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Abstract

In this paper we present a decentralized algorithm to estimate the eigenvalues of the Laplacian matrix that encodes the
network topology of a multi-agent system. We consider network topologies modeled by undirected graphs. The basic idea is to
provide a local interaction rule among agents so that their state trajectory is a linear combination of sinusoids oscillating only
at frequencies function of the eigenvalues of the Laplacian matrix. In this way, the problem of decentralized estimation of the
eigenvalues is mapped into a standard signal processing problem in which the unknowns are the �nite number of frequencies
at which the signal oscillates.
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1 Introduction

Nowadays the research community is investing more and more e�ort in designing coordination and estimation
algorithms for networked multi-agent systems [2,5,9,17]. The network topology of a multi-agent system can be
e�ectively described by means of a graph, where nodes represent agents and edges represent couplings between them
[15]. The emergent behavior of such a system depends both on the interactions between agents and on the network
topology.

Algebraic graph theory [8] provides powerful tools to analyze a graph. As an example, the knowledge of the spectrum
of the Laplacian matrix associated to a graph can be used to estimate topological properties of an undirected graph,
e.g., algebraic connectivity, average degree, diameter, spectral gap, connectivity measures [14]. In the context of multi-
agent systems, this knowledge may also provide powerful insights into the dynamics of a networked control system.
As an example, as stated in [17], the algebraic connectivity, i.e., the second smallest eigenvalue, is a fundamental
parameter to estimate the worst case convergence rate of consensus algorithms and, more in general, of multi-agent
systems with local interactions described by the Laplacian matrix such as leader-follower networks [18].

Unfortunately, the spectrum of the Laplacian matrix is not readily computable in a distributed setting where the
network topology is unknown. In order to overcome this limitation, we have designed a local interaction rule so
that the resulting dynamical system oscillates only at frequencies corresponding to the eigenvalues of the Laplacian
matrix that encodes the network topology. In this way, the problem of estimating the eigenvalues is mapped into a
signal processing problem solvable independently by each agent in a decentralized fashion, using tools from signal
processing or system identi�cation theory.

Compared to the state of the art, discussed in detail in next section, our approach allows to estimate the full spectrum
of the symmetric Laplacian matrix without the need to estimate all the corresponding eigenvectors. Moreover our
approach provides an approximate estimation of the eigenvalues in �nite time.

The contributions of this paper are the following:

• We propose a novel local interaction rule to make the network state oscillate at frequencies corresponding to the
eigenvalues of the Laplacian matrix, thus mapping the decentralized eigenvalue estimation problem into a standard
signal processing problem. Thanks to persistent oscillations that carry the required information, standard system
identi�cation techniques can be adopted bypassing identi�cation issues raised by large-scale systems due to their
high system order.

• We extend [6] by characterizing analytically the amplitude and phase of the oscillations as function of the eigen-
vectors of the Laplacian and the initial conditions.

• We propose an improvement with respect to [6] so that no component at null frequency exists in the evolution of
the agents' state. The removal of the DC component allows the straightforward application of frequency estimation
algorithms such as the one in [4].

Related works

In [22] Zavlanos et al. investigated the problem of how to coordinate a network of mobile robots with position-
dependent topology so that the corresponding adjacency matrix has a given set of eigenvalues. This approach is
based on arti�cial potentials, function of the inter-agent distances, that allow a gradient descent algorithm to make
the network converge to a topology whose eigenvalues are the desired ones. In this preliminary paper the authors
consider the spectral moments related to the spectrum of the adjacency matrix to be known.

In [7] Franceschelli et al. presented a necessary and su�cient condition to verify observability and controllability of
a leader-follower network of mobile vehicles with unknown topology based on the algorithm in [6] and its extension
in this paper.

In [21] Yang et al. proposed a technique for the estimation of the second smallest eigenvalue of a weighted Laplacian
matrix based on the power iteration algorithm by the estimation of the corresponding eigenvector. In addition, the
authors discuss a decentralized control algorithm to maximize the algebraic connectivity. The idea is to let agents
move so that links are added or weights changed as two agents come closer.
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In [19] Sahai et al. presented an approach building on the idea of [6] for the application of clustering. The authors
propose a local interaction rule formally equivalent to the wave equation discretized in time and space and show
that the �wave equation method�, can be used to cluster a graph by estimating the sign of the coe�cients of the
discrete Fourier transform corresponding to the second smallest eigenvalue. Furthermore, their approach is superior
with respect to the convergence speed to the state of the art of eigenvector based clustering algorithms.

Finally, in [10] Kempe et al. are interested in computing in a decentralized way an approximation of the �rst k
eigenvectors of a symmetric matrix that encodes the network topology. Their algorithm takes inspiration from the
orthogonal iteration algorithm and assumes that the network topology is unknown to the nodes. This algorithm can
be adapted to our objective, i.e., the distributed estimation of the eigenvalues of the Laplacian matrix, by introducing
a distributed technique for the computation of the Rayleigh quotient.

2 Online Spectrum Estimation

Let us consider the interactions of a network of agents described by an undirected graph G = {V, E}, where V =
{1, . . . , n} is the set of agents and E ⊆ V × V is the set of edges: an edge ei,j exists between agents i and j if agent
i interacts with agent j.

Let Ni de�ne the neighborhood of agent i, namely the set of indices of the agents connected by an edge with agent
i. In particular, |Ni| = ∆i where ∆i is called degree of agent i. Let L be the Laplacian matrix of graph G, it is
a n × n matrix the elements of which are lij = ∆i if i = j, lij = −1 if j ∈ Ni and 0 otherwise. The Laplacian
matrix L of an undirected graph is symmetric by construction and thus all its eigenvalues are real. Furthermore, for
a connected graph, it has one null structural eigenvalue with corresponding eigenvector equal to the vector of ones
1n of appropriate dimensions, thus L1n = 0n. In addition, according to the Gershgorin disc theorem, a symmetric
Laplacian has all its eigenvalues located within [0, 2∆max], where ∆max is the maximum degree between the agents
in the graph.

We now present a decentralized algorithm to estimate the eigenvalues of the Laplacian matrix. The algorithm requires
each agent i to store two variables xi, zi ∈ R and apply a local update rule upon receiving the values of the equivalent
variables from its neighbors.

Algorithm 1 (Online Spectrum Estimation)

(1) Each agent sets t = 0 and chooses an initial condition uniformly at random xi(0), zi(0) ∈ {−1, 1}.
(2) Each agent simulates the following local interaction rule with its neighbors Ni(t){

ẋi(t) = zi(t) +
∑

j∈Ni
(zi(t)− zj(t)) ,

żi(t) = −xi(t)−
∑

j∈Ni
(xi(t)− xj(t)) .

(1)

(3) In a time window of length T , agent i estimates the frequencies of the sinusoids of which signal xi(t) is composed.
(4) The values of the frequencies estimated correspond to the eigenvalues of the Laplacian matrix L shifted by 1 and

are given as output. �

Note that Step 3 can be solved by several methods of signal processing or system identi�cation. In particular, the
required value of T depends on the chosen algorithm. In this paper, as discussed in Section 3, we exploit the method
presented in [4] to implement Algorithm 1.

The behavior of the network when all the agents update their state according to eq. (1) can be described as follows[
ẋ(t)

ż(t)

]
= A ·

[
x(t)

z(t)

]
, A =

[
0n×n I + L
−I − L 0n×n

]
(2)

where I is the n × n identity matrix and 0n×n is the null n × n matrix. Note that for any network topology A is
skew symmetric, i.e., AT = −A. In the following theorem, we prove that the eigenvalues of A can be analytically
derived from the eigenvalues of the Laplacian matrix L and they are all structurally purely imaginary.
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Lemma 1 Let G be an undirected graph with Laplacian L. Let matrix A be de�ned as in eq. (2). To any eigenvalue
λL of L it corresponds a couple of complex and conjugate eigenvalues λA, λ̄A of A, that is:

λA = j(1 + λL), λ̄A = −j(1 + λL),

while the corresponding eigenvectors vλA are function of the eigenvectors vλL of L

vλA =
[
vTλL

jvTλL

]T
, v̄λ̄A

=
[
vTλL

− jvTλL

]T
.

Proof: See Appendix A. �

By Lemma 1 it follows that the state of each agent has an oscillatory trajectory. Furthermore, as detailed by Theo-
rem 2, this trajectory is a linear combination of sinusoids oscillating only at frequencies function of the eigenvalues
of the matrix Laplacian. In the following we assume the Laplacian to have m distinct eigenvalues labeled as follows:
0 = λ1 < λ2 < · · · < λm.

Theorem 2 Let us consider a system described by eq. (2) relative to a network whose graph G is connected. Let
x(0) = x0 and z(0) = z0 be the state initial conditions. Let δ(·) be the Dirac's delta function. Let λj be an eigenvalue
of the Laplacian matrix L of graph G with algebraic multiplicity νj and let m be the number of distinct eigenvalues.

Let v1 be the unitary norm eigenvector corresponding to λ1 = 0, and v
(k)
j , k = 1, . . . , νj, be the νj unitary norm

eigenvectors associated to λj > 0. The module of the Fourier transform of the i-th state components xi(t) and zi(t),
i = 1, . . . , n, can be written as

|F [xi(t)]| = |Xi(f)| =
m∑
j=1

aj,i
2

δ

(
f ± 1 + λj

2π

)
,

|F [zi(t)]| = |Zi(f)| =
m∑
j=1

bj,i
2

δ

(
f ± 1 + λj

2π

)
,

where f is the frequency domain variable. In addition, the coe�cients aj,i and bj,i are given by

� For λ1 = 0

a1,i = v1(i) v
T
1 x(0) =

1
T
n x(0)

n
,

b1,i = v1(i) v
T
1 z(0) =

1
T
n z(0)

n
.

(3)

� For λj > 0

aj,i = bj,i =

√√√√√√√√
[∑νj

k=1

(
v
(k)
j (i)v

(k)
j

T
x(0)

)]2
+[∑νj

k=1

(
v
(k)
j (i)v

(k)
j

T
z(0)

)]2 . (4)

Proof: See Appendix B. �

The above theorem states the key result of this paper. In fact, it implies that each agent can independently solve
the problem estimating the eigenvalues by estimating the frequencies at which its own state variable xi(t) oscillates.

Remark 1 Few important remarks are now in order:

- The value of xi(t) can be seen as the output of the i-th agent. If the system is not observable from the output xi(t)
then some coe�cients aj are null and thus the corresponding mode cannot be detected by agent i.

- For each agent, the amplitude of the sinusoid oscillating at ω = λ1 = 1 corresponds to the instantaneous average
of the state variables. �
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The observability and controllability of a system, the dynamics of which are described by the Laplacian matrix,
have been studied in [12,13,1] from a graph theoretical point of view. In the following theorem we show that the
observability property of the Laplacian matrix is equivalent to that of system (2) given an appropriate output
matrix. The proposed method is capable of estimating all the eigenvalues corresponding to modes of system (2) that
are observable from the state of a given agent, therefore the following theorem characterizes when the method can
estimate all the eigenvalues.

Theorem 3 Let A be the matrix describing the group dynamics as in (2). Let C be a k × n output matrix, with
k ∈ N. Let

A =

[
0n×n I + L
−I − L 0n×n

]
and Ĉ =

[
C 0k×n

0k×n C

]
.

Let OA = O(A, Ĉ) and OL = O(L, C) be the observability matrices built with the corresponding matrices. Then:

Rank (OA) = 2Rank (OL) .

Proof: See Appendix C. �

Remark 2 We point out that information about the observability of the system is not required for the execution of
Algorithm 1. In [7] we proved that for a network of n agents, the estimation of n distinct eigenvalues by a single
agent is a su�cient and necessary condition for observability and by duality controllability of the network by the same
agent. Hence, if the number of agents n is known, each agent can verify the observability property of the network by
itself. �

We now state the main result of this paper that proves the correctness of Algorithm 1.

Theorem 4 Consider a connected network G of n agents that executes Algorithm 1. Let the initial conditions of
system (2) be not orthogonal to any eigenvector of matrix L. Let C = [0 . . . , 1, . . . , 0] be zero everywhere except for
the i-th unitary element, with i ∈ V . If O (L, C) is full rank, then agent i can estimate all the eigenvalues of the
Laplacian matrix.

Proof: Due to Lemma 1 all the eigenvalues of system (2) are purely imaginary and correspond to the eigenvalues of
the Laplacian matrix shifted by one. Furthermore, if the initial conditions are not orthogonal to all the eigenvectors
of L and O (L, C) is full rank as discussed in Theorem 3, then all the sinusoids corresponding to the system modes
have coe�cients strictly greater than zero. Thus by applying a frequency estimation algorithm to the signal xi(t),
for instance the one in [4], agent i can estimate the full spectrum of the Laplacian matrix by only observing its own
state evolution. �

It is relevant to point out that even if the system is not observable from a single agent perspective, it will always be
observable if matrix C is the identity matrix, i.e., if we consider all the information that agents locally retrieve.

3 Numerical implementation of the approach

The system in eq. (2) is a marginally stable linear system since all its eigenvalues lie on the imaginary axis. The
stability of a system with eigenvalues exactly on the imaginary axis is not considered to be robust because even
the slightest parameter uncertainties may render the system unstable. In our case there is no parameter uncertainty
because system (2) is based on the Laplacian matrix the elements of which depend only on the existence of links
between the agents. Thus, for any network topology system (2) can not be stable or unstable but only marginally
stable. Furthermore we point out that since no sensing/measurement is involved, no noise is generated from the
application of the local interaction rule.

In this paper, we implemented the approach in [4] to estimate the frequencies at which the signal oscillates. Further-
more we performed a spectral analysis by means of the Discrete Fourier Transform (DFT).
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figs/agents.eps

Fig. 1. Topology variation with respect to time for a network composed of 5 agents.

figs/spfigure4.eps

Fig. 2. Spectrogram of the time varying topology shown in Fig. 1 computed by the ith agent with respect to the output
associated to its state variable xi(t).

figs/ABC4.eps

Fig. 3. Spectrum of the time varying topology shown in Fig. 1 computed by the ith agent at time t = 4, t = 12, t = 20.

figs/eigenvalueestimation2.eps

Fig. 4. Eigenvalues estimated every T = 1 units of time by the approximate frequency estimation method in Subsection 3.1.
Note that the frequencies are shifted by 1 with respect to the eigenvalues of L in Table 1.

3.1 Approximate Frequencies Estimation Method

The problem of estimating the frequencies of a signal such as

y(t) =

n∑
i=1

Aisin(ωit+ ϕi) (5)

has been extensively studied in control theory via o�-line methods based on Fourier analysis tools and on-line
methods [11,16]. In this paper, the approximate frequency estimation algorithm in [4] has been implemented. It
allows to estimate the frequencies of a signal of the form in eq.(5) by assuming an upper bound nMax to the number
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t = 5 t = 15 t = 25

λL λ̂L λL λ̂L λL λ̂L

λ1 0 0 0 0 0 0

λ2 1.5857 1.5857 0.5188 0.5188 0.3819 0.3819

λ3 3.0000 2.9998 2.3111 2.3110 1.3819 1.3819

λ4 4.4142 4.4138 3.0000 2.9998 2.6180 2.6179

λ5 5.0000 4.9987 4.1700 5.1696 3.6180 3.6177

Table 1
Comparison between the actual spectrum of the Laplacian, denoted by λL, and the estimated spectrum, denoted by λ̂L of
the time varying topology shown in Fig. 1.

of existing frequencies to be available. The input of the algorithm is the sampling time Ts, an upper bound nMax of
the number of expected frequencies, and a measure of the approximation error Se. Furthermore, the length of the
time window considered must be greater than the largest period of the sinusoid with the smallest frequency.

The output of the algorithm is the number n of estimated frequencies and their values {1 + λL} and a �ag f the
value of which is true if the percentage error when reconstructing the signal with the estimated coe�cients �ts the
threshold Se, false otherwise. Note that, a great advantage of this algorithm is that the estimation can be worked
out in �nite time. If an observer with asymptotic convergence is required, the output of the algorithm described
above could be used as input for the algorithm proposed in [3].

3.2 Simulations with switching topology

In order to corroborate the mathematical results, simulations have been carried out by exploiting the 4th Order
Runge-Kutta Method (RK4) to simulate the system (2). Regarding the signal processing, let us recall that this can
be always carried out locally by each agent in spite of the particular technique adopted.

In the simulation, a network of agents the topology of which changes over time is considered. In detail, Fig. 1-a)
depicts the network topology at the time interval t ∈ [0, 6.4), Fig. 1-b) describes the network topology at the time
interval t ∈ [6.4, 12.9) and Fig. 1-c) describes the network topology at the time interval t ∈ [12.9, 20]. Each agent is
running the interaction rule described in eq. (1).

Fig. 2 shows the spectrogram of the time varying topology computed by the agent i with respect to its state variable

xi(t). The spectrogram was computed by this agent with fs =
100

2π
. The x and y axes of the spectrogram represent

respectively the time step and angular frequency, while the color of the spectral line describes the amplitude of the
frequency peaks, i.e., white means zero amplitude while black means an amplitude greater than 0.1.

Fig. 3 shows a section of the spectrogram at di�erent time steps, namely t = {4, 12, 20}, representing the spectrum
of the three network topologies taken into account.

To this example, we also applied the method in Section 3.1 to estimate the frequency of the sinusoids and thus the
eigenvalues of the Laplacian. The comparison between the eigenvalues of the Laplacian matrix of the time-varying
network topology in Fig. 1 and the estimated eigenvalues in Fig. 4 using the approximate frequency estimation method

in Subsection 3.1 is shown in Table 1. This method was implemented choosing as sampling frequency fs =
100

2π
that

is twenty times the maximum expected frequency in the signal. This frequency corresponds to the largest eigenvalue
of the Laplacian matrix plus one. The length of the time window used to computed each estimation is T = 1 sec,
which is the period of the slowest sinusoid.

3.3 Computational Cost

To study the computational cost of Algorithm 1 we adopt the metrics proposed in [10], i.e., we count the number
of communication rounds required to obtain an estimation with a certain accuracy. In this view, two important
aspects must be considered: (i) the proposed algorithm consists in a local interaction rule that is supposed to be
applied continuously; (ii) the required signal processing is carried out locally by an agent and several techniques
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can be adopted. Therefore, the computational cost analysis consists in the study of the cost of simulating the local
interaction rule and the cost of the signal processing. Since the study of the computational cost for the signal
processing required to estimate a discrete number of frequencies contained in a signal is not the scope of this paper
we focus our attention to the number of communication rounds required for the discrete time simulation of system (2)
by the agents to collect enough data for the consecutive signal processing. In particular, the simulation time needed
to collect a su�cient amount of data must be greater than the largest period of the sinusoid with the smallest
frequency, Tmin. By considering an accurate numerical simulation method such as the fourth order Runge-Kutta
method, 4 messages have to be exchanged between each agent and any of its neighbors to compute a sample of the
state trajectory. It follows that for each agent the rounds of communication required to collect a su�cient amount
of data can be bounded by 4 ·∆max · Tmin · fs, with ∆max the maximum degree in the network and fs the chosen
sampling frequency that has to be at least greater than twice the largest eigenvalue of the Laplacian, thus greater
than 2∆max, to avoid aliasing issues.

4 Conclusions

In this paper a decentralized algorithm to estimate the Laplacian spectrum of an undirected graph has been proposed.
Each agent interacts with its neighbors so that its state oscillates at the frequencies corresponding to the eigenvalues
of the Laplacian matrix that encodes the network topology. Therefore, the problem of estimating the eigenvalues
has been reduced to a simple and widely studied problem of signal processing which involves the estimation of the
discrete number of frequencies at which the generated signal is oscillating. A theoretical analysis of the proposed
technique along with numerical simulations has been provided.

References

[1] M. Mesbahi A. Rahmani, M. Ji and M. Egerstedt. Controllability of multi-agent systems from a graph-theoretic perspective. SIAM
Journal on Control and Optimization, 48(1):162�186, 2008.

[2] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Convergence in multiagent coordination, consensus, and �ocking.
In 44th IEEE Conference on Decision and Control and European Control Conference, 2005.

[3] D. Carnevale, S. Galeani, and A. Astol�. Hybrid observer for multi-frequency signals. In IFAC Workshop Adaptation and Learning

in Control and Signal Processing, volume 10, 2010.

[4] D. Carnevale, S. Galeani, and A. Astol�. Hybrid adaptive observer for multiple frequency estimation. In 50th IEEE Conf. Decision

and Control, 2011.

[5] J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions.
IEEE Transactions on Automatic Control, 51(8):1289�1298, 2006.

[6] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu. Decentralized laplacian eigenvalues estimation for networked multi-agent
systems. In 48th IEEE Conference on Decision and Control, 2009.

[7] M. Franceschelli, S. Martini, M. Egerstedt, A. Bicchi, and A. Giua. Observability and controllability veri�cation in multi-agent
systems through decentralized laplacian spectrum estimation. In 49th IEEE Conference on Decision and Control, 2010.

[8] C. Godsil and G. Royle. Algebraic graph theory. Springer, 2001.

[9] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE

Transactions on Automatic Control, 48(6):988 �1001, 2003.

[10] David Kempe and Frank McSherry. A decentralized algorithm for spectral analysis. Journal of Computer and System Sciences,
74(1):70 � 83, 2008.

[11] Hsu Liu, R. Ortega, and G. Damm. A globally convergent frequency estimator. IEEE Transactions on Automatic Control, 44(4):698
�713, 1999.

[12] S. Martini, M. Egerstedt, and A. Bicchi. Controllability decompositions of networked systems through quotient graphs. 47th IEEE

Conference on Decision and Control, 2008.

[13] Ji Meng and M. Egerstedt. Observability and estimation in distributed sensor networks. 46th IEEE Conference on Decision and

Control, 2007.

[14] Bojan Mohar. The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications, pages 871�898, 1991.

[15] A. Muhammad and M. Egerstedt. Connectivity graphs as models of local interactions. 43rd IEEE Conference on Decision and

Control, 1, 2004.

[16] G. Obregon-Pulido, B. Castillo-Toledo, and A. Loukianov. A globally convergent estimator for n-frequencies. IEEE Transactions

on Automatic Control,, 47(5):857 �863, 2002.

[17] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays. IEEE

Transactions on Automatic Control, 49:1520�1533, 2004.

8



[18] W. Ren. Consensus strategies for cooperative control of vehicle formations. Control Theory & Applications, IET, 1(2):505�512,
2007.

[19] T. Sahai, A. Speranzon, and A. Banaszuk. Hearing the clusters of a graph: A distributed algorithm. Automatica, 48(1):15 � 24,
2012.

[20] John R. Silvester. Determinants of block matrices. The Mathematical Gazette, 84(501):460 � 467, 2000.

[21] P. Yang, R. Freeman, G. Gordon, K. Lynch, S. Srinivasa, and R. Sukthankar. Decentralized estimation and control of graph
connectivity for mobile sensor networks. Automatica, 46(2):390�396, 2010.

[22] M.M. Zavlanos, V.M. Preciado, and A. Jadbabaie. Spectral control of mobile robot networks. In American Control Conference,
2011.

A Proof of Lemma 1

By de�nition, the eigenvalues of A are the solutions of

det(A− λI) = det

([
−λI I + L

−I − L −λI

])
= 0.

Since A is a block matrix whose blocks commute [20], then

det(A− λI) = det
(
λ2I − (I + L)2

)
. (A.1)

Now, denote λL the generic eigenvalue of the matrix Laplacian, it is det(L − λLI) = 0. By adding and subtracting
the identity matrix and exploiting the fact that the eigenvalues of the square of a matrix are squared, we obtain
det((I + L)2 − (1 + λL)

2
I) = 0. Thus, by (A.1), it is λ2 = − (1 + λL)

2
and λ = ±j (1 + λL). Therefore, to each

eigenvalue of the Laplacian matrix L it corresponds two imaginary and conjugate eigenvalues of matrix A denoted
by λA and λ̄A, so that

λA = j (1 + λL) , and λ̄A = −j (1 + λL) ,

thus proving the �rst statement. Now, by de�nition, the eigenvectors of A relative to λA are solutions of[
0n×n I + L
−I − L 0n×n

]
·

[
v′

v′′

]
= λA

[
v′

v′′

]

for which a possible solution is vA = [vTλL
jvTλL

]T . The same argument holds for the conjugate eigenvalue λ̄A =

−j (1 + λL) for which a possible solution is v̄A = [vTλL
− jvTλL

]T .

B Proof of Theorem 2

When referring to the eigenvalues and eigenvectors of L, λL,j and vλL,j
for j = 1, . . . , n, we drop the subscripts L

and λL, respectively, and refer to them as λj and vj for j = 1, . . . , n. By Lemma 1 to each Laplacian eigenvalue
λj it corresponds a couple of pure imaginary eigenvalues of A equal to λA, λ̄A = ±j (1 + λj). Therefore, the state
trajectory xi(t) of each agent is a linear combination of sinusoids whose amplitudes and phase shifts are function of
the initial conditions and of the graph topology.

Now, we compute the coe�cients of the module of the Fourier transform of xi(t). Since A is skew symmetric, it
is a normal matrix. Due to the Spectral Theorem it is always diagonalizable through a unitary matrix 1 and all
the eigenvalues have geometric multiplicity equal to their algebraic multiplicity. Thus A can be decomposed as
A = V DV ∗, where D is diagonal with elements arranged as D = diag{jλ1, . . . , jλn, −jλ1, . . . , −jλn}, and V
is a complex matrix whose columns are the eigenvectors of A. Furthermore, applying Lemma 1, matrix V is

V =

[
v1 v2 . . . vn v1 v2 . . . vn

jv1 jv2 . . . jvn −jv1 −jv2 . . . −jvn

]
.

1 A unitary matrix U is a complex matrix such that U∗U = UU∗ = I, where U∗ is the complex conjugate of U .
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In the following it is assumed that vj , j = 1, . . . , n, are normalized eigenvectors such that ∥vj∥ = 1 and V V ∗ = I.
Thus ∥∥∥∥α[vTj jvTj

]T∥∥∥∥ = 1, α ∈ R.

By simple manipulations we �nd α = 1√
2
. The state trajectories of the system are captured by the matrix exponential

which in our case takes the form eAt = V eDtV ∗.
It follows that the state trajectory of xi(t) and zi(t) have the following form

xi(t) =
n∑

j=1

[
vj(i)

(
cos((1 + λj) t)v

T
j x(0)

+ sin((1 + λj) t)v
T
j z(0)

)]
,

zi(t) =
n∑

j=1

[
vj(i)

(
− sin((1 + λj) t)v

T
j x(0)

+ cos((1 + λj) t)v
T
j z(0)

)]
.

Thus, according to the notation of Theorem 2, by simple manipulations we can obtain the expression for the
coe�cients aj,i and bj,i associated to the eigenvalue λj for the i-th agent stated in eq. (3) and eq. (4), proving the
theorem.

C Proof of Theorem 3

Let OA = O(A, Ĉ), OI+L = O(I + L, C) and OL = O(L, C) be the observability matrices of the corresponding
matrices. It can be shown by row permutation that:

Rank (OA) =

Rank




OI+L 0n×n

OI+L(I + L)n 0n×n

0n×n OI+L

0n×n OI+L(I + L)n




hence it also holds that

Rank (OA) = Rank

([
OI+L 0n×n

0n×n OI+L

])
from which it follows that Rank (OA) = 2Rank (OI+L).

Finally, by noticing that the eigenvalues of the matrices OI+L and OL are related as λI+L = 1 + λL and share the
same eigenvectors, from the PBH observability test it follows that

Rank (OL) = Rank (OI+L) = 2Rank (OL) .
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