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Abstract
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consensus condition by attenuating the destabilizing effect of the disturbances. This
main result is complemented by an additional result establishing the achievement of
consensus under different requirements on the switching communication topology.
In particular, we provide a convergence result that encompasses situations in which
the time varying graph is always disconnected. Lyapunov analysis are carried out
to support the suggested algorithms and results. Simulative tests considering, as
case study, the synchronization problem for a network of clocks are illustrated and
commented to validate the developed analysis.
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1 Introduction

The problem of reaching consensus, i.e., driving the state of a set of intercon-
nected dynamical systems towards the same value, has received much attention
due to its many applications in, both, the modeling of natural phenomena such
as flocking (see e.g. [1–4]) and in the solution of several control problems in-
volving synchronization or agreement between dynamical systems (see [5–7]).

In this paper we discuss a few approaches to reach consensus in a network of
interacting agents whose dynamics are modeled by first order continuous time
integrators subject to unknown perturbations. The approaches are based on
a discontinuous local interaction rule using sliding mode control concepts and
techniques (see [8,9]). Discontinuous local interactions rules have been already
exploited in the framework of consensus algorithms to exploit the underly-
ing finite-time convergence and robustness against disturbances and unmod-
eled dynamics. Several examples of applications to flocking or synchronization
problems can be found in the literature (see [10]). Discontinuous local inter-
actions were studied in [11], within a general framework of gradient flows, and
several examples of discontinuous consensus protocols were analyzed there.

In [12], a finite-time consensus algorithm is proposed to address the leader-
follower tracking problem in multi-robot systems with static topology but
varying leader. In [13], [14] and [15], finite-time consensus algorithms are pro-
vided for networks of unperturbed integrators by exploiting discontinuous local
interaction rules under time varying (both undirected and directed) network
topologies.

The consensus problem in presence of measurement errors is studied in [16],
in a discrete-time setting, with reference to linear consensus protocols with
constant or vanishing weights. The authors derive explicit upper bounds to
the maximum ultimate disagreement error in dependence of the bounds on the
noise magnitude and of the smallest non-zero singular value of the network’s
state update matrix.

In [17] the authors suggest a class of non-linear continuous protocols that
achieve the so-called “ǫ-consensus”, namely an approximate agreement condi-
tion where all agents converge towards a set, in spite of the presence of additive
disturbances. Our work differs from [17] in that we consider a discontinuous
protocol, as opposed to continuous, that is able to achieve almost complete dis-
turbance rejection up to an arbitrarily small error if the time-varying network
is always connected.

A problem that shares some technical issues with the protocol proposed in this
paper is the continuous-time consensus problem in presence of quantization
errors. In [18] the continuous-time consensus problem is studied in the case of
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quantized information exchange between agents, and this leads to an instance
of discontinuous protocol where the effect of quantization can be regarded as
a disturbance.

The approaches illustrated in this paper further differ from the above men-
tioned literature works in that we address the analysis of the practical sta-
bility and disturbance attenuation properties of finite-time consensus under
the effect of unknown perturbations and, additionally, with a switching com-
munication topology. In the present work the finite time transient to reach
consensus can be made arbitrarily small by properly selecting the algorithm
parameters. The disturbance rejection performance will primarily depend on
the time-varying network connectivity properties. To the best of our knowl-
edge, the above aspects were never simultaneously addressed and characterized
in the existing literature.

The main result of the present work, outlined in Theorem 3.2, consists in
proposing a feasible local interaction rule which provides finite time conver-
gence of the state of the network to a condition of approximate agreement, by
attenuating the effect of the disturbances. This result is subject to the require-
ment that the time varying graph defining the network switching interaction
topology stays connected during, at least, a certain “minimal percentage” of
time.

An additional result, outlined in Theorem 3.5, demonstrates the finite time at-
tainment of the approximate consensus condition while allowing the graph to
be always disconnected and introducing a different requirement on the switch-
ing topology. The conditions involved in this additional result are, however,
not easily implementable and mostly of theoretical interest. Nevertheless, it
is worth to stress that it appears to be the first result stating the finite time
attainment of consensus by allowing the graph to be disconnected at all times.

This paper generalizes the preliminary results presented in [19] by extending
the analysis to cover switching topologies in which the communication graph
can be always disconnected. Furthermore, we consider a different Lyapunov
function by means of which a less conservative tuning inequality for the algo-
rithm parameter is derived.

The proposed framework is well suited to model a network of perturbed clocks
in which the proposed local interaction rule improves the synchronization ac-
curacy attenuating the disturbance effects. In the simulation section we shall
provide a thoroughly discussed case study of “robust” clock synchronization.

The structure of the paper is as follows. In Section 2 we recall some basic
definitions and formulate the problem under investigation. In Section 3 we
describe the proposed local interaction rule and we investigate the associated
convergence properties by stating the main result of this paper. Subsection 3.1
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addresses the previously mentioned additional result which broadens the ad-
mitted switching topology, as compared to the main result, at the price of
needing certain global state information to implement it. In Section 4 some
simulation results are presented by considering the case study of the synchro-
nization problem in a network of clocks. Finally, in Section 5, conclusions are
drawn and possible future research directions are discussed.

2 Preliminaries and Problem statement

Let us consider n agents interacting through a communication network whose
topology is described by a connected undirected graph G = {V,E}, where
V = {1, . . . , n} denotes the set of agents and E ⊆ {V × V } the set of edges
representing communication channels between them. Let the (i, j) elements of
E be ordered such that i < j. Furthermore, assume that graph G does not
contain self loops. The i-th agent is modeled by the first-order dynamics

ẋi = α + νi(t) + ui(t), xi(0) = xi0, i ∈ V, (1)

where α is a constant reference slope, νi(t) is a bounded disturbance, ui(t) is
the adjustable control input and xi0 is the initial condition.

Model (1) is well suited to represent the dynamics of a network of clocks where
α is a desired clock skew, the same for each clock, νi(t) is a bounded distur-
bance corrupting the clock dynamics, ui(t) is the modifiable input, allowing
to adjust the speed of the i-th clock, and xi0 is the initial clock off-set. Signal
νi(t) is a general representation of all the possible modeled and unmodeled
uncertainty sources such as time off-set, noise, etc. The next assumption is
made on the disturbance signals νi(t)

∃Π ∈ R
+ : ∀i ∈ V, |νi(t)| ≤ Π. (2)

It is worth to stress that the presented model also covers the case in which the
clocks of the network have different skews, says αi for i ∈ V . To this end one
can just assume that a constant bias αi−α is part of the disturbance term νi,
which would be compatible with the above boundedness constraint (2). The
present formulation of the model is preferred as it brings some simplification
in the underlying convergence proof of the consensus protocol.

At each time instant, only a subset of the available communication channels in
G is active for information exchange between agents. Let Ĝ(t) = {V,E(t)} be
a time varying graph representing the instantaneous topology of active links,
where E(t) ⊆ E is the subset of active edges at time t.
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Let Ni(t) = {j ∈ V : (j, i) ∈ E(t)} denote the set of neighbors of node i at
time t. Denote

rik(t) =











1 if k ∈ Ni(t)

0 otherwise.
(3)

Since graph Ĝ(t) is undirected, it follows that

rik(t) = rki(t), ∀i, k,∈ V, i 6= k. (4)

Our objective is to design a local interaction rule ui(t), compatible with the
time-varying topology of graph Ĝ(t), which can guarantee, under suitable as-
sumptions on Ĝ(t), the achievement of the next practical finite-time con-

sensus condition

∃M, tr ∈ R
+ : ∀t > tr, ∀i, j ∈ V, |xi(t)− xj(t)| ≤ M, (5)

where M and tr are positive constants.

We consider a practical, rather than exact, consensus condition because we are
interested in the case in which the network topology may be disconnected for
several intervals of time. For this reason, since disturbances are unknown, an
exact consensus condition can not be guaranteed by any consensus protocol.

3 Main result

The proposed discontinuous local interaction rule takes the form

ui(t) = −λ
∑

k∈Ni(t)

sign(xi(t)− xk(t)), λ > 0, (6)

where λ is a positive tuning constant of the algorithm and function sign(z),
z ∈ R, is defined as follows

sign(z) =



























1 z > 0

0 z = 0

−1 z < 0

(7)
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We adopt the following equivalent notation for the local interaction rule (6)-(7)

ui(t) = −λ
∑

k∈V,k 6=i

rik(t)sign(xi(t)− xk(t)), λ > 0. (8)

Remark 3.1 Due to the concurrent effect of the suggested discontinous local
interaction rule, the switching network topology, and the possibly discontinuous
nature of the external disturbances (which are only supposed to be uniformly
bounded), the closed loop network dynamics will be discontinuous and the re-
sulting solution notion needs to be discussed and clarified. For a differential
equation with discontinuous right-hand side, following [20], we understand the
resulting solution in the so-called “Filippov sense” as the solution of an ap-
propriate differential inclusion, the existence of which is guaranteed (owing on
certain properties of the associated set-valued map) and for which noticeable
properties, such as absolute continuity, are in force. The reader is referred to
[21] for a comprehensive account of the notions of solution for discontinuous
dynamical systems. �

From now on we investigate the conditions under which the local interaction
protocol (8) can achieve the approximate consensus conditions (5).

Let us define an error variable for each edge in the network

δij(t) = xi(t)− xj(t), (i, j) ∈ E. (9)

The dynamics of δij(t) are easily obtained by differentiating (9) and consider-
ing the closed loop dynamics of each agents

ẋi(t) = α + νi − λ
∑

k∈V,k 6=i

rik(t)sign(xi(t)− xk(t)), i ∈ V. (10)

Simple manipulations yield

δ̇ij(t) = νi − νj − λ
∑

k∈V,k 6=i rik(t)sign(δik(t))

+λ
∑

k∈V,k 6=j rjk(t)sign(δjk(t)).
(11)

The requirement concerning the switching communication topology is that the
time varying graph Ĝ(t) stays connected during, at least, a certain “minimal
percentage” of time. This is formalized by the next Assumption.

Assumption 1 There are positive constants ǫ and T , with ǫ ≤ T , such that
during the receding horizon time interval I(t) = (t, t + T ), Ĝ(t) is connected
along a subinterval S(t) ⊆ I(t), possibly formed by the union of disjoint subin-
tervals, whose overall length is at least equal to ǫ.
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I(t) 

Subintervals where the graph is connected  

t1 t2 t3 

t1+ t2+ t3≥ε 

Time 

Subintervals where the graph is not connected 

t t+T 

Fig. 1. Changes in network topology and communication constraints.

The meaning of Assumption 1 is clarified by the Figure 1, namely the overall
duration of the disjoint white subintervals during which the instantaneous
graph Ĝ(t) is connected should be not less than the constant ǫ. We are now
in a position to state the main result of the paper.

Theorem 3.2 Consider the agents’ dynamics (1), which satisfies (2), and let
Assumption 1 be in force. Then, the discontinuous local interaction rule (8)
with tuning parameter λ selected according to

λ ≥ Π T
ǫ
+ µ2, µ 6= 0, (12)

provides for the approximate consensus condition (5) with

M = [2(T − ε) + ξ]Π, (13)

where ξ is an arbitrarily small positive real number and the finite transient
time tr is such that

tr ≤
T/ε

2µ2
maxi,j∈V×V |xi(0)− xj(0)|, (14)

where µ is an arbitrary nonzero constant allowing to tune the transient time
as specified by eq. (14).

Proof:

Consider

V (t) = |δij(t)| (15)

as a candidate Lyapunov function, where

(i, j) = argmax(i,j)∈V×V |δij(t)| (16)

in such a way that, without loss of generality, index “i” will correspond to an
agent carrying the maximal value at time t among all the agents in the network,
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and, dually, index “j” will correspond to an agent carrying the minimal value,
i.e.

xi(t) = sup
h∈V

xh(t), xj(t) = inf
h∈V

xh(t) (17)

Let us preliminarily address the case in which ǫ < T . It is worth to emphasize
that the chosen Lyapunov function (15) is continuous at those time instants at
which either i or j will change its value. Clearly, the vanishing of V (t) implies
the exact consensus condition among the agents of the network, while small
values for V (t) correspond to a practical consensus condition as in (5). Note
that the considered Lyapunov function is locally Lipschitz and it is not differ-
entiable when δij(t) = 0. Thus, we refer for stability analysis to the Lyapunov
Generalized Theorem for non-smooth analysis reported in [22], which makes
use of the Clarke’s Generalized Gradient [23]. However, we can observe that
δij(t) = 0 holds only when the exact consensus condition is in force, which will
bring some useful simplification in the stability analysis.

In the remainder, we refer to the computation method illustrated in [22], where
a Lyapunov analysis based on a similar Lyapunov function containing absolute
value functions was dealt with. All the necessary technicalities justifying the
correctness of adopting the chain rule to compute the time derivative of V (t),
which exists almost everywhere in the form of a suitable set-valued map, are
not reported here, and the reader is referred to [11,22,24] where discontinuous
systems and non-smooth Lyapunov tools analogous to those involved in the
present analysis were discussed in more detail.

The time-derivative of V (t) along the solutions of the deviation error dynamics
(11) takes the following set-valued form

V̇ (t) = SGN(δij(t)) · δ̇ij(t)

= SGN(δij) · (νi − νj)− λ · SGN(δij)
∑

k∈V ,k 6=i
rik · sign(δik)

+λ · SGN(δij)
∑

k∈V ,k 6=j
rjk · sign(δjk)

(18)

where SGN(δij(t)), the generalized gradient of V (t) (see [22]), is the multi-
valued function

SGN (δij(t)) =



























1 if δij(t) > 0

[−1, 1] if δij(t) = 0

−1 if δij(t) < 0

(19)

It is apparent from (18)-(19) that the Lyapunov function V (t) is non smooth
only when δij(t) = 0 for some i 6= j.
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Note that by definition, and considering (17), as long as V (t) 6= 0 we have
SGN(δij(t)) = 1. Furthermore due to the uniform boundedness of the distur-
bance (2), the next estimation is in force

|νi − νj| ≤ 2Π (20)

Thus, we can manipulate (18) so as to obtain

V̇ (t) ≤ 2 · Π− λ
∑

k∈V ,k 6=i
rik · sign(δik) + λ

∑

k∈V ,k 6=j
rjk · sign(δjk) (21)

Note that, in light of (17), irrespectively of the instantaneous current graph
topology, all the state-dependent feedback terms in the right hand side of (21)
are nonnegative, i.e.

−λ
∑

k∈V ,k 6=i
rik · sign(δik) + λ

∑

k∈V ,k 6=j
rjk · sign(δjk) ≤ 0 (22)

The receding horizon time interval I(t) = (t, t + T ) is divided into the union
of subinterval S(t), along which the graph is guaranteed to be connected, and
the complementary interval I(t) \ S(t) during which nothing claimed about
the connectivity properties of the switching graph. By virtue of (21) and (22)
one can conclude that

V̇ (t) ≤ 2 ·Π, t ∈ I(t) \ S(t). (23)

It shall be noted that the pair (i, j) is not uniquely defined and there can be
multiple agents carrying the maximal or minimal values xi and xj at time t.

At those time instants when Ĝ(t) is connected, however, both the following
conditions holds:

A - Among all agents carrying the maximal value, there is at least one of
them which admits, among its neighbors, one agent with state value strictly
less than xi.

B - Among all agents carrying the minimal value, there is
at least one of them which admits, among its neighbors, one agent with state
value strictly greater than xj.

Suppose “It” (resp., “Jt”) is the agent for which the maximum (resp., mini-
mum) is achieved at time t. If there are many such agents, we choose one, if
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any, which share an active edge with a neighbor having state value strictly
less (resp., greater) than xi (resp., xj). These agents always exist at those time

instants at which Ĝ(t) is connected according to previous statements A and B.
If there are still many of such agents we choose any one of those, but commit
to that until a new agent holds the maximum (resp., minimum) value.

As a consequence of the previous developments, at those time instants when
Ĝ(t) is connected there exists two agent indexes k̄1, k̄2, k̄1 6= i, k̄2 6= j, which
satisfies both the following conditions:

rik̄1(t) = 1 , δik̄1 > 0, (24)

rjk̄2(t) = 1 , δjk̄2 < 0. (25)

When (24) and (25) are both in force, it follows that the right hand side of
(21) can be upper-estimated as follows

V̇ (t) ≤ 2 · Π− 2λ, t ∈ S(t), (26)

whenever V (t) 6= 0. By construction the next relation holds:

V (t+ T )− V (t) =
∫

S(t)

V̇ (τ) dτ +
∫

I(t)\S(t)

V̇ (τ) dτ. (27)

By noticing that the length of the subinterval S(t) is at least ε, according to
the Assumption 1, it follows that the length of the interval I(t) \S(t) will not
exceed the value of T − ε. Thus, in light of (23) and (26), one can manipulate
(27) as

V (t + T )− V (t) ≤ ǫ (2Π− 2λ) + (T − ε) 2Π =

= −2ελ+ 2TΠ
(28)

By plugging (12) into (28) one obtains the next condition

V (t+ T )− V (t) ≤ −µ2ε, (29)

which will be satisfied as long as V (τ) 6= 0 ∀ τ ∈ (t, t+T ), thereby guaranteeing
the existence of a finite tr such that V (tr) = 0. In order to evaluate an upper
bound to the transient time tr, denote Vκ = V (κT ), and express (29) in the
form of the difference equation

Vκ+1 = Vκ − µ2ǫ (30)

which admits the solution

Vκ = V (0)− κµ2ǫ (31)
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From (31) it can be readily concluded that

tr ≤

(

T

ǫµ2

)

V (0) =

(

T

ǫµ2

)

max
i,j∈V×V

|xi(0)− xj(0)| (32)

which is according to (14). We now prove that, at all t ≥ tr, the Lyapunov
function V (t) undergoes bounded fluctuations preserving the consensus accu-
racy established by (5) and (13). Define

VS = sup
t≥tr

V (t) (33)

which sets the ultimate accuracy of the approximate consensus condition. If,
at any time t′ one has that V (t′) = 0 then along the time interval t ∈ (t′, t′+T )
the Lyapunov function V (t) may deviate form zero, at most, by a quantity
2(T −ε)Π, which is obtained by integrating (23) for a time T −ε (the maximal
consecutive time interval in which the graph is disconnected according to the
Assumption 1) starting from the zero initial condition. Thereby, the domain

V (t) ≤ 2(T − ε)Π. (34)

is positively invariant at any t ≥ tr.

Now let us address the case in which ε = T , i.e. the time varying graph
is connected at all times. The previous analysis has shown that there exists
a finite time tr, satisfying (14), at which exact consensus is achieved, i.e.
V (tr) = 0. Unfortunately, V (t) = 0 cannot be an equilibrium state at t ≥ tr
due to the fact that all the local control laws ui(t) are identically zero when
V (t) = 0 (as a consequence of all δij ’s in (9) being zero and in view of the
adopted definition (7) of the sign function) while the disturbances νi(t) are not.
On the other hand, an infinitesimal deviation of V (t) from zero will restore the
convergence features of the algorithm, steering immediately V (t) back to zero.
This phenomenon, local instability of the ideal consensus condition V (t) = 0
when the disturbances are acting, can be characterized by an infinitesimal
increase of Γ as follows:

Γ ≤ [2(T − ε) + ξ]Π (35)

where ξ is an arbitrarily small positive real number. Theorem 3.2 is proven.

�

It is worth to remark that the tuning of the gain λ does not require the perfect
knowledge of the time varying network topology, and it is carried out on the
basis of an upper bound to the noise magnitude and an upper bound to the
ratio T/ε that sets the relative amount of time during which the network is
connected.
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Fig. 2. Actual and majorant curves of V(t)

The relative amount of time in which the network is connected ε/T has to
be estimated experimentally in practical applications. Then a “safety margin”
could be taken into account for the control gain so that small deviations of the
estimated parameter do not affect network performance. Since we do not model
the network switching process we can not estimate this parameter before hand.
If the network topology switches according to a stochastic or deterministic
model then one can estimate an upperbound to this parameter and consider
this value to set the control gain of the proposed consensus protocol.

Remark 3.3 Note that the transient time, which satisfies (32), can be made
arbitrarily small by taking the free design parameter µ large enough. It can be
defined a µ-dependent majorant curve, illustrated in Figure 2, such that

V (t) ≤ V̄ (t) = max
{

V (0)− µ2ε
t

T
+ Γ,Γ

}

, (36)

Remark 3.4 It is worth to stress that possible trajectories of the correspond-
ing feedback system may not be unique, as it commonly happens with discontin-
uous dynamical systems. However, as our conclusions rely upon (non-smooth)
Lyapunov-based arguments, all possible solutions of the corresponding Filip-
pov differential inclusion will satisfy the demonstrated property of finite time
convergence to the approximate-consensus condition.

3.1 A further result

Within the present section, the achievement of the approximate consensus con-
dition (5) is guaranteed under restrictions on the time varying connectivity
graph that differ from those given in Theorem 3.2. Rather than assuming that
the graph is connected for a guaranteed amount of time, we instead assume,
qualitatively speaking, that arcs connecting the agent having the maximal
(or minimal) value with a non-synchronized agent are active “sufficiently of-
ten”. We are not aware of other results ensuring the finite time attainment
of consensus by allowing the graph to be disconnected at all times and in the
presence of disturbances as well.
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This result is formalized by means of the next Theorem:

Theorem 3.5 Consider the network of agents (1), which satisfies (2), along
with the discontinuous local interaction rule (8).

Let T > 0 be an arbitrary constant. Consider an infinite number of contiguous
disjoint time intervals I(ti) = [ti, ti + T ) (i = 1, 2, . . .), and let εi ∈ [0, T ]
be the union of subsets of I(ti) during which at least one edge joining two
non-synchronized agents is active where one of the agents holds a value either
equal to suph∈V xh(t), or infh∈V xh(t).

If, for all I(ti), there exist k∗ < ∞ and β > 0 such that the next relation holds

k∗
∑

j=1

εj ≥ β. (37)

then, provided the algorithm parameter λ satisfies the inequality

λ ≥
2k∗ Π T

β
+ µ2, µ 6= 0, (38)

the collective dynamics (10) reaches the approximate consensus condition (5)
in finite time.

Proof: See A. �

In Theorem 3.5 we have proven finite-time convergence despite the possibility
of an always-disconnected time varying graph. This result is, however, not
easy to implement in practice as it might require possibly infinite-frequency
topology switchings, and, for this reason, Theorem 3.3 qualifies as mainly of
theoretical interest. Nevertheless it appears to relax the theoretical require-
ments for finite-time convergence in consensus algorithms with respect to the
current state of the art.

4 Numerical simulations

A network of 20 clocks is considered, governed by model (1), with α = 1 and
with the chosen disturbance model of the form

νi(t) = nir(t) + βi + kisin(20t + φi) i ∈ {1, 2, . . . , 20} (39)

where nir(t) is a uniformly distributed bounded random noise signal, and
parameters βi, φi and ki were randomly chosen in such a way to enforce the
relation |νi(t)| ≤ Π = 3 ∀i ∈ V . Initial conditions were also chosen at random
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in the range [0, 10]. The instantaneous communication topology is set by
a randomly chosen time-varying graph G(t). We assume that the switching
policy is such that the graph stays connected for at least 30% of time, i.e.
ε ≥ 0.3T , which means that T/ε ≤ 10/3. Furthermore, the free parameter µ2

in (12) is set to the unit value. Under these assumptions, the gain parameter
λ of the discontinuous local interaction rule (4)-(8) can be set in accordance
with

λ ≥ 3
10

3
+ 1 = 11 (40)

The value λ = 11 will be used in all tests presented here. Parameter T is set
as T = 2 · 10−2s, and the sampling time of the fixed-step Euler solver used in
the simulations is set as Ts = 2 · 10−4s. The time varying graph is updated
every 10 ·Ts seconds. After each updating of the graph, during the subintervals
where it must be connected (according to the T/ε requirement) the graph is
checked for connectivity and if connectivity is not in force a subset of edges
forming a spanning tree is added to ensure it.

The outline of the performed simulations is as follows. In the first simulation
(Test 1) the graph Ĝ(t) is randomly chosen so that at each time instant it is
connected, i.e., ε = T . In the second simulation (Test 2), the switching policy
is modified in such a way that ε = 0.3T . In Test 3, the same switching policy
of Test 1 is used, and the disturbance signals are removed to show the effects
of different sampling times on the steady state. In Test 4, a simulation with
the same parameters as Test 1 is performed but with a different edge selection
process to corroborate the analysis presented in Section 3.1. In particular in
Test 4 only one edge of graph G(t) is active at any time but it is ensured that
such edge is always incident on non-synchronized clocks one of which is, either,
the agent having the maximal or minimal value between all agents. Finally,
in Test 5 the performance of the algorithm is case of a time varying directed
graph in which there is always a directed spanning tree. It is worth to stress
that the case of directed graphs is not covered by the present analysis, and
Test 5 is carried out just to inspect the performance of the algorithm in such
a condition.

In Figure 3-left the time evolution of the clock variables relative to Test 1 are
shown. It clearly emerges that after a finite time transient the clocks will be
almost exactly synchronized, in accordance with (5) and (13). Figure 3-right
shows the corresponding time evolution of the Lyapunov function V (t).

In Figure 4-left, the time evolution of the clock variables relative to Test 2
is shown, with the same network parameters as those used in Test 1 except
the value ǫ = 0.3T . Figure 4-right depicts the time evolution of the Lyapunov
function V (t).

In Figure 5-left, the clock variables time evolutions relative to Test 3, having
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Fig. 3. Test 1. Time evolution of the clock variables (left) and of the Lyapunov
function V (t) (right).
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Fig. 4. Test 2. Time evolution of the clock variables (left) and steady state accuracy
of the Lyapunov function V (t) (right).

removed any additive disturbance, are displayed. Due to the discretized ap-
proximation of the continuous-time evolution, made by the Euler method, we
may still observe some small residual errors in the steady state even in presence
of theoretically exact synchronization. These errors, however, tend to vanish
when the sampling time is progressively reduced as shown in Figure 5-right
which displays the steady state evolutions of the Lyapunov function relative
to Test 3 using two different sampling times Ts.

Inspection of the results of Test 2 (cfr. Figure 4) shows that the clock variables
feature oscillations. This is entirely due to the chosen sinusoidal form for the
disturbances, which affect the overall synchronized motion by enforcing oscil-
lations on it. As a matter of fact, Figure 5, which refers to Test 3 in which
the disturbances were removed, shows no oscillations and a strictly increasing
behavior of the clock variables.

The results of Test 4, displayed in the Figures 6 demonstrate robust conver-
gence also in the case in which only one edge at a time is active and thus the
graph Ĝ(t) is always disconnected.

Finally, we performed Test 5 with a time-varying directed graph in which there
always exist a directed spanning tree. The simulation results (see Figure 7-left)
show that consensus is achieved also in this condition even if the presented
theoretical developments do not ensure it.
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Fig. 5. Test 3. Time evolution of the clock variables (left) and steady state accuracy
of the Lyapunov function V (t) with different sampling times (right).
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Fig. 6. Test 4. Time evolution of the clock variables (left) and of the Lyapunov
function V (t) (right).
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Fig. 7. Test 5. Time evolution of the clock variables (left) and of the Lyapunov
function V (t) (right).

5 Conclusions and future work

In this paper we have studied a distributed algorithm, based on a discon-
tinuous local interaction rule, solving the finite-time consensus problem in a
network of continuous time perturbed integrators with additive disturbance
signals. It has been proven that the proposed local interaction rule is robust
against bounded disturbance signals and the system converges in finite time
to an approximate consensus state in which each system evolves at the same
speed with a bounded error that can be made arbitrarily small. Additionally,
we have proven finite-time convergence under different restrictions on the net-

16



work topology encompassing the possibility of an always-disconnected time
varying graph. Numerical simulations have been provided to corroborate the
analytical results by considering the case study of a synchronization problem
in a network of clocks. Among the most interesting directions for next re-
search, more complex agent’s dynamics are under investigation as well as the
extension to directed graphs, which could be possibly treated by considering
a switching directed spanning tree and elaborating a different proof. Conver-
gence under discrete time implementation of the proposed interaction rule,
whose proof demands different and more involved Lyapunov analysis, is under
study as well.
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A Proof of Theorem 3.5

The proof of this theorem makes use of the same Lyapunov function (15) used
in proof of Theorem 3.2 and shares the same treatment until eq. (26), which
holds for V (t) 6= 0, and is recalled as follows
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V̇ (t) ≤ 2 ·Π− λ t ∈ S(t). (A.1)

The variation of V (t) across the time interval I(ti) can be split into two
integrals. Denote by S(ti) the subdomain of I(ti) during which at least one
edge joining non-synchronized agents, one of which holds the maximum or
minimum value is active. Then, one has that

V (ti + T )− V (ti) =
∫

S(ti)
V̇ (τ)dτ +

∫

I(ti)\S(ti)
V̇ (τ)dτ. (A.2)

The two integral terms in (A.2) can be estimated as

∫

I(ti)\S(ti)
V̇ (τ)dτ ≤ 2(T − εi)Π, (A.3)

and ∫

S(ti)
V̇ (τ)dτ ≤ εi2Π− λεi. (A.4)

Combining (A.3) and (A.4) one obtains

V (ti + T )− V (ti) ≤ − (λεi − 2TΠ) . (A.5)

It follows from (A.5) that for any k > 0 the next inequality holds true

V (tk+j) ≤ V (tj)−
j+k
∑

i=j

λεi + 2kTΠ, (A.6)

By virtue of eq. (37), once evaluated for k = k∗ relation (A.6) yields

V (tk∗+j)− V (tj) ≤ − (λβ − k∗2TΠ) . (A.7)

Thus, if λ satisfies (38) the next conditions holds

V (tk+j)− V (tj) ≤ −µ2β, (A.8)

which is analogous to eq. (29) thereby proving the achievement of the approx-
imate consensus condition (5) by following similar steps as those made in the
proof of Theorem 3.2.
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