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Abstract

This paper presents a unified framework for the Infinitesimal Perturbation Analysis (IPA) gradient-

estimation technique in the setting of marked graphs. It proposes a systematic approach for computing

the derivatives of sample performance functions with respect to structural and control parameters.

The resulting algorithms are recursive in both time and network flows, and their successive steps

are computed in response to the occurrence and propagation of certain events in the network. Such

events correspond to discontinuities in the network flow-rates, and their special characteristics are

due to the properties of continuous transitions and fluid places. Following a general outline of the

framework we focus on a simple yet canonical example, and investigate throughput and workload-

related performance criteria as functions of structural and control variables. Simulation experiments

support the analysis and testify to the potential viability of the proposed approach.
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1 Introduction and Problem Statement

In the past ten years there has been a mounting interest in performance optimization of fluid-queueing

networks having the structure of stochastic hybrid systems (see [5] and references therein). Such systems

have bi-level dynamics with time-driven dynamics at the lower level and event-driven dynamics at the

upper level, and the two kinds of dynamics interact with each other through the controlled timing of the

occurrence of discrete events [4]. In various optimization problems of interest the system’s dynamic be-

havior depends not only on time but also on a structural or control parameter denoted by θ. Furthermore,

when θ represents a collection of independent parameters, it can be viewed as a variable in a Euclidean

space RN . Let L(θ) denote a random function defined on a suitable probability space (Ω, F, P ) whose

realizations correspond to the evolution of the network’s dynamics over a finite-horizon interval, and let

J(θ) := E(L(θ)) where E(·) denotes expectation in (Ω, F, P ). Certain optimization problems arising in

system design or control concern minimizing such a function J(θ) subject to a given set of constraints.

The expected-value function J(θ) often lacks a closed-form expression, and hence its evaluation has to

be accomplished via sample-path techniques that are based on L(θ). Note that L(θ) is a realization of

J(θ) and it can be viewed as a sample-performance function. In the event that θ ∈ RN is a continuous

variable and gradient-techniques are sought for minimizing J(θ), ∇J(θ) could be approximated by the

gradients of the sample performance functions, ∇L(θ), or averages thereof. Such gradient terms have to

be computed along particular sample paths, possibly the same sample paths that are used to realize L(θ).

A general framework for computing these sample gradients is Infinitesimal Perturbation Analysis (IPA).

IPA originally was developed in the context of queueing networks [13, 3], and recently much of its investi-

gation has focused on fluid queues [4, 20]. Fluid queueing networks, called stochastic flow models, provide

a natural setting for IPA since their sample gradients often admit very simple algorithms amounting to

little more than counting processes [4]. Furthermore, these algorithms exhibit a discernable measure of

low sensitivity to modeling variations and hence can be applied, with good precision, to performance

functions defined on sample paths not only of fluid queues but also of discrete queues approximated by

them [5]. Another appealing property of fluid queues is that their IPA gradients are statistically un-

biased in a far-larger class of networks and functions than those associated with discrete queues. For

these reasons it has been suggested (see [6] and references therein) that the IPA gradients developed in

the fluid-queue setting could be used in design optimization as well as in real-time control. Their theo-

retical underpinnings have been established in [4, 20, 5], and algorithms for general network topologies

were developed in [21, 6, 23, 14]. Examples in various application areas including telecommunications,

manufacturing, traffic networks, and supply chains, were presented in [16, 24, 17, 22, 9, 7, 25].

The purpose of this paper is to investigate the application of IPA to another category of stochastic hybrid

systems, namely a class of decision-free continuous Petri nets called marked graphs. The key element in

such system-models that is absent from queueing networks is the transition, which is used to capture the

notions of concurrency and synchronization in dynamical systems. In this setting we develop an abstract

algorithm, suitable to a wide range of network topologies, and apply it to a simple yet canonical example.

The algorithm is based on an extension of the framework, developed in [21, 23] for IPA in a general class

of stochastic hybrid systems and applied to queueing networks, to the present setting of Petri nets. The

example concerns throughput in a single-join system with respect to a flow-control variable, and it serves

to illustrate the analysis of the fluid transition from the standpoint of IPA.

The rest of the paper is organized as follows. Section 2 defines the IPA setting for continuous marked

graphs, and Section 3 develops a general-purpose prescriptive framework for computing the sample deriva-

tives. Section 4 considers an example of workload minimization, and Section 5 concludes the paper. The

results presented herein summarize, build upon, and generalize those presented in three conferences,
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namely [10, 11, 12].

2 Continuous Petri Nets

Hybrid Petri nets have “fluidized” tokens flowing on their arcs in addition to the usual discrete tokens.

They were extensively analyzed (see [19, 1], and [18, 8] for more recent surveys), and investigated from

the standpoint of control and optimization in [2]. Their discrete tokens often represent discontinuities in

the flow rates of the fluidized tokens, and the flow rates are described via piecewise-analytic functions

like (piecewise) constant, linear, or quadratic. The present paper assumes that the fluid-flow rates are

piecewise continuous without restricting their parametric forms, and this will suffice for the purpose of

analyzing the IPA gradients of performance functions of interest. Furthermore, we do not have to resort

to discrete tokens to represent discontinuities of the flow rates, but rather use the hybrid-system modeling

framework where such discontinuities are caused by the occurrence of discrete events [4]. Accordingly,

the fluid-flow rates can be described by functions v(t) : R+ → R+ of a temporal variable t ≥ 0. To

emphasize the absence of explicit discrete tokens from our modeling framework, we call the Petri nets in

question continuous rather than hybrid.

Recently a class of decision-free continuous Petri nets, namely marked graphs, has been studied from the

standpoint of IPA [22, 10, 11, 12]. A marked graph is a net where each place has a single input arc and

a single output arc. For this class of nets, reference [22] derived algorithms for the sample derivatives.

This paper has a similar objective, but it is different from [22] in the following two ways:

1. Reference [22] assumes that the maximum transitions’ firing speeds (defined below) are piecewise

constant functions of time, while this paper allows for general functions. Consequently, the algo-

rithm in [22] is described in terms of evolution equations which are not available for the more-general

flow-rate functions considered here.

2. The variational parameter in [22] is either the transitions’ maximum firing speeds or the initial

marking. This paper allows for more general parameters, including a variable of the probability law

underlying the transitions’ maximum speeds, the duration of these speeds at given values, as well

as various network control parameters such as threshold flow control.

As a result the analysis and algorithms developed here, while not as elegant as those in [22], have a much

wider scope in terms of network models and potential applications. Furthermore, they cannot be derived

by the specialized techniques that are used in [22].

In the marked graphs that we consider, transitions are denoted by upper-case letters like T and U while

places are denoted by lower-case letters such as p and q. A typical transition T is characterized by its

maximum firing (flow) speed, or rate, also called its capacity. This is a function of time, denoted by

VT (t). Generally VT (t) is a random function defined on a suitable probability space, but we will focus

on its sample realizations, also denoted by VT (t). The actual firing rate, denoted by vT (t), must satisfy

the inequalities 0 ≤ vT (t) ≤ VT (t). For a typical place p, the fluid level contained in it (often called

the workload, or marking) is denoted by mp(t). For every transition T we denote by in(T ) and out(T )

the sets of its input places and output places, respectively. As in earlier studies of IPA in the Petri-net

setting ([22, 12]), we assume that each place p has a single input transition and a single output transition,

and we denote these transitions by in(p) and out(p), respectively. This assumption, as mentioned in [22],

qualifies the net as a decision-free marked graph. No further restrictions are made on the topology of the

3



networks, and they may be closed, open, or neither closed nor open. A transition T is called a source

transition if in(T ) = ∅, and a sink transition whenever out(T ) = ∅.

Suppose that the marked graph evolves over a given time-interval [0, tf ]. For each transition T , the process

{VT (t)}
tf
t=0, representing the maximum firing rate of T , often is an exogenous process, but also can be a

controlled process as we shall see later. We assume that the transition fires at the highest-possible rate,

defined as follows. At every time t ∈ [0, tf ], if none of the places p ∈ in(T ) is empty, then vT (t) = VT (t);

while if some of the places p ∈ in(T ) are empty, then vT (t) is equal to the lowest firing rate among all

transitions U = in(p) where p is empty. Formally, define εT (t) := {p ∈ in(T ) : mp(t) = 0}, namely the

set of input places to T which are empty at time t. Then, vT (t) is determined via the following equation,

vT (t) =

{
VT (t), if εT (t) = ∅
min{vin(p)(t) : p ∈ εT (t)}, if εT (t) ̸= ∅.

(1)

For each place p, the workload process {mp(t)}
tf
t=0 evolves according to the following flow equation,

ṁp(t) = vin(p)(t)− vout(p)(t), (2)

with some given initial condition mp(0).

We note that the min term in Equation (1) captures the concept of synchronization that is inherent in

Petri nets and absent from queueing models. As we shall see, it will be closely related to the computation

of the sample derivatives, developed and discussed below.

The stochastic processes comprising our system can be classified as exogenous vs. derived. An exogenous

process does not depend on any other system’s process, and the totality of exogenous processes defines

the probability law of the system in the sense that, every other process can be expressed as a function of

them. Any process that is not exogenous is said to be derived. We say that the network is uncontrolled

if the processes {VT (t)} are exogenous while the processes {vT (t)} and {mp(t)} are derived from them

via Equations (1) and (2). On the other hand, we say that the network is controlled if some of the

processes {VT (t)} are controlled by other processes, and hence classified as derived. For example, given

two exogenous processes {ψ1(t)} and {ψ2(t)}, associated with a particular transition T , suppose that

either VT (t) = ψ1(t) or VT (t) = ψ2(t) according to whether a certain condition on the network processes

holds or not. For instance, in the case of threshold-flow control, the condition can be that mp(t) ≤ r for

given place p and r > 0. Notice that in this case, the processes {ψ1(t)} and {ψ2(t)} are exogenous whereas

the process {VT (t)} is derived. More abstractly, let v(t) and m(t) denote the vectors of transitions’ firing

rates and places’ workloads, respectively; let {ψ(t)} be an (possibly multi-variable) exogenous process;

for every transition T , let ζT : (v,m, ψ) → R+ be a function; and suppose that VT (t) is given by

VT (t) = ζT
(
v(t),m(t), ψ(t)

)
. (3)

In the forthcoming discussion we assume that all the exogenous processes in the network are either

{VT (t)}, or the processes {ψ(t)} upon which VT (t) depends via (3). This implies that all of the processes

{vT (t)} and {mp(t)} are derived. Furthermore, we say that Equations (1)-(3) are consistent throughout

the network if, for every initial network workloads mp(0) (for every place p), and every realization of the

exogenous processes, w.p.1, these equations have a unique joint solution at every time t ∈ [0, tf ]. In this

case all of the derived processes in the network are defined via these equations, and said to be derived

from them. In particular, in the case of uncontrolled networks, all of the processes {VT (t)} are exogenous,

and the processes {vT (t)} and {mp(t)} are derived from them via Equations (1) and (2). For this case,

Reference [22] pointed out the following sufficient conditions for consistency of Equations (1) and (2)

throughout the network: every elementary circuit contains at least one place p such that mp(0) > 0. For
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controlled networks there are no such general results, and consistency throughout the network has to be

ascertained for each particular network or classes of networks.

We point out that an analysis of the general framework for controlled networks, defined via Equation

(3), is beyond the scope of a single paper. Instead, we consider here the case of uncontrolled networks in

detail, and then address a particular case of threshold-based flow control.

Now suppose that the probability law underscoring the network processes is a function not only of time,

but also of a variable θ ∈ RN , and hence the various network processes are denoted by {VT (θ, t)}
tf
t=0,

{vT (θ, t)}
tf
t=0, and {mp(θ, t)}

tf
t=0. Their sample-path realizations as functions of time (t) will be denoted

by VT (θ, t), vT (θ, t), andmp(θ, t), respectively. With this notation, Equations (1)-(3) are to be understood

in the following way: fix θ ∈ Rn, and let the traffic processes evolve in the time-interval [0, tf ] according

to these equations. Sample performance functions of frequent interest in applications, like throughput

and delay, are related to the following two functions defined, respectively, for transitions T and places p

(see [11]):

LT (θ) :=

∫ tf

0

vT (θ, t)dt, (4)

and

Lp(θ) :=

∫ tf

0

mp(θ, t)dt. (5)

Their sample gradients, ∇LT (θ) and ∇Lp(θ), are the IPA gradients that we investigate in this paper. The

next section develops an abstract algorithmic framework for them while the subsequent section presents

an example.

3 General Framework for IPA

This section considers the IPA gradients of the sample performance functions LT (θ) and Lp(θ) defined

by Equations (4) and (5). To somewhat simplify the exposition we assume that θ is a one-dimensional

variable so that the IPA gradient is called the IPA derivative and denoted by dL
dθ (θ). Furthermore, we

will implicitly assume that θ is constrained to a closed, bounded interval Θ ⊂ R. In the early part

of the discussion we assume that all of the mentioned derivatives exist; later we present assumptions

guaranteeing this and, as in [21, 23, 6], verify them for particular examples. This order of presentation

helps us focus on the main ideas while addressing some technical details in the context of specific examples

where their exposition is considerably simpler. We also assume that for a given θ ∈ Θ, transition T , and

place p, the function vT (θ, ·) is piecewise continuous and piecewise continuously differentiable, and the

function mp(θ, ·) is continuous and piecewise continuously differentiable. These assumptions, too, will

be verified from basic conditions. The discontinuity (jump) time-points of vT (θ, ·) are functions of θ,

and hence are denoted by tk,T (θ), k = 1, . . . ,K, in increasing order, for some (random) K, while their

derivatives with respect to θ are denoted by
dtk,T

dθ (θ).
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3.1 IPA derivatives

Consider first the IPA derivative dLT

dθ (θ). Taking derivatives in (4) we obtain its following general form,

dLT

dθ
(θ) =

∫ tf

0

∂vT
∂θ

(θ, t)dt +

K∑
k=1

(
vT (θ, tk,T (θ)

−)− vT (θ, tk,T (θ)
+)

)dtk,T
dθ

(θ). (6)

The terms ∂vT

∂θ (θ, t) typically can be computed directly and easily from the sample path (this will be

demonstrated on the example discussed in the sequel), and hence the main challenge is to compute the

sum-terms in the Right-Hand Side (RHS) of Equation (6). These terms also arise in the IPA derivative
dLp

dθ (θ) for place p. Indeed, taking derivatives in (5) we obtain,

dLp

dθ
(θ) =

∫ tf

0

∂mp

∂θ
(θ, t)dt, (7)

and the integrant in this equation has the following form. If t lies in the interior of an empty period at

p then
∂mp

∂θ (θ, t) = 0. On the other hand, if mp(θ, t) > 0, let ξ(θ) := max{τ ≤ t : mp(θ, τ) = 0}, then by

(2)

mp(θ, t) =

∫ t

ξ(θ)

(
vin(p)(θ, τ)− vout(p)(θ, τ)

)
dτ. (8)

When taking derivatives with respect to θ in (8), we have to consider the points τ ∈ (ξ(θ), t) where the

integrant is discontinuous. Let us denote such points via two finite, monotone-increasing sequences as

follows: tj,in(p)(θ), j = j1, . . . , j(t), are the jump-points of the function vin(p)(θ, ·) in the interval (ξ(θ), t),

and tℓ,out(p)(θ), ℓ = ℓ1, . . . , ℓ(t) are the jump-points of the function vout(p)(θ, ·) in the interval (ξ(θ), t).

Suppose that vin(p)(θ, ·) and vout(p)(θ, ·) are continuous at the point t. Then (8) implies that

∂mp

∂θ
(θ, t) =

∫ t

ξ(θ)

(∂vin(p)
∂θ

(θ, τ)−
∂vout(p)

∂θ
(θ, τ)

)
dτ

+

j(t)∑
j=j1

(
vin(p)(θ, tj,in(p)(θ)

−)− vin(p)(θ, tj,in(p)(θ)
+)

)
×
dtj,in(p)

dθ
(θ)

−
ℓ(t)∑
ℓ=ℓ1

(
vout(p)(θ, tℓ,out(p)(θ)

−)− vout(p)(θ, tℓ,out(p)(θ)
+)

)
×
dtℓ,out(p)

dθ
(θ)

−
(
vin(p)(θ, ξ(θ)

+)− vout(p)(θ, ξ(θ)
+
)dξ
dθ

(θ). (9)

We see that the terms
(
vT (θ, tk,T (θ)

−)−vT (θ, tk,T (θ)+)
)
× dtk,T

dθ (θ) also arise as key elements in the IPA

derivatives
dLp

dθ (θ). We next describe a recursive way to compute them along a sample path, and this will

constitute the heart of the IPA algorithm.

Let us define the notation ∆vT (θ, t) := vT (θ, t
−)− vT (θ, t

+) and ∆VT (θ, t) := VT (θ, t
−)− VT (θ, t

+), and

we observe that ∆vT (θ, t) ̸= 0 (∆VT (θ, t) ̸= 0, resp.) only if t is a jump point of the function vT (θ, ·)
(VT (θ, ·), resp.). Equations (6) and (9) require the computation of ∆vT (θ, tT (θ))

dtT
dθ (θ), where tT (θ)

serves as a generic notation for a jump point of vT (θ, ·). We point out that the computation of the

product-term ∆vT (θ, tT (θ))
dtT
dθ (θ) typically is considerably simpler than the computation of each one of

its multiplicands.

6



3.2 Event classification

The IPA algorithm and its computation of the terms ∆vT (θ, tT (θ))
dtT
dθ (θ) are based on the notion of

events in the following way. Events occur at an element of the network, be it transition or place,

and they are associated with discontinuities in the flow-rate functions vT (θ, ·) at some transition T .

Throughout a sample path the terms ∆vT (θ, tT (θ))
dtT
dθ (θ) evolve in a recursive manner according to the

occurrence of events at the various network elements. References [21, 23, 6] defined and classified events

according to three categories: exogenous, endogenous, and induced. Broadly speaking, exogenous events

are discontinuities (jumps) in exogenous processes, endogenous events occur when one of the network’s

flow processes reaches or departs from a certain given value, and induced events are jumps in one of

the network processes that are triggered by another event in the network. The literature has not yet

completely settled on these definitions, and we slightly modify those in [21, 23, 6], especially regarding

endogenous events, to better suit our description of the network processes.1 The following definition is

clarified by the ensuing remarks.

Definition 3.1 1. An exogenous event is a jump (discontinuity) in an exogenous process {ϕ(θ, ·)}.
An exogenous event is said to occur at transition T if it is a jump in VT (θ, ·).2 We further classify

such events as type-1 exogenous if {ϕT } does not depend on θ, and type-2 exogenous if {ϕT } is a

function of θ.

2. Let γ(θ) be a continuously-differentiable, non-negative-valued function.

(a). A type-1 endogenous event at place p with respect to the function γ(θ) is said to occur at time

t if mp(θ, t) = γ(θ) while mp(θ, t
−) ̸= γ(θ).

(b). A type-2 endogenous event at place p with respect to the function γ(θ) is said to occur at time

t if mp(θ, t
+) ̸= γ(θ) while, for some ∆t > 0, mp(θ, τ) = γ(θ) ∀τ ∈ (t−∆t, t].

(c). An endogenous event is said to occur at a transition T if it is an endogenous event at any

place p ∈ in(T ).3

3. Suppose that an event at a transition U , occurring at time tU (θ), triggers a discontinuity of vT (θ, ·)
at a transition T at time tT (θ) ≥ tU (θ). We say that the latter event at T is induced by the former

event at U , and we say that the pair of events at transitions U and T are triggering-induced.

We make the following remarks.

Remark 3.2 1. We have assumed that exogenous processes are either {VT (θ, t)} or the processes

{ψ(θ, t)} upon which VT (θ, t) depends via Equation (3). Therefore, according to Definition 3.1.1,

exogenous events must be jumps in VT (θ, t) for some transition T .

2. An exogenous process {VT } may or may not be a function of θ. If VT (θ, t) = VT (t) is not a function

of θ then discontinuities in this process are type-1 exogenous events, and in this case dtT
dθ (θ) = 0. On

the other hand, if VT (θ, t) is a function of θ then jumps in this process are type-2 exogenous, and in

this case the term dtT
dθ (θ) often is easily computable from the sample path at (simulated) time tT (θ).

Furthermore, we assume that the maximum flow rate at every transition is computable at every

time t, and hence the term ∆VT (θ, tT (θ)) can be computed as well at time tT (θ). If {VT (θ, t)} is

controlled by another process then it is not an exogenous process, and its discontinuities are induced

events. This will be discussed later and exemplified in Section 4.

1The term network process refers to either {vT (θ, t)}, {VT (θ, t)} (for any transition T ), or {mp(θ, t)} (for any place p).

We will use the generic notation {ϕ(θ, t)} for such processes.
2See Remark 3.2.1, below, for clarifications.
3This ensures that all events are associated with transitions, thereby simplifying the ensuing presentation. Correspond-

ingly, we will denote the occurrence time of an endogenous event at a place p by tT (θ), where T := out(p).
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3. Endogenous events associated with the function γ(θ) = 0 signify the boundary points of empty

periods in a network’s places. Such events often cause a jump in vT (θ, ·) for T = out(p), and

hence we say that they occur at T in order to simplify the notation by associating all events with

transitions. Functions γ(θ) other than zero are used in threshold-based flow control.

4. Note that in type-1 endogenous events the workload mp(θ, t) becomes equal to γ(θ), while in type-2

endogenous events mp(θ, t) ceases to be equal to γ(θ) after having had that value for a positive

amount of time. Thus, if mp(θ) crosses that value γ(θ) and is equal to it at a single point, the

related event is classified as type-1 endogenous.

5. Consider a place p ∈ out(U) ∩ in(T ) for a pair of transitions U and T , namely p is between U and

T . Suppose that mp(θ, t) = 0 for all t in an interval [t1, t2], and hence vU (θ, t) = vT (θ, t). Then

a jump in vU (θ, ·) triggers a jump in vT (θ, ·) at the same time, and this is an induced event. It is

possible to have a chain of such events, e1, . . . , en, such that e1 is a triggering event, and for all

i = 2, . . . , n, ei is induced by ei−1. Such a chain is called an induced chain. Can such a chain be

infinite or loop around itself? For the case of uncontrolled networks, the arguments in [22] imply

that the answer is “no” as long as Equations (1) and (2) are consistent throughout the network.

The following assumption, or minor variants thereof, are routinely made in the literature on IPA (see

[5, 21, 23, 6]), as explained below.

Assumption 3.3 Fix θ ∈ Θ. W.p.1, the following statements are in force.

1. No type-1 endogenous event can be induced. Furthermore, if such an event occurs at a place p then

the function vin(p)(θ, ·) is continuous at its occurrence time.

2. A type-1 endogenous event cannot occur at the same time as other events that are not in the induced

chain initiated by it.

3. An exogenous event cannot occur at the same time as other events that are not in the induced chain

initiated by it.

4. No empty period consists of a single time-point.

5. For every transition T , place p ∈ in(T ), and transition U := in(p); for every open interval I

contained in an empty period of p, it is impossible to have vU (θ, t) = VT (θ, t) ∀t ∈ I unless
∂vU

∂θ (θ, t) = ∂VT

∂θ (θ, t) ∀t ∈ I as well. Furthermore, for another place p̃ ∈ in(T ) and Ũ := in(p̃),

and for every open interval I contained in empty periods of both p and p̃, it is impossible to have

vU (θ, t) = vŨ (θ, t) ∀t ∈ I unless ∂vU

∂θ (θ, t) =
∂vŨ

∂θ (θ, t) ∀t ∈ I as well.

Remark 3.4 As argued in [21, 23, 6]), this assumption guarantees that the various network-flow pro-

cesses, event-times, and sample performance functions are differentiable, at a given θ ∈ Θ, w.p.1. Parts

1-4 of the assumption are reasonable if there is sufficient statistical mixing in the network processes.

Part 5 guarantees that the flow derivatives ∂vT

∂θ (θ, t) exist. To see what happens if part 5 is not satisfied,

consider the following example concerning a transition T , place p ∈ in(T ), and U := in(p). Suppose that

vU (θ, t) = 1, and VT (θ, t) = θ, throughout an empty period of p, denoted by I. Let θ = 1. Then, under a

slight increase of θ, I would remain an empty period, while under slight decrease of θ, I would no longer

be an empty period. Consequently, ∂vT

∂θ+ (θ, t) = 0 while ∂vT

∂θ− (θ, t) = 1 for all t ∈ I. Although vT (θ, t) is

not differentiable in θ (at a given t ∈ I), it has one-sided derivatives.

Under general conditions, as argued in [21], if part 5 of the assumption is not satisfied then the afore-

mentioned sample-based functions have one-sided derivatives, and in this case the analysis in the sequel
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is valid in that context. Furthermore, though it may be hard to ascertain in the abstract setting of the

present discussion, part 5 may be quite simple to check for specific examples, as we shall see in Section 4.

3.3 Computation of the terms ∆vT (θ, tT (θ))
dtT
dθ

(θ) and specification of the IPA

derivatives

The computation and propagation of the terms ∆vT (θ, tT (θ))
dtT
dθ (θ) is recursive in time and network

flows, and can be carried out according to the occurrence of the various events. Driving the computation

are the exogenous events and the quantities ∆VT (θ, tT (θ))
dtT
dθ (θ) related to them. It is assumed that

these quantities are computable at the simulated times tT (θ), and moreover that ∆VT (θ, t) is computable

as well for every t ∈ [0, tf ].

The main element of the recursion consists of a relation of the term ∆vT (θ, tT (θ))
dtT
dθ (θ) to either the anal-

ogous term ∆VT (θ, tT (θ))
dtT
dθ (θ) derived from an exogenous event, to a similar term ∆vU (θ, tU (θ))

dtU
dθ (θ)

at another transition U , or to the sum of such terms computed in the past.

These relationships are linear, and in most cases with unity coefficients. For example, in the second

case (above), ∆vT (θ, tT (θ))
dtT
dθ (θ) = α∆vU (θ, tU (θ))

dtU
dθ (θ) for a proportionality factor α. In most cases

α = 1, meaning that the perturbation in U is transferred to T . In other cases α = 0, meaning that the

perturbation in U is canceled at T . In few cases, associated with type-2 endogenous events, α /∈ {0, 1}.
In such cases, which are the most complicated from a computational standpoint, α can be expressed as

the ratio of transitions flow rates (as we shall see), which must be computed just before and after the

events occur. However, we always have the inequality |α| ≤ 1, implying that, if these situations arise

infrequently, α can be adequately approximated by 0, 1, 0.5, or a unit variate. We point out that such

terms also arise in the setting of queueing networks [21], where due to their rarity could be ignored by

the IPA algorithms.

We next present these linear recursive relationships according to the various events. Consider first

exogenous events.

Proposition 3.5 Consider an exogenous event occurring at a transition T at time tT (θ). Then

∆vT (θ, tT (θ))
dtT
dθ

(θ) = α∆VT (θ, tT (θ))
dtT
dθ

(θ), (10)

where α has the following values: (i) If εT (tT (θ)) = ∅, namely mp(θ, tT (θ)) > 0 ∀p ∈ in(T ), then α = 1.

(ii) If tT (θ) lies in the interior of an empty period of some place p ∈ in(T ), then α = 0. (iii) If the event

in question, namely the jump in VT (θ, ·), results in the end of an empty period at some p ∈ in(T ), then

α =
vT (θ, tT (θ)

−)− VT (θ, tT (θ)
+)

VT (θ, tT (θ)−)− VT (θ, tT (θ)+)
(11)

and in this case 0 ≤ α ≤ 1.

Proof. Part (i) follows directly from (1), since vT (θ, t) = VT (θ, t) for all t in some neighborhood of tT (θ).

Part (ii) follows from (1) as well since there exists p ∈ T such that, with U := in(p), vT (θ, t) = vU (θ, t)

for all t in a neighborhood of tT (θ). (iii). Note that εT (θ, tT (θ)
+) = ∅ and hence, by (1), vT (θ, tT (θ)

+) =

VT (θ, tT (θ)
+). Consequently ∆vT (θ, tT (θ)) = vT (θ, tT (θ)

−) − VT (θ, tT (θ)
+), and by dividing and mul-

tiplying this term by ∆VT (θ, tT (θ)), Equation (11) follows. Furthermore, by Assumption 3.3(3), for

every p ∈ in(T ), there is no event at the transition U = in(p), and hence the only way tT (θ) is

the end-time of an empty period at p is if vT (θ, tT (θ)
−) > vT (θ, tT (θ)

+). But εT (θ, tT (θ)
+) = ∅ and

hence vT (θ, tT (θ)
+) = VT (θ, tT (θ)

+), while vT (θ, tT (θ)
−) ≤ VT (θ, tT (θ)

−) by definition of the maximum

9



transition-flow rate. All of this implies that 0 ≤ α ≤ 1. 2

Consider next the case where an event at transition U triggers an induced event at a transition T ,

immediately downstream from it, through an empty period in a place between them.

Proposition 3.6 Suppose that an event occurs at a transition U at a time tU (θ) while a place p ∈ out(U)

is empty, and let T := out(p). This event triggers an event at T at the same time, tT (θ) := tU (θ).

Furthermore,

∆vT (θ, tT (θ))
dtT
dθ

(θ) = α∆vU (θ, tU (θ))
dtU
dθ

(θ), (12)

where α has the following value. (i). If tU (θ) lies in the interior of an empty period at p, then α = 1.

(ii). If the triggering event at U is the termination of an empty period at p, then

α =
vT (θ, tT (θ)

+)− vU (θ, tU (θ)
−)

vU (θ, tU (θ)+)− vU (θ, tU (θ)−)
, (13)

and 0 ≤ α ≤ 1.

Proof. Since mp(tU (θ)) = 0, Equation (1) implies that the event at U triggers an event at T at the same

time. (i). By (1), it is obvious that α = 1 since vT (θ, t) = vU (θ, t) in some neighborhood of tU (θ). (ii).

Since tT (θ) = tU (θ) is the end-point of an empty period at p, vT (θ, tT (θ)
−) = vU (θ, tT (θ)

−), and hence

Equations (12)-(13) follows from (1). Furthermore, since tT (θ) is the end-point of an empty period at p, it

follows that (a) the triggering event at U raises vU (θ), ·) at t = tT (θ), which causes vT (θ, ·) to stay flat or

rise there as well, implying that vT (θ, tT (θ)
−) ≤ vT (θ, tT (θ)

+); and (b) vU (θ, tU (θ)
+)−vT (θ, tT (θ)+) ≥ 0.

Recalling that vT (θ, tT (θ)
−) = vU (θ, tU (θ)

−), this implies that 0 ≤ α ≤ 1. 2

Notice that in the above discussion, the situation where α /∈ {0, 1} arises only when the event at T ,

be it exogenous or induced, results in the termination of an empty period at p ∈ in(T ), and hence the

event is type-2 endogenous as well. Such events will be discussed later. We also point out that while

empty periods provide a common mechanism for pairs of triggering-induced events, there are other ways

such event-pairs can arise in controlled networks. We will consider such events later for threshold-based

flow control, where an endogenous event at a transition T triggers a change in the flow rate at another

transition. The endogenous event at T means that the workload at a place p ∈ in(T ) reaches a certain

threshold. This requires a computation of the term dtT
dθ (θ), which is the subject of the following result

concerning type-1 endogenous events.

Proposition 3.7 Consider a type-1 endogenous event at a place p with respect to a function γ(θ), and

let T := out(p). Define ξp(θ) := max{τ < tT (θ) : mp(θ, τ) = 0}; if no such τ exists, define ξp(θ) = 0.

For U := in(p), let τℓ,U (θ), ℓ = 1, . . . , L denote the jump-times of the function vU (θ, ·) in the interval

(ξp(θ), tT (θ)), and let τm,T (θ), m = 1, . . . ,M denote the jump times of the function vT (θ, ·) in the same

interval.

(i). The following relation holds:

dtT
dθ

(θ) =
1(

vU (θ, tT (θ))− vT (θ, tT (θ)−)
) ×

[dγ
dθ

(θ)

−
∫ tT (θ)

ξp(θ)

(∂vU
∂θ

(θ, τ)− ∂vT
∂θ

(θ, τ)
)
dτ −

L∑
ℓ=1

∆vU (θ, τℓ,U (θ))
dτℓ,U
dθ

(θ)

+
M∑

m=1

∆vT (θ, τm,T (θ))
dτm,T

dθ
(θ) +

(
vU (θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)dξp
dθ

(θ)
]
. (14)
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(ii). In the special case where γ(θ) = 0, namely the endogenous event in question is the start of an empty

period at p,

∆vT (θ, tT (θ))
dtT
dθ

(θ) =

∫ tT (θ)

ξp(θ)

(∂vU
∂θ

(θ, τ)− ∂vT
∂θ

(θ, τ)
)
dτ

+

L∑
ℓ=1

∆vU (θ, τℓ,U (θ))
dτℓ,U
dθ

(θ)−
M∑

m=1

∆vT (θ, τm,T (θ))
dτm,T

dθ
(θ)

−
(
vU (θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)dξp
dθ

(θ). (15)

Proof. (i). Since place p is nonempty throughout the interval (ξp(θ), tT (θ)), Equation (2) implies that

mp(θ, tT (θ)) =

∫ tT (θ)

ξp(θ)

(
vU (θ, τ)− vT (θ, τ)

)
dτ. (16)

Moreover, mp(θ, tT (θ)) = γ(θ). Plugging this in (16) and taking derivatives with respect to θ we obtain,

dγ

dθ
(θ) =

(
vU (θ, tT (θ))− vT (θ, tT (θ)

−)
)dtT
dθ

(θ)

+

∫ tT (θ)

ξp(θ)

(∂vU
∂θ

(θ, τ)− ∂vT
∂θ

(θ, τ)
)
dτ +

L∑
ℓ=1

∆vU (θ, τℓ,U (θ))
dτℓ,U
dθ

(θ)−

M∑
m=1

∆vT (θ, τm,T (θ))
dτm,T

dθ
(θ)−

(
vU (θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)dξT
dθ

(θ), (17)

where we recall that vU (θ, ·) is continuous at t = tT (θ) by Assumption 3.3(1). Now Equation (14) follows

from (17) after some algebra.

(ii). Since the endogenous event in question is the start of an empty period at p we have that γ(θ) = 0

and dγ
dθ (θ) = 0 as well. Moreover, we have that vU (θ, tT (θ)

+) = vT (θ, tT (θ)
+), and hence vU (θ, tT (θ)) −

vT (θ, tT (θ)
−) = −∆vT (θ, tT (θ)). Plugging this in (14), Equation (15) follows. 2

Equation (15) provides a recursive structure for the terms ∆vT (θ, tT (θ))
dtT
dθ (θ) in time, as can be seen

from the sum-terms in its RHS. The integral term there typically can be computed easily. However,

the last term requires further attention. This term, corresponding to the end of an empty period at

place p at the time ξp(θ), depends on the way the empty period is terminated. It can be the result

of a continuous change in the function vU (θ, t) − vT (θ, t) about t = ξp(θ), or a discontinuity of that

function at the point t = ξp(θ). In the latter case we have a type-2 endogenous event at p, and the term(
vU (θ, ξp(θ)

+) − vT (θ, ξp(θ)
+)

)dξp
dθ (θ) depends on the specific event. The following result specifies this

term accordingly.

Proposition 3.8 Consider a transition T and a place p ∈ in(T ), and let U := in(p). Suppose that ξp(θ)

is the end-time of an empty period at p. The term
(
vU (θ, ξp(θ)

+) − vT (θ, ξp(θ)
+)

)
dξp
dθ (θ) is computable

according to the following situations: (i). The functions vU (θ, t) and vT (θ, t) are continuous about t =

ξp(θ). Then
(
vU (θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)
dξp
dθ (θ) = 0. (ii). The end of the empty period at p is due to

an exogenous event at T . Then(
vU (θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)dξp
dθ

(θ) = α1∆VT (θ, ξp(θ))
dξp
dθ

(θ) (18)

with

α1 :=
vU (θ, ξp(θ)

+)− VT (θ, ξp(θ)
+)

VT (θ, ξp(θ)−)− VT (θ, ξp(θ)+)
, (19)
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and α1 satisfies the inequalities 0 ≤ α1 ≤ 1. (iii). The end of the empty period at p is an induced event

that is triggered by an event at U where vU (θ, ·) is discontinuous at ξp(θ). Then(
vU (θ, ξp(θ)

+)− vT (θ, ξp(θ)
+)

)dξp
dθ

(θ) = α2∆vU (θ, ξp(θ))
dξp
dθ

(θ), (20)

with

α2 := − vT (θ, ξp(θ)
+)− vU (θ, ξp(θ)

+)

vU (θ, ξp(θ)−)− vU (θ, ξp(θ)+)
, (21)

and α2 satisfies the inequalities −1 ≤ α2 ≤ 0.

Proof. Part (i) is obvious since vU (θ, ξp(θ)
+)−vT (θ, ξp(θ)+) = vU (θ, ξp(θ))−vT (θ, ξp(θ)), and vU (θ, ξp(θ))−

vT (θ, ξp(θ)) = 0 because an empty period ends at time t = ξp(θ).

(ii). Equations (18) and (19) are obtained by dividing and multiplying the term
(
vU (θ, ξp(θ)

+) −
vT (θ, ξp(θ)

+)
)dξp

dθ (θ) by the term VT (θ, ξp(θ)
−) − VT (θ, ξp(θ)

+). Next, by Assumption 3.3(3), the func-

tion vU (θ, t) is continuous at time t = ξp(θ), and hence vU (θ, ξp(θ)
−) = vU (θ, ξp(θ)) = vU (θ, ξp(θ)

+).

Therefore α1 is the term α in Equation (11), and by Proposition 3.5(iii), 0 ≤ α1 ≤ 1.

(iii). Equations (20) and (21) are obtained by dividing and multiplying the term
(
vU (θ, ξp(θ)

+) −
vT (θ, ξp(θ)

+)
)dξp

dθ (θ) by the term vU (θ, ξp(θ)
−)− vU (θ, ξp(θ)

+). Next, a bit of algebra shows that 1 + α2

is the term α in Equation (13). By Proposition 3.6(ii), 0 ≤ α ≤ 1, and therefore, −1 ≤ α2 ≤ 0. 2

Propositions 3.5-3.8 describe the dynamic evolution of the terms

∆vT (θ, tT (θ))
dtT
dθ (θ), which is recursive in both time and network flows. This description is complete

for uncontrolled networks, however, it must be further specified for the case of controlled networks. Of

course no single paper can cover all possible types of network controls, but we discuss here a class of

controls that are of interest to us and may arise in applications in transportation and manufacturing.

This class consist of threshold flow control, where the maximum firing rate at a given transition, T , is

modulated by the workload volume at a certain place, p. The threshold at p can be dependent of θ and

hence is denoted by γp(θ). Given two random functions VT,1(θ, t) and VT,2(θ, t), that are continuously

differentiable in (θ, t), the control is defined via the relation VT (θ, t) = VT,1(θ, t) or VT (θ, t) = VT,2(θ, t),

depending on whether mp(θ, t) < γp(θ) or mp(θ, t) > γp(θ). In order to avoid chattering we may have to

specify a third function, VT,3(θ, t), such that VT (θ, t) = VT,3(θ, t) whenever mp(θ, t) = γp(θ); an example

will clearly illustrate this point in the sequel. Thus, the control has the following form,

VT (θ, t) =


VT,1(θ, t), if mp(θ, t) < γp(θ),

VT,2(θ, t), if mp(θ, t) > γp(θ),

VT,3(θ, t), if mp(θ, t) = γp(θ).

(22)

This kind of control results in induced events at T that are triggered by the endogenous events at p,

comprised of mp(θ, t) becoming equal to, or ceasing to be γp(θ). There is no direct relationship, similar

to the ones explored by Propositions 3.5-3.8, between the term ∆vT (θ, tT (θ))
dtT
dθ (θ) and the analogous

term at U := out(p). Instead, we have to compute the terms ∆VT (θ, tT (θ)) and
dtT
dθ (θ) separately. The

former term, we assumed, can be computed directly (and easily) from the sample path since VT (θ, t) is

a maximum transition flow-rate process. The letter term is computable via Equation (14) (Proposition

3.7) in the case of type-1 endogenous events, and via the various ways for handling type-2 endogenous

events that are induced or exogenous, as specified in the proofs of Propositions 3.5 and 3.6. All of this

will be exemplified and made clear in Section 4.

Finally, to complete the description of the IPA derivatives, we have to specify the terms ∂vT

∂θ (θ, tT (θ)) in

Equations (6) and (9). For the maximum transition firing-rate processes, we can assume that the terms
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∂VT

∂θ (θ, tT (θ)) are computable directly from the sample path, be they exogenous or controlled; while the

terms ∂vT

∂θ (θ, tT (θ)) can be computed recursively by Equation (1) in an obvious way.

We close this subsection by mentioning that the aforementioned formulae for the IPA derivatives, and

especially Equations (14) and (15), can be derived from the general framework presented in [6]. However,

that framework is quite abstract and hence the derivations would be tedious. Instead, the derivations

here, made simple and direct by using the special structure of marked graphs, lead to a natural recursive

computation that is based on the terms ∆vT (θ, tT (θ))
dtT
dθ (θ).

3.4 Unbiasedness of the IPA derivatives

The main purpose of the IPA derivatives dL
dθ (θ) is to provide unbiased statistical estimators for dJ

dθ (θ),

and this is ensured by the equation E
(
dL
dθ (θ)

)
= dJ

dθ (θ). In this case we say that the IPA derivatives are

unbiased. Since J(θ) = E
(
L(θ)

)
, unbiasedness means that the operators of expectation and pointwise

differentiation with respect to θ are interchangeable, namely that E
(
dL
dθ (θ)

)
= d

dθ

(
E(L(θ))

)
. As pointed

out in [3], the unbiasedness of IPA is ensured by the following two conditions: 1). For every θ ∈ Θ, w.p.1

the sample derivative dL
dθ (θ) exists. (2). W.p.1, the function L(θ) is Lipschitz continuous on its domain

Θ, and its Lipschitz constant has a finite first moment.

The study of stochastic flow networks in relation to IPA was primarily motivated by the realization that

the IPA derivatives in their setting is unbiased for a far-larger class of systems than in the setting of the

traditional (discrete) queueing networks [4, 20]. However, counterexamples exist [9], and this behooves us

to ascertain the unbiasedness of the IPA derivatives derived in this paper. In this regard our first result

concerns uncontrolled networks, and it has a general scope. For controlled networks we do not believe

that analogous results hold true without specifying particular characteristics of the controls, and such a

study is beyond the scope and size of a single paper. Instead, we prove unbiasedness for the example of

threshold-flow control that is considered in the next section; while having apparent general features that

may broaden the scope of the analysis, we defer a more comprehensive treatment of this problem to a

later publication.

Consider an uncontrolled continuous marked graph defined by Equations (1) and (2), where θ ∈ Θ ⊂ R

is a variable parameter of the maximum transitions’ firing rates, VT (θ, t), at one or more transitions T .

Suppose that the initial workload (marking) mp(0) is given for every place p, and it is independent of

θ. For every transition T , define the mapping VT : Θ → L1[0, tf ] as follows: VT (θ) is the function (of t)

VT (θ, t). We make the following assumption.

Assumption 3.9 For every transition T , the following holds:

1. W.p.1, for every θ ∈ Θ, the function VT (θ, t) (as a function of time) is piecewise continuous and

piecewise continuously-differentiable, and its partial derivative ∂VT

∂t (θ, t) has its sign changed a finite

number of times in the interval [0, tf ].

2. W.p.1, the mapping VT : Θ → L1[0, tf ] is Lipschitz continuous, and the Lipschitz constant has a

finite first moment.

3. Every elementary circuit in the network has at least one place containing a positive amount of fluid

at time t = 0.

Proposition 3.10 Suppose that Assumptions 3.3 and 3.9 are satisfied. Then for every transition T and

place p, the IPA derivatives dLT

dθ (θ) and
dLp

dθ (θ) are unbiased. 2
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Figure 1: The Petri net system considered in Section 4.

The proof is technically involved and hence relegated to the appendix.

We close this section by mentioning that an analogous result holds true for the case where θ is a parameter

of the initial marking, and its proof is similar to that of Proposition 3.10.

4 Example

Consider the Petri net shown in Figure 1, where transition T3 acts as a join operation for the fluid

flows through the source transitions T1 and T2.
4 This network, though simple, highlights the notions

of concurrency and synchronization that are inherent in Petri nets, and therefore its analysis captures

essential elements of the recursive structure of IPA presented in Section 3. To simplify the notation

we will refer to the flow rates through the transitions as Vi(θ, t) := VTi(θ, t) and vi(θ, t) := vTi(θ, t),

i = 1, 2, 3, and to the places’ workload as mj(θ, t) := mpj
(θ, t), j = 1, 2.

The network can adequately model the dynamics of inventories and backlogging in a single-stage man-

ufacturing system. In this setting T3 represents the production process, T1 represents the process of

orders of finished products, and T2 represents the arrival process of raw material (parts) to the system.

Production takes place only when there are standing orders for finished products and parts to match

them, and hence there are no finished-product inventories. However, input (parts’) inventories build up

when there are parts that are not matched by standing orders, and similarly, backorders arise whenever

there are standing product-demands without sufficient raw material to match them. The fluid contents

in the places p1 and p2 represent the backorders and inventory levels, respectively.

In many practical situations the product-order process is unpredictable, and the plant manager is facing

the challenge of balancing backorder and inventory costs by a suitable choice of a policy for scheduling

the procurement and delivery of parts. Such a balance can be quantified by a performance function

comprised of a weighted sum of the costs associated with backorder and inventory, respectively, during

a given production horizon. When the policies are parameterized by a continuous variable θ, IPA can

come into play for computing (or approximating) a value of θ that minimizes the performance function.

The forthcoming example concerns a feedback law where θ > 0 is a threshold parameter of the backorder

level which determines the value of V2(θ, t).
5 Suppose that {V1(t)} is an exogenous processes that is

independent of θ, and given two constants V2,1 > 0 and V2,2 > V2,1, define V2(θ, t) = V2,1 if m1(θ, t) < θ,

4the material in this section excluding unbiasedness of IPA (Proposition 4.2, below), was presented in [12].
5It is a common practice in production management to control safety stock levels by a base threshold of the inventories

themselves and not the backorder levels. However, the latter arguably can be justified in certain situations, although we

are not aware of a current application. Nonetheless we consider it here as an example of our IPA framework in the setting

of a controlled network. Practically both controls can be applied concurrently, and we defer the question of determining

the optimal threshold values for such a combined approach to a later study.
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and V2(θ, t) = V2,2 as long as m1(θ, t) > θ. We assume that the process {V3(θ, t)} is deterministic and

constant, namely V3(θ, t) = V3 for a given constant V3 > 0. We make the reasonable assumption that

V2,1 < V3 ≤ V2,2.

The purpose of such a control law is to regulate the process {V2(θ, t)} by having it switch from V2,1 to

V2,2 whenever m1 crosses the threshold value θ in the upward direction, and vice versa if m1 crosses θ

downwards. However, this may give rise to the Zeno phenomenon when m1(θ, t) = θ as is evident from

the following scenario: m1 rises to θ and then it attempts to decline due to the resulting increase in V2;

consequently it tries to rise again, etc. This chattering phenomenon is due to the fact that the traffic flows

are characterized by rates as opposed to the movement of discrete jobs. Such a situation can arise only

whenever m1(θ, t) = θ while m2(θ, t) = 0 and V2,1 ≤ V1(t) ≤ V3. In this case, of course, V2(θ, t) = V1(t)

as long as the chatter continues, and m1(θ, t) remains equal to θ. To include this phenomenon in the

model, we define V2(θ, t) via the following threshold-control law,

V2(θ, t) =



V2,1, if m1(θ, t) < θ

V2,2, if m1(θ, t) > θ

V1(t), if m1(θ, t) = θ, m2(θ, t) = 0,

and V2,1 ≤ V1(t) ≤ V3

V2,1, under all other circumstances;

(23)

it is readily seen that the equations (1), (2), and (23) are consistent throughout the network.

The following cost function reflects on a balance between parts’ inventories and products’ backlogging,

L(θ) :=

∫ tf

0

(
C1m1(θ, t) + C2m2(θ, t)

)
dt (24)

for given constants C1 > 0, C2 > 0, and tf > 0. In the rest of this section we define an example,

describe for it the structures of the IPA derivative dL
dθ (θ), and provide simulation results for minimizing

J(θ) := E
(
L(θ)

)
.

In the simulation example that we consider it is assumed that the process {V1(t)} is bursty and hence

modeled as a sequence of impulses whose timing is a point process. Thus, this process has the form

V1(t) =
∞∑

n=1

αnδ(t− sn), (25)

where δ(·) is the Dirac delta function, the weighting factors αn > 0, n = 1, 2, . . ., constitutes a stochastic

process, and the time-point process sn, n = 1, 2, . . ., is a monotone-increasing random process. We

mention that sn may be larger than tf for n large enough; in this case we define nf := max{n = 1, . . . :

n < tf} and we note that V1(t) has only nf impulses in the interval [0, tf ].

Observe that Equation (25) excludes the possibility of the third and fourth cases in Equation (23) and

reduces it to the following form,

V2(θ, t) =

{
V2,1, if m1(θ, t) ≤ θ

V2,2, if m1(θ, t) > θ.
(26)

To ensure stability of the control law defined by (26) we assume, in addition to the inequalities V2,1 <

V3 ≤ V2,2, that
1
V3

(
V2,2 − V2,1

)
< 1, since this fraction-term is the loop gain.

We also mention that neither process {αn} nor the increment-process {sn − sn−1} need be iid, and all

that we require is that with these processes, Assumption 3.3 is satisfied. This would be the case if these
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two processes are exogenous, and the conditional distributions of αn|αn−1 and (sn − sn−1)|sn−1 have

uniformly-bounded density functions.

The IPA derivative is computable via Equations (7) and (9) in conjunction with the results in Section 3,

where the corresponding events have the following forms.

• Exogenous events. All of the exogenous events are jumps in V1(t); these are type-1 events and hence
dt1
dθ (θ) = 0.

• Type-1 endogenous events. There are only the following three possibilities: (i) Start of an empty

period at p1; (ii) start of an empty period at p2, and (iii) m1(θ, ·) crosses θ downwards.

Case (i): v1(t3(θ)) = 0, and

v3(θ, t3(θ)
−) =

{
V2,1, if m2(θ, t3(θ)) = 0

V3, if m2(θ, t3(θ)) > 0.
(27)

The term ∆v3(θ, t3(θ))
dt3
dθ (θ) is computable by Equation (15), in whose RHS the integral term is

zero and all other terms are known (having been computed) by time t = t3(θ). Furthermore, if

m2(θ, t3(θ)) = 0, this event triggers the end of an empty period at p2, and in this case v3(θ, t3(θ)
+) =

0 and v2(θ, t3(θ)
+) = V2,1. (These quantities may serve as the term vT (θ, ξp(θ)

+) at the end of

Equation (15) for the next type-1 endogenous event at p2.)

Case(ii): v2(θ, t3(θ)) = V2,1, and v3(θ, t3(θ)
−) = V3. It is impossible to have m1(θ, t3(θ)) = 0.

Case (iii): v1(θ, t3(θ)) = 0, and v3(θ, t3(θ)
−) = V2,2. Furthermore, this event triggers an induced

event at T2, where v2(θ, t2(θ)
−) = V2,2 and v2(θ, t2(θ)

+) = V2,1. In the RHS of (14), the integral

term is zero, and dγ
dθ (θ) = 1.

• Type-2 endogenous events. Only the following two situations are possible: (i) End of an empty

period at p1, and (ii) end of an empty period at p2.

Case (i) is the result of a jump in V1(·), which is a type-1 exogenous event (as discussed earlier)

and hence dt3
dθ (θ) = 0.

Case (ii) must be triggered by the start of an empty period at p1, which is a type-1 endogenous

event as discussed in the previous paragraph.

• Induced events. Only the following three situations are possible: (i) Jump in v3(θ, ·) triggered by

a jump in v1(·) while p1 is empty; (ii) jump in v3(θ, ·) triggered by a jump in v2(θ, ·) while p2 is

empty; and (iii) jump in v2(θ, ·) induced by m1(θ, ·) crossing the value of θ.

Case (i) is of a type-1 exogenous event and hence dt3
dθ (θ) = 0.

Case (ii): The jump in v2(θ, ·) must be upwards and hence v2(θ, t2(θ)
−) = V2,1 while v2(θ, t2(θ)

+) =

V2,2, and this event is triggered by a jump in m1(θ, ·) upward across θ; it is a type-1 exogenous

event and hence dt3
dθ (θ) = 0.

Case (iii): An upward jump must be triggered by an upward jump up in m1(θ, t) across θ, which

is a type-1 exogenous event and hence dt2
dθ (θ) = 0. On the other hand, a jump down in V2(θ, ·) is

triggered by a type-1 endogenous event at p1, as described in the previous paragraph.

The unbiasedness of the IPA derivative will be derived from the following assumption. Clearly part 1 of

it can be relaxed.

Assumption 4.1 1. The conditional distributions of αn|αn−1 and (sn − sn−1)|sn−1 have probability

density functions on their respective supports, and these density functions have a common upper

bound.
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Figure 2: Results of optimization runs: θ vs. k.

2. The following inequality holds,

E
(∫ tf

0

V1(t)dt
)
<∞. (28)

Proposition 4.2 Suppose that Assumption 4.1 is satisfied, and that 1
V3

(
V2,2 − V2,1 < 1. Then the IPA

derivative dL
dθ (θ) is unbiased. 2

For a proof, please see the appendix.

We tested IPA in conjunction with an optimization problem of minimizing J(θ) := E
(
L(θ)

)
, where L(θ)

is defined by (24) with the initial marking m1(θ, 0) = m2(θ, 0) = 0. The problem has the following

specifications: V2,1 = 2, V2,2 = 6, and V3 = 6; sn, n = 1, 2, . . ., are equally spaced with increments of 10

time units, i.e., sn = 10n, and αn, n = 1, 2, . . ., are mutually-independent random variables having the

exponential distribution with the mean of 50. The final time is tf = 1, 000 time units, and the weighting

factors in (24) are C1 = C2 = 1.0.

The optimization algorithm that we used is a stochastic-approximation method of the Robbins-Monro

type [15]. In a general setting of sample-based optimization, this algorithm computes an iteration-

sequence {θk}∞k=1 by the following formula,

θk+1 = θk − λkhk, (29)

where −hk is a random descent direction and λk > 0 is a step size.6 The initial iteration point θ1
is chosen from Θ in an arbitrary fashion. It is well known (see [15]) that under broad assumptions

and conditions, the iteration sequence {θk}∞k=1 converges with probability 1 to a local minimum of the

function J(θ) := E
(
L(θ)

)
. One of the main conditions on the step-size sequence is that

∑∞
k=1 λk = ∞

while
∑∞

k=1 λ
2
k <∞, and after some experimentation we chose λk = 0.5/k0.6.

The results of two runs for 1,000 iterations each, with the respective initial-parameter values of θ1 = 10 and

θ1 = 50, are shown in Figure 3, and they indicate convergence to about θ = 21.6. Independent verification

via repeated simulations (not shown here) supported this result by indicating that the minimum of J(θ)

indeed was at or about the value obtained by the optimization algorithm.

6Guards must be put in place to ensure that every point θk remains in the set Θ := [0, C]. This can be achieved by

projecting the RHS of (29) onto Θ if need be, but we did not encounter this situation in the run of the algorithm.
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5 Conclusions

This paper extends a recent framework for IPA in the setting of stochastic flow models to a class or

marked event graphs. It considers uncontrolled networks as well as networks with threshold-based flow

control. Its main results concern a characterization of the IPA derivative process in abstract terms, and

an event-based recursive framework for its computation. Future research will focus on applications to

manufacturing and other areas, the identification of classes of systems having special structures that

admit special-purpose algorithms, and extensions of the technique to Petri nets that are not marked

graphs.

6 Appendix

This section provides proofs to Proposition 3.10 and Proposition 4.2.

Proof of Proposition 3.10. Recall that LT (θ) and Lp(θ) are defined by Equations (4) and (5), and

that their IPA derivatives are given by Equations (6), (7), and (9). By Assumption 3.3, these IPA deriva-

tives exists w.p.1 at every given θ ∈ Θ, and thus, it suffices to prove that the sample functions LT (θ) and

Lp(θ) have a Lipschitz constant throughout Θ having a finite first moment. This is what we next do.

Fix θ1 ∈ Θ and θ2 ∈ Θ such that θ2 ≥ θ1. For a transition T , place p, and time t, we define the

terms δVT (t) := VT (θ2, t)− VT (θ1, t), δvT (t) := vT (θ2, t)− vT (θ1, t), and δmp(t) := mp(θ2, t)−mp(θ1, t).

By Assumption 3.9.1 and the network equations (1) and (2), we can divide the time-interval [0, tf )

into a finite or infinite sequence of consecutive subintervals, [ti, ti+1), i = 0, 1, . . ., with t0 := 0 and

∪i≥0[ti, ti+1) = [0, tf ), such that for every i ≥ 0, either one of the following four situations arises at every

t ∈ (ti, ti+1): (i) εT (θ2, t) = εT (θ1, t) = ∅ (recall that εT (θ, t) is the set of places p ∈ in(T ) such that

mp(θ, t) = 0); (ii) εT (θ2, t) = ∅, and there exists a place p such that for every t ∈ (ti, ti+1), p ∈ εT (θ1, t);

(iii) εT (θ1, t) = ∅, and there exists a place p such that for every t ∈ (ti, ti+1), p ∈ εT (θ2, t); (iv) There exist

places p1 and p2 (possibly, but not necessarily, p1 = p2) such that for every t ∈ (ti, ti+1), p1 ∈ εT (θ1, t)

and p2 ∈ εT (θ2, t). We next analyze these four potential situations to derive recursive bounds on the

terms
∫ ti+1

ti
δvT (t)dt that will serve as a basis for the argument underscoring the proof.

The following will be shown: In case (i),∫ ti+1

ti

δvT (t)dt =

∫ ti+1

ti

δVT (t)dt. (30)

In case (ii), with U := in(p),∫ ti+1

ti

δVT (t)dt ≤
∫ ti+1

ti

δvT (t)dt ≤ δmp(ti) +

∫ ti+1

ti

δvU (t)dt. (31)

In case (iii), with U := in(p),

δmp(ti) +

∫ ti+1

ti

δvU (t)dt ≤
∫ ti+1

ti

δvT (t)dt ≤
∫ ti+1

ti

δVT (t)dt. (32)

In case (iv), with U1 := in(p1) and U2 := in(p2),∫ ti+1

ti

δvU2(t)dt+ δmp2(ti) ≤
∫ ti+1

ti

δvT (t)dt ≤
∫ ti+1

ti

δvU1(t)dt+ δmp1(ti). (33)
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The proofs are as follows. In case (i), Equation (30) is obvious from (1) since vT (θj , t) = VT (θj , t) for

j = 1, 2, and for all t ∈ [ti, ti+1).

Case (ii): Note that for every t ∈ [ti, ti+1), vT (θ2, t) = VT (θ2, t) while vT (θ1, t) = vU (θ1, t), and hence

δvT (t) = VT (θ2, t)−vU (θ1, t). Subtracting and adding VT (θ1, t), we get that δvT (t) = δVT (t)+VT (θ1, t)−
vU (θ1, t). Since mp(θ1, t) = 0 ∀t ∈ [ti, ti+1), we have that vU (θ1, t) ≤ VT (θ1, t); hence (and by the former

equation) δvT (t) ≥ δVT (t). Integrating over t ∈ [ti, ti+1), the left inequality of (31) follows.

Next, by (2),

mp(θ2, ti+1) = mp(θ2, ti) +

∫ ti+1

ti

(
vU (θ2, t)− VT (θ2, t)

)
dt. (34)

Also, δvT (t) = vT (θ2, t) − vT (θ1, t) = VT (θ2, t) − vU (θ1, t) = VT (θ2, t) + δvU (t) − vU (θ2, t). Integrating

over t ∈ [ti, ti+1] and using (34), it follows that∫ ti+1

ti

δvT (t)dt =

∫ ti+1

ti

δvU (t)dt+mp(θ2, ti)−mp(θ2, ti+1). (35)

But mp(θ2, ti) = δmp(ti) (since mp(θ1, ti) = 0) and mp(θ2, ti+1) ≥ 0, hence the right inequality of (31)

follows.

Case (iii): The assumption that θ1 ≤ θ2 was used to define the difference terms δVT (t), δvT (t), and

δmp(t), but we observe that Equation (31) is true whether θ1 ≤ θ2 or θ2 ≤ θ1. Therefore, in case (iii),

(32) follows from Equation (31) of case (ii) by swapping θ1 with θ2.

Case (iv): For every t ∈ [ti, ti+1], vT (θ2, t) = vU2(θ2, t) and vT (θ1, t) = vU1(θ1, t), and therefore δvT (t) =

vU2
(θ2, t) − vT (θ1, t) = δvU2

(t) + vU2
(θ1, t) − vT (θ1, t). Integrating over t ∈ [ti, ti+1] and using (2) while

recalling that U2 = in(p2) ∈ in(T ), we get that∫ ti+1

ti

δvT (t)dt =

∫ ti+1

ti

δvU2
(t)dt+mp2

(θ1, ti+1)−mp2
(θ1, ti). (36)

But mp2(θ1, ti+1) ≥ 0, and mp2(θ2, ti) = 0 and hence mp2(θ1, ti) = −δmp2(ti); consequently, and by

(36), the left inequality of (33) follows. The right inequality is derivable by analogous arguments. This

completes the proof of Equations (30)-(33).

We next show that for every transition T and i = 1 = 0, 1, . . ., there exists a transition U such that∫ ti+1

0

δvT (t)dt ≤
∫ ti

0

δvU (t)dt+

∫ ti+1

ti

δVU (t)dt. (37)

Fix T and i = 0, 1, . . .. Then either one of the following two situations must arise: (I). Either case (i)

or (iii) occurs in the interval [ti, ti+1), and hence εT (θ1, t) = ∅ ∀t ∈ (ti, ti+1). (II). Either case (ii) or

(iv) occurs in the interval [ti, ti+1), and hence there exists a place p1 such that for every t ∈ (ti, ti+1),

p1 ∈ εT (θ1, t). Suppose that situation (II) arises, and let U1 := in(p1). Now the same reasoning is

applied to U1: either situation (I) or (II) arises in the interval [ti, ti+1). Again if situation (II) arises,

then there exists a place p2 such that for every t ∈ (ti, ti+1), p2 ∈ εU1(θ1, t). Continuing in this way, with

the notation U0 := T , we have the following: There exist sequences of transitions Uj and places pj+1,

j = 0, . . ., such that for every j, pj+1 ∈ εUj (θ1, t) ∀t ∈ (ti, ti+1), and Uj+1 = in(pj+1). By Assumption

3.9.3 these sequences must be finite, and the last transition, Uk (for some k ≥ 0), satisfies the condition

εUk
(θ1, t) = ∅ ∀t ∈ (ti, ti+1). Note that this includes the possible case where Uk is a source transition.

Now for j = 0, . . . , k − 1, either one of the above cases (ii) or (iv) applies, and by the right inequality of

the corresponding equation (31) or (33), we have that∫ ti+1

ti

δvUj (t)dt ≤ δmpj+1(ti) +

∫ ti+1

ti

δvUj+1(t)dt. (38)
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On the other hand, for Uk, either case (i) or (iii) applies, and correspondingly, (30) or the right inequality

of (32) imply that ∫ ti+1

ti

δvUk
(t)dt ≤

∫ ti+1

ti

δVUk
(t)dt. (39)

Summing up (38) over j = 0, . . . , k − 1, and using (39), we obtain,∫ ti+1

ti

δvU0(t)dt ≤
k−1∑
j=0

δmpj+1(ti) +

∫ ti+1

ti

δVUk
(t)dt. (40)

Observe that pj+1 ∈ out(Uj+1)∩in(Uj), and therefore, Equation (2) implies that δmpj+1(ti)−δmpj+1(0) =∫ ti
0
δvUj+1(t)dt −

∫ ti
0
δvUj (t)dt ∀j = 0, . . . , k − 1. Since by assumption θ is a parameter of the maximum

transitions’ firing speeds but not the initial marking, we have that δmpj+1
(0) = 0, and hence, δmpj+1

(ti) =∫ ti
0
δvUj+1(t)dt−

∫ ti
0
δvUj (t)dt. Using this in (40), it follows that∫ ti+1

ti

δvU0(t)dt ≤
∫ ti

0

δvUk
(t)dt−

∫ ti

0

δvU0(t)dt+

∫ ti+1

ti

δVUk
(t)dt. (41)

But U0 = T , and therefore (41) is (37) with U := Uk.

Next, recall that [0, tf ) = ∪i≥0[ti, ti+1). By a repeated application of (37), for every i ≥ 0, there exists a

transition Ui such that, ∫ tf

0

δvT (t)dt ≤
∑
i≥0

∫ ti+1

ti

δVUi(t)dt. (42)

For every transition T , letKT be the Lipschitz constant stipulated in Assumption 3.9.2, then,
∫ tf
0

|δVT (t)|dt ≤
KT (θ2−θ1). Let T denote the set of all transitions in the network, and define K :=

∑
T∈T KT . Equation

(42) implies that, for every transition T ,
∫ tf
0
δvT (t)dt ≤ K(θ2 − θ1). Notice that the analysis yielding

this inequality used the right inequalities of Equations (31)-(33); replicating the arguments using the left

inequalities instead, yields the inequality
∫ tf
0
δvT (t)dt ≥ −K(θ2 − θ1), and this implies that

|
∫ tf

0

δvT (t)dt| ≤ K(θ2 − θ1). (43)

By Equations (4) and (43), K is a Lipschitz constant for LT (θ). As for Lp(θ), Equation (2) implies that,

for every time t ∈ [0, tf ] and place p, with U := in(p) and T := out(p), δmP (t) =
∫ t

0

(
δvU (τ)−δvT (τ)

)
dτ .

Consequently, and by (43), |δmp(t)| ≤ 2K(θ2 − θ1), and hence, and by (5), 2tfK is a Lipschitz constant

for Lp(θ). This completes the proof. 2

Proof of Proposition 4.2. Recall that L(θ) is defined by (24). By Assumption 4.1.1, for every θ ∈ Θ, the

IPA derivative dL
dθ (θ) exists w.p.1. Therefore, it suffices to show that the random function L(θ) has a

Lipschitz constant with a finite first moment. That is what we now do.

Fix θ1 ∈ Θ and θ2 ∈ Θ such that θ2 ≥ θ1, and ∀t ∈ [0, tf ], define the notation δvj(t) := vj(θ2, t)−vj(θ1, t),
δVj(t) := Vj(θ2, t)− Vj(θ1, t), j = 1, 2, 3, and δmj(t) := mj(θ2, t)−mj(θ1, t), j = 1, 2. Now by (26) and

the flow equations (1) and (2), tracing through the system’s events reveals the following monotonicity

properties: for every t ∈ [0, tf ], δm2(t) ≤ 0, and δm1(t) ≥ 0. Next, by (25), m1(θ, t) rises by αn at each

time t = sn, and by (26), the resulting maximum contributions to−δm2(t) and δm1(t) is
V2,2−V2,1

V3
(θ2−θ1).

Therefore we have the following inequalities,

−
nf∑
n=0

αn
V2,2 − V2,1

V3
(θ2 − θ1) ≤ δm2(t) ≤ 0

≤ δm1(t) ≤
nf∑
n=0

αn
V2,2 − V2,1

V3
(θ2 − θ1), (44)
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where we recall that nf is the number of impulses V1(t) has in the interval [0, tf ]. Define K :=∑nf

n=1 αn
V2,2−V2,1

V3
. By (44) and (24), the term (C1 + C2)Ktf is a Lipschitz constant for L(θ). But

by Assumption 4.1.2 and the fact that
∫ tf
0
V1(t)dt =

∑nf

n=1 αn, this Lipschitz constant has a finite first

moment. 2
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