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Abstract

We consider switched systems composed of linear time invariant unstable dynamics and

we deal with the problem of computing an appropriate switching law such that the controlled

system is globally asymptotically stable. On the basis of our previous results in this frame-

work, we first present a method to design a feedback control law that minimizes a linear

quadratic (LQ) performance index when an infinite number of switches is allowed and at

least one dynamics is stable. Then, we show how this approach can be useful when dealing

with the stabilization problem of switched systems characterized by unstable dynamics, by

applying the proposed procedure to a “dummy” system, augmented with a stable dynamics.

If the system with unstable dynamics is globally exponentially stabilizable, then our method

provides the feedback control law that minimizes the chosen quadratic performance index,

and that guarantees the closed loop system to be globally asymptotically stable.
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1 Introduction

In this paper we show how it is possible to design a stabilizing law i(t) for linear time-invariant

(LTI) switched systems

ẋ(t) = Ai(t)x(t), i(t) ∈ S = {1, . . . , s}, (1)

where for all i ∈ S, Ai are unstable [7].

Note that here all subsystems are autonomous, i.e., the only control action is the switching

function i(t).

The proposed procedure is based on the solution of an optimal control problem for the above

switched system.

In [25] we have presented a technique to solve an optimal control problem with quadratic perfor-

mance index for systems of the form (1) assuming that a finite number of switches N is allowed.

The solution takes the form of a state feedback law, i.e., the optimal value of i(t+) can be chosen

as a function of the current continuous state x(t), of the current dynamics i = i(t) and of the

number of remaining switches k. The feedback law is described by a set of partitions of the state

space Ci,k that, for a given current dynamics i and for a given number of remaining switches k,

assigns to each continuous state x(t) the optimal value of i(t+).

In [25] we dealt with the case of finite N , hence we assumed that at least one dynamics is stable

to ensure that the considered optimal control problem has a finite cost. In such a case the

system is trivially stabilizable: just use the stable dynamics. In this paper, on the contrary, we

consider the case in which all dynamics are unstable and thus an infinite number of switches is

required to stabilize the system.

Our stabilization procedure is based on two ideas.

Firstly, we show that an optimal control law for infinite switches can be easily computed solving

an optimal control problem for a finite number N of switches, provided N is large enough. We

also show that in this case the optimal control law is still given by a partition of the state space

C∞ that, however, does not depend on the current location i(t) and on the number of remaining

switches (that is obviously infinite).

Secondly, to relax the assumption that at least one dynamics is stable, we extend system (1)

by adding an arbitrary dummy stable dynamics s+ 1. We also show that if the cost associated

to dynamics s+ 1 is sufficiently large, then the system is stabilizable if and only if no region of

partition C∞ is associated to dynamics s+ 1.

It is important to stress that the presented stabilization procedure is not necessarily related to

the optimal control technique presented in [25]. In fact, it can be applied in tandem to any

procedure that solves an optimal control problem providing a feedback law with a finite number

of switches, such as the one presented by Shaikh and Caines in [26].
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Moreover we observe that using an optimal control approach to stabilize a switched system has

already been investigated by other authors. See e.g. the recent survey by Margaliot [23].

Other interesting approaches to the optimal control of switched systems have been proposed by

Xu and Antsaklis [30], by Egerstedt, Wardi et al. [3, 10], and by Axelsson et al. [1]. However

such procedures cannot be directly applied within this framework in their present form because

they do not determine a state feedback control law.

The main advantage of the stabilizing approach we present is that it provides a systematic

procedure to compute a stabilizing law when it does exist. In fact, although there is a rich

literature on stability analysis of hybrid systems, there are very few results on the design of

stabilizing laws. The literature in this area is surveyed in the next subsection.

Finally, we observe that a disadvantage of the optimal control approach [25] we use, that is

common to several other approaches (see e.g. the paper by Hedlund and Rantzer [12]), is

that it requires a discretization of the state space. For large dimensional systems this may be

computationally burdensome. Moreover, the discretization may also affect the optimality of the

solution. However, here we are concerned with stability thus this problem is less important.

This issue has been extensively addressed in [25] and it is not discussed in this paper. Note,

however, that as stated above, the use of the procedure in [25] is not a strict requirement for

the presented stabilization procedure.

1.1 Literature review

Many papers on stability and stabilizability of switched linear systems have been published

in the last two decades. In this section we provide a short overview of the most important

contributions in this topic with particular attention to those results that are closely related to

this paper. In particular, we focus on autonomous switched linear systems, i.e., systems with

no control input [9, 17]. For a more exhaustive survey on these topics we address to the recent

work by Lin and Antsaklis [22].

The first problem that has been investigated in this framework is that of stability under arbitrary

switching. Solutions to this problem have been proposed based on common quadratic Lyapunov

functions (CQLF) [15–17, 20, 24, 27] or on switched quadratic Lyapunov functions [8]. In [22]

some necessary and sufficient conditions are given. In particular, it is shown that the asymptotic

stability problem for switched linear systems with arbitrary switching is equivalent to the robust

asymptotic stability problem for polytopic uncertain linear time-variant systems, thus allowing

to use a series of conditions that exist in this framework [2].

Several results have also been proposed in the literature under the assumption that the switching

signals satisfy certain constraints, namely under restricted switching. In many applications this

is definitely realistic and it is unnecessarily conservative to impose that stability should hold

under arbitrary switching. Such restrictions may either arise in the order in which current modes

can be active, or in the minimum time that each mode should remain active once it has been

activated. Many contributions in this framework are based on the multiple Lyapunov functions
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(MLF). See, e.g., [9, 18] and a series of references therein.

Another fundamental issue, related to stability analysis, is the stabilization problem, i.e., the

synthesis of a stabilizing law. A really rich literature on this have been produced in the last

years. See, e.g. [5, 8, 9] just to mention a few. However, the main limitation of such approaches

is that they only give sufficient conditions for the existence of a stabilizing law.

Necessary and sufficient conditions are given in [29] in the case of a switched system commuting

between two subsystems, when the performance index under consideration is the quadratic

stability of the switched systems. The main feature of this property is that it requires for

uncertain systems a quadratic Lyapunov function which guarantees asymptotic stability for all

uncertainties under consideration, and is thus a kind of robust stability with very good property,

yet usually needs more restrictive conditions [31]. Iterative algorithms for constructing such

common Lyapunov functions can be found in [19].

Antsaklis et al. in [14], using a geometric approach, were able to obtain necessary and sufficient

conditions for asymptotic stabilizability of switched systems with an arbitrarily large number of

second-order LTI unstable systems. When the switched system is asymptotically stabilizable,

they also provide an approach to compute a stabilizing law.

Finally, Lin and Antsaklis [21] derived a necessary and sufficient condition for the existence of a

switching control law (in static feedback form) for asymptotic stabilization of continuous-time

switched linear systems.

1.2 Paper structure

The paper is structured as follows. In Section 2 the problem statement is formally introduced

and some preliminary results used in the rest of the paper are provided. Section 3 discusses the

optimal control problem in the case of a finite number of switches. In particular this section

is focused on the procedure we proposed in [25]. The optimal control problem in the case

of an infinite number of switches is discussed in detail in Section 4. Section 5 presents the

main contribution of this paper that consists in a procedure to stabilize switched systems with

unstable dynamics. A numerical example is presented in Section 6. Conclusions are finally

drawn in Section 7 where our future work in this framework is also discussed.

2 Problem formulation

Consider the nonautonomous system

ẋ(t) = f(x, t) (2)

where f : D× [0,∞) → Rn is piecewise continuous in t and locally Lipschitz in x on D× [0,∞),

and D ⊂ Rn is a domain that contains the origin x = 0.

4



System (1) is a particular case of (2), denoted as switched systems, when f(x, t) , Ai(t)x(t) for

t > 0.

In this paper we assume a continuous evolution of the state, i.e., when a switch occurs at time

τ , x(τ−) = x(τ+).

Now, let us consider system (1) with initial continuous state x(0) =x0 and initial discrete state

i(0) =i0.

Let i(t) : [0,+∞) → S be a piecewise constant function that represents our control variable.

For the ease of notation, the following symbolism will be adopted in the reminder:

i(t) = {(ik, δk)}k≥0

meaning that the system evolves with dynamics Ai0 during the time interval [0, δ0); then, it

switches to dynamics Ai1 at time δ0 and evolves with such a dynamics until time δ0 + δ1, and

so on.

Moreover, we denote as {x1, x2, . . . , xk+1, . . .} the set of continuous states reached after the time

intervals δ0, δ0 + δ1, . . .,
∑k

i=0 δi, . . ., respectively.

Definition 1 The switched system (1) is said stabilizable if for all ε > 0 there exists δ(ε) > 0

such that, given any initial condition x(0) with ||x(0)|| ≤ δ(ε), a switching control law exists

such that for all t > 0 the state x(t) of the controlled system satisfies the condition: ||x(t)|| ≤ ε.

Analogous definitions hold for asymptotic (or exponential) stabilizability. �

For the class of systems we are dealing with the following important results hold.

Lemma 1 Let us consider the switched linear system (1) with initial state (x0, i0) and controlled

with i(t) = {(i0, δ0), (i1, δ1), . . . , (ik, δk), . . .}.

If the system is initialized at (λ · x0, i0) and the same control law i(t) is applied, then the set

of states reached after the time intervals δ0, δ0 + δ1, . . . ,
∑k

i=0 δi, . . ., are respectively λ · x1, λ ·
x2, . . . , λ · xk+1, . . ., for any λ ∈ R.

Proof: The validity of the statement trivially follows from the linearity of the systems dynamics.

�

As a consequence of the above lemma, local stability properties imply global stability properties.

Corollary 1 A switched linear system that is asymptotically (resp., exponentially) stabilizable

is also globally asymptotically (resp., exponentially) stabilizable.

Proof: Assume that a stabilizing control law exists such that the closed loop system is asymptot-

ically (resp., exponentially) stabilizable when the initial state lies within a given neighborhood

of the origin. By Lemma 1, an asymptotically (resp., exponentially) stabilizing control law also

exists for any initial state. �
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For sake of conciseness, in the rest of the paper we will deal with asymptotic or exponential

stability, omitting the redundant qualification global.

The main goal of this paper is that of computing an appropriate switching law i(t), when it does

exist, such that the controlled system (1) is asymptotically stable.

Note that if at least one dynamics Ai is stable, then the system (1) is obviously exponentially

stabilizable. Hence, we are interested in dealing with the case in which all dynamics are unstable.

3 The optimal control problem with a finite number of switches

The proposed stabilizing procedure is based on the solution of an optimal control problem of

the following form:

V ∗
N (x0, i0) , min

I,T
F (I, T ) ,

∫ ∞

0
x′(t)Qi(t)x(t)dt

s.t. ẋ(t) = Ai(t)x(t), x(0) = x0, i(0) = i0

i(t) = ik for τk ≤ t < τk+1, k = 0, . . . , N

τ0 = 0, τN+1 = +∞
ik ∈ S, k = 0, . . . , N

(3)

where:

• N , denoting the maximum number of allowed switches, is finite and fixed a priori;

• Qi, i ∈ S, are positive definite weighting matrices;

• x0 is the initial continuous state, and i0 is the initial mode, where x0 and i0 are both given;

• T , {τ1, . . . , τN} and I , {i1, . . . , iN} denote, respectively, the set of switching times and

the sequence of indices associated with discrete modes.

In order to make the problem solvable with finite cost V ∗
N , we assume the following:

Assumption 1 There exists at least one index i ∈ S such that Ai is stable. �

In [25] we showed that the optimal control law for the optimization problem (3) takes the form

of a state-feedback, i.e., it is only necessary to look at the current system state in order to

determine if a switch from linear dynamics Aik−1
to Aik , should occur.

More precisely, for a given mode i ∈ S when k switches are still available, it is possible to

construct a partition Ci
k of the state space Rn into s regions Rj ’s, j = 1, · · · , s = |S|. We call

table the partition Ci
k. Whenever iN−k = i we use table Ci

k to determine if a switch should occur:

as soon as the continuous state x reaches a point in the region Rj for a certain j ∈ S \ {i} we
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will switch to mode iN−k+1 = j; no switch will occur if the continuous system’s state x belongs

to Ri.

To prove this result, in [25] we showed constructively how the tables Ci
k can be computed off-line

using a dynamic programming argument. We first showed how the tables Ci
1 (i ∈ S) for the last

switch can be determined. Then, we shown by induction how the tables Ci
k can be computed

once the tables Ci
k−1 are known.

Remark 1 In order to provide a graphical representation of Ci
k we associate a different color

to each dynamics Aj , j ∈ S. The region Rj of Ci
k is represented according to the defined color

mapping. �

Note that regions Rj ’s are homogeneous, namely if x ∈ Rj then λx ∈ Rj for all λ ∈ R. This

implies that they can be computed by simply looking at the unit semisphere. A term that has

also been used in the literature to define the special form of these regions is conic.

Now, let y ∈ Rn be a generic vector on the unit semisphere and let D be an appropriate set of

points in the unit semisphere, that define the considered state space discretization.

The procedure to compute the switching regions is briefly summarized in the following algorithm.

For a complete derivation of it, as well as for a detailed description of an efficient and systematic

procedure to define the set D, we refer the reader to [25].

Algorithm 1 (Tables construction)

Input: Ai ∈ Rn×n, Qi ∈ Rn×n, i ∈ S, N, tmax, D.

Output: Ci
k(y), k = 0, 1, . . . , N, i ∈ S, y ∈ D.

Notation: Āi(t) = eAit, Q̄i(t) =
∫ t
0 Āi(τ)

′QiĀi(τ)dτ, Zi = lim
t→∞

Q̄i(t)
1.

1. Initialization: k = 0 remaining switches

for i = 1 : s

for all y ∈ D

Cost assignment: T0(i, y) =

{
y′Ziy if Ai is stable

+∞ otherwise

end (y)

end (i)

2. for k = 1 : N

for i = 1 : s

for all y ∈ D

Computation of the remaining cost:

for t = 0 : ∆t :tmax

z = Āi(t)y, λ = ||z||
1Note that if dynamics Ai is stable, Zi is the solution of the Lyapunov equation A′

iZi + ZiAi = −Qi.
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for j ∈ S

T (i, y, j, t) = y′Q̄i(t)y + λ2Tk−1(j, z/λ)

end (j)

end (t)

Cost assignment: Tk(i, y) = min
j,t

T (i, y, j, t)

Color assignment: (j∗, t∗) = argmin
j,t

T (i, y, j, t), Ci
k =

{
j∗ if t∗ = 0

i otherwise

end (y)

end (i)

end (k)

In simple words, at Step 1 of Algorithm 1 we compute for all y ∈ D the costs T0(i, y) associated

to the evolution that starts from y and remains in dynamics Ai indefinitely, with i = 1, . . . , s.

Obviously, if Ai is not stable, then such a cost is infinite. Otherwise it is equal to y′Ziy where

Zi is the solution of the Lyapunov equation A′
iZi + ZiAi = −Qi.

At Step 2 we start computing regions Ci
1, i = 1, . . . , s, that correspond to only one available

switch. Then, the other regions are computed for increasing number of available switches,

namely Ci
2, Ci

3 and so on, until Ci
N , for all i = 1, . . . , s.

This recursive procedure requires computing for all i = 1, . . . , s, and for all y ∈ D the cost

T (i, y, j, t) of the evolution that starts from y with dynamics Ai, switches after a time interval of

length t to dynamics Aj , and then evolves according to the optimal evolution, depending on the

number of switches still available. Such a cost is the sum of two terms. The first term y′Q̄i(t)y

is equal to the cost of evolving with dynamics Ai for a time interval of length t. The second term

λ2Tk−1(j, z/λ) is equal to the cost of the optimal evolution starting from z = eAity, i.e., from the

point reached when the commutation to Aj occurs and k − 1 switches are still available. Note

that the second term is known (by a dynamic programming argument) because the algorithm

keeps memory of the values of the optimal costs starting from any dynamics Aj and any point in

D. Such an information is sufficient since regions are conic. Indeed, if Tk−1(j, x) is the optimal

cost of the evolution starting from a point x on the unitary semisphere with dynamics Aj when

k − 1 switches are still available, then λ2Tk−1(j, x) is equal to the optimal cost of the evolution

starting from z = λx with dynamics Aj when k − 1 switches are still available.

In the last part of Step 2 colors are assigned. If the current dynamics is Ai and the current state

is y, then the color associated with y is equal to i if it is better to still evolve with dynamics

Ai. Otherwise the color corresponding to the dynamics j∗ ̸= i to which it is better to switch is

assigned to y.

The value of tmax is chosen very large to approximate the infinite time horizon2. The value

2Note that the use of a finite time horizon tmax does not affect the validity of the proposed approach. In fact,
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of ∆t is chosen quite small to reduce the effects of time-discretization on the optimality of the

solution.

The computational cost of the proposed approach is (rn−1Ns2) · c where c is the number of

operations required to find the optimal value of t∗ ∈ [0, tmax] that minimizes the remaining cost;

n is the dimension of the state space; r is the number of samples in each direction (i.e., rn−1

is the cardinality of D). Therefore, the complexity is a quadratic function of the number of

possible dynamics and depends on the value of tmax that influences c.

For a more detailed discussion of the computational complexity of the approach we address the

reader to [25].

4 The optimal control problem with an infinite number of switches

In this section we discuss how, under appropriate assumptions, the above procedure can be

extended to the case of N = ∞. In particular, we consider an optimal control problem of the

form (3) where

(i) for at least one i ∈ S, Ai is stable;

(ii) for all i ∈ S, Qi > 0.

Let us preliminary state a monotonicity result.

Property 1 Let N,N ′ ∈ N. If N < N ′, then for any continuous initial state x0, and for all

i, j ∈ S,
+∞ > V ∗

N (x0, i) ≥ V ∗
N ′(x0, j).

Proof: We first observe that by assumption (i) V ∗
N (x0, i) is finite for any N ≥ 1. In fact,

regardless of the value of the initial mode i, we can always switch to the stable dynamics whose

cost to infinity is finite. Now, we prove the second inequality by contradiction. Assume that

∃ j ∈ S such that V ∗
N ′(x0, j) > V ∗

N (x0, i). Then it is obvious that the same evolution that

generates V ∗
N (x0, i) is also admissible for (3) starting from (x0, j) when a larger value N ′ of

switches is allowed (it is sufficient to switch immediately from mode j to mode i). This leads to

a contradiction. �

Proposition 1 Given a continuous initial state x0, for any ε′ > 0, there exists N̄ = N̄(ε′, x0) ∈
N such that for all N > N̄ , V ∗

N̄
(x0, i)− V ∗

N (x0, j) < ε′ for all i, j ∈ S.

Proof: By definition V ∗
N (x0, i) ≥ 0 for all i ∈ S, hence V ∗

N is a lower bounded non-increasing

sequence (by Property 1). By the Axiom of Completeness it converges in R, hence it is a Cauchy

sequence. �
even in the presence of unstable dynamics a simple rule may be used to determine a ”non restrictive” value of

tmax [25].
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In the previous proposition N̄ was a function of x0. To eliminate this dependency we consider

the relative error.

Proposition 2 For any ε > 0 there exists N̄ = N̄(ε) ∈ N such that for all N > N̄ , for all

i, j ∈ S and for any continuous initial state x0, x0 ̸= 0

V ∗
N̄
(x0, i)− V ∗

N (x0, j)

V ∗
N (x0, i)

< ε.

Proof: We first observe that by assumption (ii) V ∗
N (x0, i) is lower bounded by a strictly positive

number. Moreover, the optimal costs are quadratic functions of x0, i.e., if x0 = λy0, then

V ∗
N (λy0, i) = λ2V ∗

N (y0, i) . Finally, by Proposition 1 ∀ y0 and ∀ ε′ > 0, ∃ N̄(y0) such that

∀ N > N̄(y0), V
∗
N̄
(y0, i)− V ∗

N (y0, j) < ε′. Hence if we define

N̄ = max
y0 : ||y0||=1

N̄(y0) ⇒

V ∗
N̄
(x0, i)− V ∗

N (x0, j)

V ∗
N (x0, i)

=
λ2[V ∗

N̄
(y0, i)− V ∗

N (y0, j)]

λ2V ∗
N (y0, i)

≤ ε′

min
y0 :||y0||=1

V ∗
N (y0, i)

= ε.

�

Thus, one may use a given fixed relative tolerance ε to approximate two cost values, i.e.,

V ∗
N (x, i)− V ∗

N ′ (x, j)

V ∗
N (x, i)

< ε =⇒ V ∗
N (x, i) ∼= V ∗

N ′ (x, j).

We can now prove the main result of this section.

Proposition 3 Given a fixed relative tolerance ε, if N̄ = N̄(ε) is chosen as in Proposition 2

then for all N > N̄ + 1 it holds that Ci
N = Ci

N̄+1
.

Proof: By definition (see also [25])

V ∗
N (x0, i) = min

j∈S
min
ϱ≥0

{
x′0Q̄i(ϱ)x0 + V ∗

N−1(x(ϱ), j)
}

where x(ϱ) = eAiϱx0 and Q̄i(ϱ) =

∫ ϱ

0
eA

′
itQie

Aitdt. Now, being by assumption N − 1 > N̄ , by

Proposition 2 we may approximate

V ∗
N−1(x(ϱ), j)

∼= V ∗
N̄ (x(ϱ), j) ⇒

V ∗
N (x0, i) = min

j∈S
min
ϱ≥0

{
x′0Q̄i(ϱ)x0 + V ∗

N−1(x(ϱ), j)
}

∼= min
j∈S

min
ϱ≥0

{
x′0Q̄i(ϱ)x0 + V ∗

N̄ (x(ϱ), j)
}
= V ∗

N̄+1(x0, i).

Therefore, by virtue of the above equations, the optimal arguments (ϱ∗, j∗) used to compute Ci
N

and Ci
N̄+1

are the same. �
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The above result allows one to compute with a finite procedure the optimal tables for a switching

law whenN goes to infinity. In such a case, in fact, it holds that for all i ∈ S, Ci
∞ = limN→∞ Ci

N =

Ci
N̄+1

.

Proposition 4 Given a fixed relative tolerance ε, if N̄ = N̄(ε) is chosen as in Proposition 2

then for all i, j ∈ S it holds that Ci
N̄+1

= Cj
N̄+1

.

Proof: It trivially follows from the fact that, by Proposition 2, V ∗
N̄+1

(x0, i) = V ∗
N̄+1

(x0, j) for

all i, j ∈ S, and from the uniqueness of the optimal tables as discussed in [25]. �

This result also allows one to conclude that for all i ∈ S,

C∞ = lim
N→∞

Ci
N ,

i.e., all tables converge to the same one.

To construct the table C∞ the value of N̄ is needed. We do not provide so far any analytical

way to determine N̄ , therefore our approach consists in constructing tables until a convergence

criterion is met.

Table C∞ can be used to compute the optimal feedback control law that solves an optimal control

problem of the form (3) with N = ∞. More precisely, when an infinite number of switches is

available, we only need to keep track of the table C∞. If the current continuous state is x and

the current dynamics is Ai, on the basis of the knowledge of the color of C∞ in x, we decide if

it is better to still evolve with the current dynamics Ai or switch to a different dynamics, that

is uniquely determined by the color of the table in x.

5 Stabilizability of unstable switched systems

In this section we deal with the problem of stabilizing a switched system (1) whose linear

dynamics Ai are not stable. In particular, we show that a solution to this problem — when

it does exist — can be obtained by solving an optimal control problem of the form (3) with

N = ∞. The idea is that of applying the switching table procedure to a “dummy” problem that

satifies the assumption that at least one dynamics Ai is asymptotically stable. We first present

the following preliminary result.

Proposition 5 Let us consider an optimal control problem (OP) of the form (3) with N = ∞,

and whose possible dynamics are Ai, i ∈ S, and the corresponding weighting matrices are Qi,

i ∈ S. If the table C∞ only contains colors associated to a subset of indices S ′ ⊂ S, then

∀x0 ∈ Rn, the optimal control law that results by solving (OP) is also optimal for the optimal

control problem (OP’) of the same form (3) with N = ∞, and whose possible dynamics are Ai,

i ∈ S ′ and the corresponding weighting matrices are Qi, i ∈ S ′.

Proof: The validity of the statement follows from the definition of the table C∞ and the possibility

of using it to derive an optimal feedback control law for (OP). If a color corresponding to a certain
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dynamics Aj does not appear in C∞, this means that it is never convenient to switch to dynamics

Aj , or to evolve with Aj if it is the initial dynamics, regardless of the current continuous state

and the current mode. �

The above result suggests one way to compute a stabilizing switching law for switched systems

whose dynamics are unstable.

Definition 2 Let us consider an optimal control problem of the form (3) with N = ∞. Assume

that all dynamics Ai, i ∈ S, are not stable and the corresponding weighting matrices Qi, i ∈ S,
are positive definite.

Let Ā ∈ Rn×n be an Hurwitz matrix and Q̄ ∈ Rn×n be a positive definite matrix. Let As+1 = Ā

and Qs+1 = q · Q̄ where q ∈ R+.

We define augmented optimal control problem an optimal control problem of the form (3) with

N = ∞, and whose possible dynamics are Ai, i ∈ S̄, with S̄ = S ∪ {s + 1}, and the weighting

matrices are Qi, i ∈ S̄. �

We now prove an obvious monotonicity result for the augmented optimal control problem,

namely that increasing the weight of the dummy dynamics Ā also increases the optimal cost of

any evolution that uses Ā.

Proposition 6 Let us consider an optimal control problem (OP) of the form (3) with N = ∞.

Assume that all possible dynamics Ai, i ∈ S, are unstable and the corresponding weighting

matrices Qi, i ∈ S, are positive definite. Let V ∗
∞(x0) be the optimal value of the cost of (OP)

when the initial continuous state is x0.

Let us consider an augmented optimal control problem (OP) with As+1 = Ā and Qs+1 = q · Q̄
where q ∈ R+ and Q̄ > 0. Let V

∗
∞(x0, q) be the value of the cost of (OP) when the initial

continuous state is x0 and the optimal evolution is based on tables computed using Algorithm 1.

The cost V
∗
∞(x0, q) is a strictly increasing function of q for all values of q such that the stable

dynamics As+1 appears in the optimal evolution of the augmented optimal control problem.

Proof: We prove this by contradiction. Let us consider two different augmented optimal control

problems (OP’) and (OP”) that differ for their value of q (while Q̄ is the same). In particular,

let q′ and q′′ be the values of the coefficient q associated to (OP’) and (OP”) respectively, and

let q′ > q′′. Assume that V
∗
∞(x0, q

′) = V
∗
∞(x0, q

′′). If we consider the evolution that is optimal

for (OP’) and evaluate the cost using the weights of (OP”), we find out that the resulting value

of the cost is less than V
∗
∞(x0, q

′′), that leads to a contradiction. �

Now, we prove the main result.

Theorem 1 Given a switched system (1), let us consider an optimal control problem of the

form (3) with N = ∞ and weighting matrices Qi > 0, i ∈ S. Then, let us define an augmented

optimal control problem with stable dynamics As+1 = Ā and corresponding weighting matrix

Qs+1 = q̄ · Q̄, where Q̄ > 0 and q̄ ∈ R+. Let S̄ = S ∪ {s+ 1}.
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(i) The switched system (1) is exponentially stabilizable =⇒ ∃ q̄ ∈ R+ such that the table C∞,

computed using Algorithm 1 and solving the augmented optimal control problem, does not

contain the color associated to Ā.

(ii) The switched system (1) is asymptotically stabilizable ⇐= ∃ q̄ ∈ R+ such that the table

C∞, computed using Algorithm 1 and solving the augmented optimal control problem, does not

contain the color associated to Ā.

Proof: Let V
∗
∞(x0, q) be the cost of the augmented optimal control problem when the multi-

plicative weight of matrix Q̄ is equal to q, the initial continuous state is x0, and the evolution is

based on tables computed using Algorithm 1.

(i) By Proposition 6 we know that V
∗
∞(x0, q) is an increasing function of q for all values of q

such that As+1 appears in the optimal evolution. Moreover, since regions are computed using

Algorithm 1, then each dynamics whose color appears in C∞ should be used for a time interval

whose length is greater than or equal to ∆t (see Algorithm 1, Step 2, Computation of the

remaining cost). Therefore, given a value of ∆t used to implement Algorithm 1, if q → ∞, then

the cost resulting from using dynamics As+1 goes to infinity as well.

Now, if the original system is exponentially stabilizable, it means that a control law that is

exponentially stable exists to which it corresponds a finite cost. This implies that for all initial

states x0, if increasing values of q are associated to the dummy dynamics in the augmented

optimal control problem, a value of q, let’s say q′(x0), is reached such that C∞ does not contain

the dummy dynamics.

The result holds if we let

q̄ = max
x0∈Rn

q′(x0) = max
||y0||=1

q′(y0),

where the second equality follows from the fact that V
∗
∞(x0, q) is a quadratic function of x0,

i.e., if x0 = λy0 then V
∗
∞(λy0, q) = λ2V

∗
∞(y0, q).

(ii) Now, to prove that the switched system (1) is asymptotically stabilizable, we introduce a

Lyapunov-like function V (x) = V ∗
∞(x), i.e., the value of this function coincides with the optimal

cost of an evolution starting from x, when an infinite number of switches is allowed.

We first prove that there exist two functions Vmin(x) and Vmax(x) such that Vmin(x) ≤ V (x) ≤
Vmax(x) < +∞.

• (V (x) ≤ Vmax(x) < +∞). By assumption ∃ q̄ such that the switching table C∞, computed

applying the switching table procedure to the augmented optimal control problem with

Qs+1 = q̄ · Q̄, does not contain the color associated to the stable As+1 = Ā.

By Proposition 5 the control law that results using table C∞ is also optimal for the optimal

control problem with unstable dynamics Ai’s and weighting matrices Qi’s, with i ∈ S.
Therefore, if we define Vmax(x) = xTZs+1x where Zs+1 is the solution of the Lyapunov

equation AT
s+1Zs+1 + Zs+1As+1 = −Qs+1, we have V

∗
∞(x, q̄) ≤ Vmax(x) < +∞ for all

13



x ∈ Rn. Moreover, being V ∗
∞(x) ≤ V

∗
∞(x, q̄) for all x ∈ Rn, it follows that V ∗

∞(x) ≤
Vmax(x) < +∞.

• (V (x) ≥ Vmin(x)). Let us define

Vmin(x) ,
λQ

2σ
||x||2, λQ = min

i∈S
minλ{Qi} > 0

is the minimum among the smallest eigenvalues of the weighting matrices Qi’s, and

σ = max
i∈S

σi, σi = ||Ai|| is the largest singular value of Ai,

is the maximum among the largest singular values of Ai’s. By definition

V (x) =

∫ ∞

0
xTop(t)Qiop(t)xop(t)dt

where xop(t) and iop(t) denote an optimal evolution starting at x.

Let us rewrite xop(t) = yop(t)||xop(t)||, thus3

V (x) =

∫ ∞

0
yTop(t)Qiop(t)yop(t)||xop(t)||

2dt ≥
∫ ∞

0
yTop(t)λQyop(t)||xop(t)||2dt

= λQ

∫ ∞

0
||xop(t)||2dt ≥ λQ

∫ ∞

0
e−2σt||x||2dt ≥

λQ

2σ
||x||2 , Vmin(x).

Now, we prove that the switched system (1) optimally controlled is stable because given an

arbitrary ε > 0, there exists δ = δ(ε, t0) > 0 such that ||x(t0)|| ≤ ε for all t ≥ t0 if ||x(t0)|| ≤ δ.

• (Stability of the optimally controlled system). Let C be the maximal value for which

the curve Vmin(x) = C is all contained within the closed ball of radius ε. Then, choose

δ as the minimal value of ||x|| for x belonging to the curve Vmax(x) = C. We prove

that any optimal evolution xop(t) that starts in xop(t0) = x0 within the closed ball of

radius δ (this initial state is such that Vmax(x0) ≤ C) remains in the closed ball of radius

ε. Assume, by contradiction that for t ≥ t0 we have xop(t) = x′, with ||x′|| > ε. Then,

V (x′) ≥ Vmin(x
′) > C ≥ Vmax(x0) ≥ V (x0), thus contradicting the monotonicity property4

that states that the cost must decrease along any optimal trajectory.

Finally, the asymptotic stabilizability of the switched system trivially follows from the stability

of the optimally controlled system and the fact that V ∗(x) < +∞, hence by virtue of the item

above ||x|| → 0. �
3In [11] we showed that given a dynamical system ẋ(t) = Ax(t), with initial condition x(0) = x0, for all t ≥ 0

holds ||x(t)|| = ||eAtx0|| ≥ e−σt||x0||, where σ = ||A|| is the largest singular value of matrix A.
4The monotonicity property trivially follows from the fact that the cost is the integral of a positive definite

function.
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We are aware of the small gap in the above result: a switched system may be asymptotically

(but not exponentially) stabilizable but if no finite-cost optimal control law exists, we cannot

compute a stabilizing law. The results of Hespanha [13] and Sun [28] seem to imply that for the

class of systems we consider exponential stability and asymptotic stability coincide. If such is

the case, Theorem 1 can be more succinctly restated as a necessary and sufficient condition for

stabilizability. However this is still an open issue.

The above theorem provides a systematic way to deal with the problem of determining an

asymptotic stabilizing switching law for switched system (1) with linear unstable dynamics,

that can be summarized as follows.

— We associate to the switched system to stabilize an optimal control problem of the form (3)

with N = ∞.

— We define an augmented optimal control problem with a Hurwitz matrix As+1 = Ā and

weighting matrix Qs+1 = q · Q̄, where Q̄ is any positive definite matrix and q is a very large

positive real number.

— We construct the switching table C∞ solving the augmented optimal control problem.

— If this table does not contain the color associated to the stable dynamics As+1, by Theorem 1,

item (ii), we may conclude that the switched system (1) is asymptotically stabilizable. In such

a case, we compute the stabilizing feedback control law that minimizes the chosen quadratic

performance index using table C∞.

We do not provide an a priori rule to establish if the switched system is stabilizable and in such

a case, an analytical way to compute an appropriate value of q. Nevertheless in all numerical

examples taken from the literature, we found out that if the system is stabilizable it was sufficient

to use a large value of q (1010 ÷ 1020) and to take

Q̄ = In ·max
i∈S

max
r,c=1,...,n

Qi(r, c)

(where In denotes the n-th order identity matrix) to compute stabilizing laws .

6 A numerical example

Let us consider a variant of a very well-known switched system [4] (1), with s = 3 and

A1 =

[
1 −10

100 1

]
, A2 =

[
39.97 −77.5

32.5 −37.97

]
, A3 =

[
−37.97 −77.50

32.50 39.97

]
.

Note that dynamics A2 and A3 are obtained from dynamics A1 by an axis rotation of 120 and

240 degrees respectively. All dynamics Ai’s are unstable.

To determine a stabilizing switching law we first associate to the switched system (1) an optimal

control problem of the form (3) with N = ∞. In particular, we take Qi = I2, i = 1, 2, 3, where

I2 denotes the second order identity matrix.

15



−1  −0.5 0   0.5 1   
−1  

−0.5

0   

0.5 

1   

x
2
 

x
1
 

A
1
 

A
3
 

A
2
 

Figure 1: Example studied in Sction 6: table C∞ and an optimal trajectory.

We define an augmented optimal control problem with the stable dynamics A4 = −A1 and

weighting matrix Q4 = q̄ · Q̄, where q̄ = 105 and Q̄ = I2.

We construct the table C∞. More precisely, we apply the procedure to construct the tables Ci
N

for finite values of N and we find out that, for a sufficiently large value of N , namely N = 15,

the tables converge to the same one. Table C∞ is reported in Figure 1.

We can immediately observe that the color associated to the stable dynamics A4 never appears.

This means that, regardless of the initial state, the optimal trajectory of the augmented optimal

control problem is obtained by infinitely switching among unstable dynamics Ai, i = 1, 2, 3.

This allows one to conclude that the switched system (1) with i ∈ {1, 2, 3} is globally asymp-

totically stabilizable. Moreover, the table C∞ can be used to compute the stabilizing feedback

control law that minimizes the chosen quadratic performance index.

An example of an optimal trajectory is reported in Figure 1 when the initial state is x0 =

[−1 1]T /
√
2, i0 = 1. The set of optimal switching times T ∗, the set of optimal switching

sequence I∗ and the optimal cost V ∗
∞(x0) are:

T ∗ = 10−2 · {0.48, 3.84, 3.78, 3.42, 3.72, 3.48, 3.18, . . .}, I∗ = {1, 3, 2, 1, 3, 2, 1, . . .},

and V ∗
∞(x0) = 0.0208. Note that the system, because of the homogeneous regions, presents a

periodic behaviour.

Note that here we presented a numerical second order example because it enables us to visualize

graphically the switching regions. Netherless, this does not mean that the control procedure can

only be applied to second order systems. Examples of fourth order systems have been extensively

presented in [6].
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7 Conclusions and future work

In this paper we extended our previous results on the optimal control of switched systems with

a finite number of admissible switches and at least one stable dynamics. More precisely, we

first showed that a feedback control law that minimizes a given quadratic cost can also be

computed when the number of allowed switches goes to infinity and only one dynamics is stable.

Then, we showed that this approach can also be efficiently applied when all LTI dynamics are

not stable, by simply solving an appropriate optimal control law, called the augmented optimal

control problem that contains a “dummy” stable dynamics. In particular, we showed that if the

switched system with unstable dynamics is globally exponentially stabilizable, then an optimal

feedback control law can be computed, that guarantees the closed-loop system to be globally

asymptotically stable.

Two interesting problems are still open in our approach. We have been able to prove that the

state space partitions Ci,k computed under the assumption that a finite number of switches N

is allowed, all converge to the same state space partition C∞ provided that N ≥ N̄ . However we

do not provide a rule to determine the value of N̄ , neither an upper bound on it. Nevertheless

from a practical point of view this is not a limitation: our procedure can be recursively applied

off-line for increasing values of N until convergence is met.

The second open problem is that of providing a systematic criterion to determine the weighting

matrix that should be associated to the dummy stable dynamics s + 1 in the optimal control

problem. Only a heuristic rule is given, that in all numerical cases we examined provided good

results.
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