 29, Ps = Ps,1∪Ps,2 = P /{p3, p4}, Ps,1 = {p1, p1,1, p′1,1, p′′1,1, . . . p1,l, p′1,l, p′′1,l},
Ps,2 = {p2, p2,1, p′2,1, p′′2,1, . . . p2,l, p′2,l, p′′2,l} and Ts = T .

We look for a SS that from an arbitrary state can empty the system, thus moving all empty

pallets to the input buffers. The obtained sequences are w̄1 = {e4e5e6e7e2}l, w̄2 = {e8e9e10e11e3}l
and w̄ = w̄1w̄2. w̄ meets conditions of Proposition 29 then is a SS for Ns.

Results obtained with the STS and RG approaches are shown in Table 4, where length (LSTS

and LRG) and required time (TSTS and TRG) of the SS are summarized for different values of

m and l. Also, the table shows the cardinality of the reachability graph (∣G∣) and of the AG

(∣A(G)∣). These are important parameters to understand the limits of the RG approach, while

exhaustively enumerating the set space of the net.
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k l ∣G∣ ∣A(G)∣ TRG[s] TSTS[s] LRG LSTS

1 1 32 528 3.43 0.26 16 10

1 2 98 4851 o.t. 0.43 n.c. 20

1 3 200 20100 o.t. 2.81 n.c. 30

1 4 338 57291 o.t. 31.13 n.c. 40

2 1 200 20100 o.t. 0.26 n.c. 20

2 2 1568 o.t. n.c. 0.43 n.c. 40

2 3 o.t. n.c. n.c. 4.27 n.c. 60

2 4 o.t. n.c. n.c. 56.75 n.c. 80

3 1 800 320400 o.t. 0.26 n.c. 30

3 2 o.t. n.c. n.c. 0.43 n.c. 60

3 3 o.t. n.c. n.c. 4.27 n.c. 90

3 4 o.t. n.c. n.c. 56.75 n.c. 120

Table 4: Numerical results for a manufacturing system.

The table shows also non-numerical values where the corresponding result cannot be provided:

i) out of time (o.t.), when the corresponding value has not been computed within 6 hours; ii)

not computable (n.c.), if the corresponding value cannot be computed: e.g., the RG is o.t. and

the corresponding AG cannot be evaluated.

Note that for an increasing number of tokens the RG approach goes almost always o.t., due to a

significant larger space state. On the contrary, the required time does not change with the STS

approach. Also, the length of the constructed SS grows linearly with k, confirming the results

of Proposition 19.

10 Conclusions and future works

In this paper, we have shown how automata techniques can be applied with minor changes to

the class of bounded synchronized PNs.

Also it has been proposed a method that provides a synchronizing sequence for the class of

synchronized SM PNs.

Our approach alleviates the state explosion problem also in the case of multiple tokens, since

the construction of the reachability graph is not needed. We have shown by means of several

examples how the computational time does not increase as the number of tokens in the net

increases

There is an open line for interesting future works. We plan to extend our approach to unbounded

PNs, whose behavior can be approximated with a finite coverability graph (CG), by introducing

an ω component to denote a place whose token content may be arbitrarily large.
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Note that classic coverability methods construction cannot be directly applied to this class of

PNs, that is why a new algorithmic procedure for the CG construction has to be provided.
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