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Abstract

The paper introduces complex-valued Laplacians for graphs whose edges are attributed with

complex weights and studies the leader-follower formation problem based on complex Laplacians.

The main goal is to control the shape of a planar formation of point agents in the plane using

simple and linear interaction rules related to complex Laplacians. We present a characterization of

complex Laplacians that preserve a specific planar formation as an equilibrium solution for both single

integrator kinematics and double integrator dynamics. Planar formations under study are subject to

translation, rotation, and scaling in the plane, but can be determined by two co-leaders in leader-

follower networks. Furthermore, when a complex Laplacian does not result in an asymptotically stable

behavior of the multi-agent system, we show that a stabilizing matrix, which updates the complex

weights, exists to asymptotically stabilize the system while preserving the equilibrium formation.

Also, algorithms are provided to find stabilizing matrices. Finally, simulations are presented to

illustrate our results.
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1 Introduction

Formation control is a fundamental research problem in networked multi-agent systems due to their

civil (Leonard et al., 2007) and military applications (Murray, 2007). Roughly, three main approaches

to formation control have been discussed in recent literature. The first approach describes a formation

in terms of inter-agent distance measures (Eren et al., 2002; Yu et al., 2007; Hendrickx et al., 2007;

Bai et al., 2008) and uses gradient descent control laws resulted from distance-based artificial potentials

(Olfati-Saber and Murray, 2002a; Cao et al., 2008; Yu et al., 2009; Krick et al., 2009; Guo et al., 2010;

Cao et al., 2011). The second approach describes a formation in terms of inter-agent bearing measures

(Eren, 2007) and uses angle only control laws (Basiri et al., 2010; Guo et al., 2011). The third approach

describes a formation in terms of inter-agent relative positions and uses consensus-based control laws

with input bias (Lin et al., 2004; Lafferriere et al., 2005; Ren, 2007), which are related to real-valued

Laplacians.

The majority of existing algorithms considers the formation representation in terms of inter-agent distance

measures. Such an approach can be naturally applied to undirected graphs using the concept of graph

rigidity (Olfati-Saber and Murray, 2002a; Eren et al., 2002; Krick et al., 2009), in which two neighboring

agents work together to reach the specific distance between them. For directed graphs, a further concept

termed persistence is introduced to characterize a planar formation (Hendrickx et al., 2007; Yu et al.,

2007). Nevertheless, it is challenging to synthesize a control law and analyze the stability property for a

group of agents with a directed interaction graph (Yu et al., 2009). Due to this reason, most works on

directed formation are limited to directed acyclic graphs (Cao et al., 2008; Guo et al., 2010; Cao et al.,

2011). Angle-based control for formations in terms of inter-agent bearing measuring is relatively new

and has not been fully explored. In Basiri et al. (2010), only three agents are considered to achieve a

triangle with angle-only constraints, but global asymptotic convergence results are established. Compared

with formations in terms of inter-agent distance constraints and inter-agent angle constraints, formations

in terms of relative positions require less links and it is more straightforward extending from undirected

graphs to directed graphs. The consensus-based control laws with input biases (Lin et al., 2004; Lafferriere

et al., 2005; Ren, 2007) are affine and thus could lead to global stability, but the approach has the drawback

that all the agents should have a common sense of direction since the input biases are defined in a common

reference frame.

In this paper, we introduce a new approach based on complex Laplacians to study the formation control

problem in the plane. The inspiration is from Pavone and Frazzoli (2007); Ding et al. (2009); Ren (2009);

Ding et al. (2010), where pursuit strategies with offset angles are investigated to exhibit more interesting

collective motions. For a network of n interacting agents modeled as a directed graph, we represent a

planar formation as an n-dimensional complex vector called the formation basis and introduce a complex

Laplacian of the directed graph to characterize the planar formation. That is, the formation basis is

another linearly independent eigenvector of the complex Laplacian associated with the zero eigenvalues

in addition to the eigenvector of ones. In this way, a planar formation has four degrees of freedom subject

to translation, rotation, and scaling. However, if two agents in the group can specify their locations,

then the four degrees of freedom are taken and the planar formation is completely determined. For this

purpose, we consider a leader-follower network with two co-leaders. On the other hand, the complex

Laplacian corresponding to the sensing graph of networked agents naturally leads to a simple distributed

control law, which is locally implementable without requiring a common reference frame. That is, for

single integrator kinematics, the velocity control of each follower agent is the complex combination of the

relative positions of its neighbors using the complex weights on the incoming edges. A complex weight

multiplying the relative position of a neighbor actually means that the agent moves along the line of sight

rotated by an offset angle with certain speed gain (the magnitude of the complex weight). This complex
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Laplacian based control law can also be generalized for the case of double integrator dynamics, which is

investigated in the paper as well.

However, unlike real Laplacians, a complex Laplacian might have eigenvalues in the left complex plane,

a situation that would lead to the instability of the overall system. To the best of our knowledge there

exists no known result on the direct design of a complex Laplacian such that all its eigenvalues have

nonnegative real parts, and we propose in this paper an alternative but systematic design approach based

on multiplicative inverse eigenvalue problems (MIEP) (Friedland, 1975; Chu, 1998). That is, we update

the Laplacian and re-assign the eigenvalues by pre-multiplying a diagonal matrix, called a stabilizing

matrix. Sufficient conditions for the existence of a stabilizing matrix are developed and algorithms

are also provided to find it. Compared with the existing approaches for formation control, our complex

Laplacian based approach exhibits the following advantages: the distributed control law is linear ensuring

global stability; the system behavior is simple for analysis in both undirected and directed formations;

the strategy does not require global information but intermediate relative position measurements.

Notations: C and R denote the set of complex and real numbers, respectively. ι =
√
−1 denotes the

imaginary unit. 1n represents the n-dimensional vector of ones and In denotes the identity matrix of

order n.

2 Preliminaries

2.1 Graph theory

A digraph G = (V, E) consists of a non-empty node set V = {1, 2, · · · , n} and an edge set E ⊆ V × V. We

let Ni denote the in-neighbor set of node i, i.e., Ni = {j : (j, i) ∈ E}, and let ni denote the cardinality of

Ni. In the paper, we assume that a digraph does not have self-loops, which means i ̸∈ Ni for any node i.

For a digraph G, we associate to each edge (j, i) a complex number wij ̸= 0, called complex weight. Then

we can define a complex-valued Laplacian L, for which the off-diagonal entry L(i, j) = −wij if j ∈ Ni

and 0 otherwise, and the diagonal entry L(i, i) =
∑

j∈Ni
wij .

2.2 Planar formation

A tuple of n complex numbers ξ = [ξ1, ξ2, · · · , ξn]T is called a formation basis for n agents in the plane,

which defines a geometric pattern in a specific coordinate system. Usually two agents are expected not

to overlap each other, so we assume that ξi ̸= ξj for i ̸= j in the paper. A formation with four degrees

of freedom (translation, rotation, and scaling) is defined by Fξ = c11n + c2ξ, where c1, c2 ∈ C. When

|c2| = 1, the formation is obtained from the basis via only translations and rotations, a case which we

are more familiar with.

Denote z = [z1, . . . , zn]
T ∈ Cn the aggregate position vector of n agents. We say that the n agents

form a planar formation Fξ with respect to basis ξ if there exist complex constants c1 and c2 such that

z = c11n+c2ξ. The n agents are said to asymptotically reach a planar formation Fξ if there exist complex

constants c1 and c2 such that limt→∞ z(t) = c11n + c2ξ.
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3 Main results

We consider a group of n agents in the plane labeled 1, . . . , n, consisting of leaders and followers. Suppose

that there are two leaders in the group (without loss of generality, say 1 and 2) and all the others are

followers. The positions of the n agents are denoted by complex numbers z1, . . . , zn ∈ C. We use a

digraph G of n nodes to represent the sensing graph, in which {1, 2} are leader agents, {3, . . . , n} are

follower agents, and an edge (j, i) indicates that agent i can measure the relative position of agent j,

namely, (zj−zi). Because in a leader-follower network, the leader agents do not interact with the follower

agents and do not need to access the information from the follower agents, the sensing graph G has the

following property.

(P1): Leader nodes (1 and 2) do not have incoming edges.

Thus, the Laplacian of G takes the following form.

L =

[
02×2 02×(n−2)

Llf Lff

]
. (1)

3.1 Single-integrator kinematics

Suppose that each agent is governed by a single-integrator kinematics

żi = vi, (2)

where zi ∈ C represents the position of agent i in the plane and vi ∈ C represents the velocity control

input. Consider the sensing graph G and suppose that the agents are driven by the following control laws.

vi = 0, i = 1, 2;

vi =
∑

j∈Ni

wij(zj − zi), i = 3, · · · , n, (3)

where the complex weights wij = kije
ιαij , with kij > 0 and αij ∈ [−π, π), are design parameters.

Note that the choice of complex weights is not unique, and given a formation basis ξ ∈ Cn satisfying

ξi ̸= ξj , for each agent i we may choose any set of complex weights wij that satisfy the linear equality∑
j∈Ni

wij(ξj − ξi) = 0.

Let z = [z1, z2, · · · , zn]T ∈ Cn. Then the overall dynamics of the n agents can be written as

ż = −Lz, (4)

where L is the complex-valued Laplacian of G defined in (1).

Denote z̄1 = z1(0) and z̄2 = z2(0). Next we show a necessary and sufficient condition such that any

equilibrium state of (4) forms a planar formation Fξ.

Theorem 3.1 Assume that ξ ∈ Cn satisfies ξi ̸= ξj for i ̸= j. Then every equilibrium state of (4) forms
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a planar formation Fξ = c11n + c2ξ with[
c1

c2

]
=

[
1 ξ1

1 ξ2

]−1 [
z̄1

z̄2

]
(5)

if and only if Lξ = 0 and det(Lff ) ̸= 0.

Proof: (Sufficiency) From the condition Lξ = 0, we know that L has a zero eigenvalue associated to

eigenvector ξ. On the other hand, the Laplacian L always has a zero eigenvalue associated to eigenvector

1n. The two eigenvectors 1n and ξ are linearly independent because ξi ̸= ξj . Moreover, it follows from

the condition det(Lff ) ̸= 0 that rank(L) = n−2 and L has only two zero eigenvalues. So the null space of

L is {c11n + c2ξ : c1, c2 ∈ C} and thus every equilibrium state forms a planar formation Fξ = c11n + c2ξ.

Notice that z1(t) = z̄1 and z2(t) = z̄2. Therefore (5) follows.

(Necessity) Suppose on the contrary that Lξ ̸= 0. Then L(c11n + c2ξ) ̸= 0 for any nontrivial c1 and c2,

which means a state corresponding to a planar formation Fξ cannot be an equilibrium state of (4). On

the other hand, suppose on the contrary that det(Lff ) = 0. Thus we could find a vector ηf ∈ C(n−2)

such that Lffηf = 0. As a result η = [0 0 ηTf ]
T is in the null space of L. It can be checked that 1n, ξ

and η are linearly independent since ξi ̸= ξj in ξ. Thus, the equilibrium state η does not correspond to

any planar formation Fξ generated from the formation basis ξ. �

Remark 3.1 From Theorem 3.1 it can be seen that the equilibrium formation of the n agents is uniquely

determined by the two leaders’ locations. If the two leader agents do not remain stationary but asymp-

totically converge to two different locations, then the limit positions of two co-leaders specify the planar

formation Fξ. Hence, by controlling the motions of two co-leaders, the group formation can be rotated,

translated, and scaled.

Next we come to study whether the n agents can asymptotically reach a planar formation, i.e., we study

the stability of system ż = −Lz. Before presenting our results on stability, we provide a result on

the invariance property for the operation of pre-multiplying an invertible diagonal matrix D. It is an

important property ensuring that the equilibrium formations are preserved.

Theorem 3.2 Every equilibrium state of system (4) forms a planar formation Fξ if and only if every

equilibrium state of the following system

ż = −DLz (6)

forms a planar formation Fξ for all invertible diagonal matrix D = diag{d1, d2, · · · , dn} ∈ Cn×n.

Proof: Since D is diagonal and invertible, it follows that the null space of DL is the same as the one of

L. So the two systems have the same equilibrium set. �

When L is pre-multiplied by D, the complex weights on the edges having their heads at agent i are

multiplied by a nonzero complex number di. Therefore, the interaction rule is still locally implementable

using relative position information. Generally, for a complex-valued Laplacian L satisfying the conditions

of Theorem 3.1, L may have eigenvalues with both negative and positive real parts and thus system (4)

may not be asymptotically stable with respect to the equilibrium subspace ker(L). However, we show in

the next result that if certain conditions are satisfied, there always exists an invertible diagonal matrix

D such that DL has all other eigenvalues with positive real parts in addition to the two eigenvalues at

the origin and thus ż = −DLz is asymptotically stable with respect to the equilibrium subspace ker(L).

Such a matrix D is called a stabilizing matrix.

Theorem 3.3 Consider a formation basis ξ ∈ Cn satisfying ξi ̸= ξj for i ̸= j and suppose a complex
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Laplacian L of G satisfies Lξ = 0 and det(Lff ) ̸= 0. If there exists a permutation matrix P such that all

the leading principal minors of PLffP
T are nonzero, then a stabilizing matrix D for system (4) exists.

The proof requires the following result related to the multiplicative inverse eigenvalue problem.

Theorem 3.4 (Ballantine (1970)) Let A be an n × n complex matrix all of whose leading principal

minors are nonzero. Then there is an n× n complex diagonal matrix D such that all the eigenvalues of

DA are positive and simple.

Proof of Theorem 3.3: Since there is a permutation matrix P such that all the leading principal minors

of PLffP
T are nonzero, then by Theorem 3.4 we obtain that there exists a diagonal matrix D′ such that

D′PLffP
T has all eigenvalues with positive real parts. Note that since P−1 = PT , then D′PLffP

T is

obtained from PTD′PLff via a similarity transformation, i.e., D′PLffP
T = P (PTD′PLff )P

T . So it

follows that PTD′PLff has the same eigenvalues as D′PLffP
T . Also, note that PTD′P is a diagonal

matrix as well, and we denote as D′′ = PTD′P . Let

D =

[
I2×2 0

0 D′′

]
. (7)

Then the matrix DL has two eigenvalues at the origin and others with positive real parts. As a result,

D is a stabilizing matrix. �

We now discuss how the choice of a complex Laplacian affects the existence of a permutation matrix P

as required in Theorem 3.3. Note that the set of matrices L satisfying Lξ = 0 is a linear subspace. Thus

any such L can be written as L = x1A1 + · · · + xkAk where A1, . . . , Ak form the basis of the subspace

and x1, . . . , xk are appropriate coefficients. Let L′ denote a leading principal sub-matrix of L. Then L′

can also be expressed in a similar form, i.e., L′ = x1A
′
1 + · · · + xkA

′
k with A′

i (i = 1, . . . , k) taking the

corresponding leading principal sub-matrix from Ai. Let us recall a property given below.

Property 3.1 (Loasz, 1989) For given matrices A′
1, · · · , A′

k, if the determinant of matrix A(x1, . . . , xk) =

x1A
′
1+ · · ·+xkA

′
k is not zero for a choice of variables x1, · · · , xk, then it is not zero for almost all choices

of variables.

We then can conclude that if a choice of complex Laplacian satisfying Lξ = 0 makes any leading principal

minor of L nonzero (namely, det(L′) ̸= 0), then almost all complex Laplacians satisfying Lξ = 0 also

have the property that any leading principal minor is nonzero. Thus when computing a matrix L that

satisfies Lξ = 0, it is not difficult to determine one whose leading principal minors are all nonzero, if any

exists.

In the case in which some leading principal minors are null, however, we may change them by permutation.

Consider for example a graph given in Fig. 1 with two leaders labeled as 1 and 2. Suppose for a given

formation basis ξ, Lff is of the form given in eq. (8). It is noticed that the 3rd order leading principal

minor of Lff is 0 for any choice of x1, . . . , x8. However, if we relabel the nodes 3, 4, 5 as 6, 7, 8, and relabel

the nodes 6, 7, 8 as 3, 4, 5, then it can be checked that for almost all x1, . . . , x8, all the leading principal

minors of the new Lff corresponding to the new labels are nonzero.

Next we give an algorithm to find D, in which the notation L
(1∼i)
ff is used to denote the sub-matrix

formed by the first i rows and columns of Lff .

Algorithm 3.1

Input: Lff with all nonzero leading principal minors.
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Figure 1: An example of a leader-follower network.

Lff =



(1 + ι)x1 0 −ιx1 −x1 0 0

(2 + ι)x2 −4x2 0 0 (2− ι)x2 0

0 −(2.4 + 0.8ι)x3 ιx3 0 0 (2.4− 0.2ι)x3

0 x4 0 x5 0 0

x6 0 0 0 x7 0

0 0 0 0 0 x8


(8)

Output: Stabilizing matrix D.

Procedure:

for i = 1, . . . , n− 2 do

Find di+2 to assign the eigenvalues of diag(d3, · · · , di+2)L
(1∼i)
ff in the open right half complex plane.

end for

Construct D = diag{1, 1, d3, . . . , dn}.

The algorithm finds the diagonal entries of D one by one in an iterative way. First, d3 can be chosen such

that d3L
(1∼1)
ff has an eigenvalue with positive real part, say λ′

1. Notice that for a given d3, the matrix

diag(d3, d4)L
1∼2
ff becomes solely dependent on the single variable d4. We denote by λ1(d4) and λ2(d4) the

eigenvalues of the matrix diag(d3, d4)L
1∼2
ff . It is known that λ1(d4) and λ2(d4) are continuous functions

with respect to the variable d4. Moreover, when we choose d4 = 0, it can be checked that the eigenvalues

of diag(d3, 0)L
1∼2
ff are respectively 0 and λ′

1 from the previous step, namely, λ1(0) = λ′
1 and λ2(0) = 0.

Therefore, by varying d4 around 0, we could make λ1(d4) in the neighborhood of λ′
1 and λ2(d4) in the

neighborhood of 0. Moreover, notice the fact det(L1∼2
ff )d3d4 = λ1(d4)λ2(d4), so it is known that d4 can

be selected around 0 to make λ2(d4) not only in the neighborhood of 0 but also in the right-hand plane.

The process repeats until all di’s are found. One can thus conclude that when a matrix L satisfies the

assumption in Theorem 3.3, Algorithm 3.1 can always provide a solution D without any exemption.
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3.2 Double-integrator dynamics

Suppose that each agent is governed by a double-integrator dynamics{
żi = vi

v̇i = ai
(9)

where the position zi ∈ C and the velocity vi ∈ C are the states, and the acceleration ai ∈ C is the

control input. Consider the sensing graph G and suppose that each agent takes the control law

ai = −γvi, i = 1, 2;

ai =
∑

j∈Ni

wij(zj − zi)− γvi, i = 3, · · · , n, (10)

where wij = kije
ιαij is a complex weight with kij > 0 and αij ∈ [−π, π), and γ > 0 is a real number

representing the damping gain.

Write z = [z1, . . . , zn]
T and v = [v1, . . . , vn]

T . Then the overall system of the n agents under the

interaction rule (10) can be written as[
ż

v̇

]
=

[
0n×n In

−L −γIn

][
z

v

]
(11)

where L is the Laplacian of G defined in (1).

The interaction rule (10) similar to (3) can also be locally implemented, which requires only the relative

positions of neighbors and its own velocity. Denote z̄1 = limt→∞ z1(t) and z̄2 = limt→∞ z2(t). Next

we show that the conditions in Theorem 3.1 is also a necessary and sufficient condition such that the

equilibrium states (z̄, v̄) of system (11) form a planar formation Fξ, i.e., z̄ = c11n + c2ξ and v̄ = 0, where

c1 and c2 can be obtained from (5). Moreover, we show that the equilibrium formations are invariant to

the operation of pre-multiplying an invertible diagonal complex matrix D.

Theorem 3.5 Assume that ξ ∈ Cn satisfies ξi ̸= ξj for i ̸= j. Then the following are equivalent.

1. Lξ = 0 and det(Lff ) ̸= 0.

2. Every equilibrium state of system (11) forms a planar formation Fξ.

3. Every equilibrium state of the following system[
ż

v̇

]
=

[
0n×n In

−DL −γIn

][
z

v

]
(12)

forms a planar formation Fξ for all invertible diagonal matrices D = diag{d1, d2, . . . , dn} ∈ Cn×n.

Proof: By simply checking system (12), one can obtain that the equilibrium states satisfy Lz̄ = 0 and

v̄ = 0. Thus, the conclusion follows from the same argument in Theorem 3.1 and Theorem 3.2. �

According to Theorem 3.5, the equilibrium formation for the double integrator model is characterized —

as was the case with the single integrator model — by Lξ = 0 and det(Lff ) ̸= 0. Also, similar to the

single-integrator model, the eigenvalues of system (11) may be distributed everywhere in the complex

plane such that the trajectories of system (11) may not converge to the equilibrium formation. Hence,
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an invertible diagonal matrix D is utilized to assign the eigenvalues of[
0n×n In

−DL −γIn

]

in the open left half complex plane in addition to the two eigenvalues at the origin, i.e., to make the

n agents asymptotically reach a planar formation Fξ with the interaction law (12). If such a matrix D

exists, it is called a stabilizing matrix. Next, we show the existence condition of a stabilizing matrix.

Theorem 3.6 Consider a formation basis ξ ∈ Cn satisfying ξi ̸= ξj and suppose a complex Laplacian L

of the sensing graph G satisfies Lξ = 0 and det(Lff ) ̸= 0. If there is a permutation matrix P such that all

the leading principal minors of PLffP
T are nonzero, then a stabilizing matrix D for system (11) exists.

Proof: Denote

A =

[
0n×n In

−DL −γIn

]
.

Let σi be an eigenvalue of the matrix DL corresponding to eigenvector x, i.e., DLx = σix. Moreover, let

λi be a root of

λ2
i + γλi + σi = 0 (13)

and define

y = λix. (14)

Considering (13) and (14), we obtain that

−DLx− γy = −σix− γλix = λ2
ix = λiy. (15)

Eqs. (14) and (15) together imply that λi is an eigenvalue of A corresponding to the eigenvector [xT yT ]T .

Since L satisfies Lξ = 0 and det(Lff ) ̸= 0, it is known that DL has two zero eigenvalues for all invertible

diagonal matrices D. Without loss generality, denote σ1 = σ2 = 0. For σ1 = σ2 = 0, the roots of the

characteristic equation (13) are λi,1 = 0, λi,2 = −γ < 0, i = 1, 2. Thus, to show the existence of a

stabilizing matrix D, it remains to show that σi (i = 3, . . . , n) can be assigned such that the roots of the

complex-coefficient characteristic equation (13) have negative real parts. According to Chen and Tsai

(1993), the roots are in the open left half complex plane if and only if

Re(σi)

(Im(σi))2
>

1

γ2
.

By our assumption that there is a permutation matrix P such that all the leading principal minors of

PLffP
T are nonzero, it follows from the same argument as in the proof of Theorem 3.3 that there exists

a diagonal matrix D′ such that the eigenvalues of D′PLffP
T all have positive real parts. Denote the

eigenvalues of D′PLffP
T by σ′

3, . . . , σ
′
n. Then we choose D as

D =

[
I2 0

0 ϵPTD′P

]
(16)

where ϵ > 0 is a scalar. Thus, the eigenvalues of DL are σ1 = σ2 = 0, σi = ϵσ′
i, i = 3, . . . , n. Then it
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can be checked that for sufficiently small ϵ > 0

Re(σi)

(Im(σi))2
=

Re(σ′
i)

ϵ(Im(σ′
i))

2
>

1

γ2
, i = 3, . . . , n. (17)

Therefore, a stabilizing matrix D is derived, making a group of n agents asymptotically reach the planar

formation Fξ. �

From the proof of Theorem 3.6, we know that a stabilizing matrix can also be obtained for the double-

integrator case with a minor modification of Algorithm 3.1. We present it below.

Algorithm 3.2

Input: Lff with all nonzero leading principal minors.

Output: Stabilizing matrix D.

Procedure:

for i = 1, . . . , n− 2 do

Find di+2 to assign the eigenvalues of diag(d3, · · · , di+2)L
(1∼i)
ff in the open right half complex plane.

end for

Select an ϵ satisfying (17).

Construct D = diag{1, 1, ϵd3, . . . , ϵdn}.

Remark 3.2 The static formation results can be simply extended to reach and maintain a formation

shape while moving. When the synchronized velocity v0(t) (or acceleration a0(t)) is available to all the

followers, then from the change of origin, the following control laws are obtained. vi = v0(t), i = 1, 2;

vi =
∑

j∈Ni

wij(zj − zi) + v0(t), i = 3, · · · , n. (18)

 ai = −γvi + a0(t), i = 1, 2;

ai =
∑

j∈Ni

wij(zj − zi)− γvi + a0(t), i = 3, · · · , n. (19)

When the leaders’ velocity or acceleration is not accessible by all followers, estimation schemes (see for

example Guo et al. (2010)) can be adopted to estimate the piece of information and then the estimated

one can be substituted in (18) or (19).

4 Simulations

4.1 Single-integrator kinematics

First, we consider an example of single-integrator model. The system consists of five agents where agent

1 and 2 are two co-leaders, and agent 3, 4, and 5 are followers. The sensing graph G is given in Fig. 2

where the blue lines with arrows represent the edges.

Consider a planar formation with a formation basis (Fig. 2) defined as ξ =
[
0 −2ι 2− 2ι −2− 2ι −4ι

]T
.

To achieve a planar formation with the defined formation basis ξ, the follower agents take the interaction

10
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Figure 2: The sensing graph G and a formation basis ξ.

law (3) with the complex-valued Laplacian

L =


0 0 0 0 0

0 0 0 0 0

−1 0 1 + ι 0 −ι

−ι 0 0 1 + ι −1

0 −2ι −2(1− ι) −(1 + ι) 3 + ι

 . (20)

It can be checked that Lξ = 0 and det(Lff ) ̸= 0. Hence, by Theorem 3.1, the equilibrium state of the

system exactly corresponds to the planar formation Fξ = c11n + c2ξ for some c1, c2 ∈ C. It is calculated
that L contains several eigenvalues with negative real parts, which means the system is not stable with

respect to the equilibrium formations. However, we can check that all the leading principal minors of

Lff are nonzero. Therefore, according to Theorem 3.3, a stabilizing matrix D exists to stabilize the

system. For example, taking D = diag
{
1, 1, e−ι 3π

4 , 3e−ιπ
4 , 3

}
, we then have the eigenvalues of DL all

with positive real parts in addition to the two zero eigenvalues. Therefore, the five agents asymptotically

reach a planar formation Fξ with the complex-valued Laplacian DL. Suppose that two co-leaders have

the synchronized velocity v0(t) = 2t cos(0.1t)+ ι0.5t sin(0.1t). A simulation of moving formation is shown

in Fig. 3.

4.2 Double-integrator dynamics

Next we consider the double-integrator dynamics of the same example. The sensing graph G and the

formation basis ξ are the same as in Fig. 2. To achieve a planar formation Fξ, the agents take the

interaction law (10) where γ = 5 and L is the same as the one in (20). For this L, the system is unstable.

However, a stabilizing matrix D exists by Theorem 3.6 since the leading principal minors are nonzero as

we checked. Indeed, for this example, the same D used to stabilize the case of single-integrator kinematics

also stabilizes the case of double-integrator dynamics. If the two co-leaders move with the synchronized

acceleration a0(t) = 2t cos(0.1t) + ι1.5t sin(0.1t), the five agents asymptotically reach a moving planar

formation Fξ with the same velocity and acceleration. A simulation result is presented in Fig. 4 validating

the conclusion.

11
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Figure 3: Reaching a moving formation (single integrators).
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Figure 4: Reaching a moving formation (double integrators).

5 Conclusion and open problems

This paper introduces complex Laplacians for directed graphs whose edges are attributed with two labels

(gain and offset angle, combined in one complex weight). A simple and locally implementable linear

control law related to complex Laplacian is investigated to control the shape of a planar formation.

Necessary and sufficient conditions are obtained such that complex Laplacians characterize a specific

planar formation. Unlike real Laplacians that have all eigenvalues in the closed right half complex plane,

complex Laplacians may distribute their eigenvalues in the whole complex plane, which may lead to

instability of the overall system. To overcome the difficulty, we show that the eigenvalues of a complex

Laplacian can be re-assigned by pre-multiplying an invertible diagonal matrix. However, some important

12



issues in practical applications such as agent failure, collision avoidance, and limited sensing capability

have not been addressed. How to avoid collisions and maintain the links by simply adjusting the complex

weights in the control law will be an interesting problem. Moreover, the dynamic topology case resulting

from limited sensing capability or agent failures will be another concern.
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