
Supervisory Control of Petri Nets with Language Specifications∗

Alessandro Giua

Dip. di Ing. Elettrica ed Elettronica, Università di Cagliari, Italy

Email: giua@diee.unica.it

Abstract

In this chapter we discuss how Petri nets can be used in the framework of supervisory

control theory. A discrete event system is defined in such a theory as a language generator:

this motivates the need to start the chapter with a short but self-contained introduction to

Petri net languages. We consider the monolithic supervisory design that requires to construct

the concurrent composition of the plant with the specification, to check this structure for

controllability and nonblockingness, and eventually to refine it. We show how Petri nets can

be used within this approach and show that while the procedure can always be applied to

bounded nets, in the case of unbounded Petri nets it may not be possible to obtain a Petri

net supervisor.

NOTE: A correction to the notion of ”uncontrollable marking” given in this paper as

Definition 7, and a modified proof of Theorem 3 that takes into account the corrected notion,

can be found in: B. Lacerda, P.U. Lima, ”On the Notion of Uncontrollable Marking in

Supervisory Control of Petri Nets,” IEEE Trans. on Automatic Control, Vol. 59, No. 11, pp.

3069-3074, Nov. 2014.

∗Published as: A. Giua, Supervisory control of Petri nets with language specifications, in Control of Discrete-

Event Systems: Automata and Petri Net Perspectives, C. Seatzu, M. Silva, J.H. van Schuppen (Eds), Lecture

Notes in Control and Information Science, Vol. 433, pp. 235-256, Springer, 2012.

1

1 Introduction

In this chapter, we study Petri nets (PNs) as language generators and we show how PNs can

be used for supervisory control of discrete event systems under language specifications.

Supervisory control, originated by the work of Ramadge and Wonham [13], is a system

theory approach that has been gaining increasing importance because it provides a unify-

ing framework for the control of Discrete Event Systems (DESs). A general overview of

Supervisory Control has been presented in Chapter ??.

In the original work of Ramadge and Wonham finite state machines (FSMs) were used

to model plants and specifications. FSMs provide a general framework for establishing fun-

damental properties of DES control problems. They are not convenient models to describe

complex systems, however, because of the large number of states that have to be introduced

to represent several interacting subsystems, and because of the lack of structure. More effi-

cient models have been proposed in the DES literature. Here the attention will be drawn to

Petri net models.

PNs have several advantages over FSMs. Firstly, PNs have a higher language complexity

than FSM, since Petri net languages are a proper superset of regular languages. Secondly,

the states of a PN are represented by the possible markings and not by the places: thus they

give a compact description, i.e., the structure of the net may be maintained small in size

even if the number of the markings grows1. Thirdly, PNs can be used in modular synthesis,

i.e., the net can be considered as composed of interrelated subnets, in the same way as a

complex system can be regarded as composed of interacting subsystems.

Although PNs have a greater modeling power than FSMs, computability theory shows

that the increase of modeling power often leads to an increase in the computation required

to solve problems. This is why a section of this paper focuses on the decidability properties

of Petri nets by studying the corresponding languages: note that some of these results are

original and will be presented with formal proofs. It will be shown that Petri nets represent

a good trade-off between modeling power and analysis capabilities

The chapter is structured as follows. In Section 1 Petri net generators and languages

are defined. In Section 2 the concurrent composition operator on languages is defined and

extended to an operator on generators. In Section 3 it is shown how the classical monolithic

supervisory design can be carried out using Petri net models. Finally, in Section 4 some

issues arising from the use of unbounded PNs in supervisory control are discussed.

2 Petri Nets and Formal Languages

This section provides a short but selfstanding introduction to Petri net languages. PN

languages represents an interesting topic within the broader domain of formal language

theory but there are few books devoted to this topic and the relevant material is scattered in

several journal publications. In this section and in the following we focus on the definition

of Petri net generators and operators that will later be used to solve a supervisory control

problem.

2.1 Petri Net Generators

Definition 1. A labeled Petri net system (or Petri net generator) [7, 12] is a quadruple

G = (N, ℓ,m0, F) where:

• N = (P, T,Pre,Post) is a Petri net structure with |P| = m and |T | = n;

1However, we should point out that many analysis techniques for Petri nets are based on the construction of

the reachability graph, that suffers from the same state explosion problem typical of automata. To take advantage

of the compact PN representation, other analysis techniques (e.g. structural) should be used.

2

t1

p1 p2 a

t2

p3 b

(a)

t1

p2 a

t2

p3 a

(b)

t1

p2 a

t2

p3 a

(c)

t1

p2 a

t2

p3 λ

(d)

Figure 1: PN generators of Example 1

• ℓ : T → E ∪ {λ} is a labeling function that assigns to each transition a label from the

alphabet of events E or assigns the empty word2 λ as a label;

• m0 ∈ Nn is an initial marking;

• F ⊂ Nn is a finite set of final markings.

Three different types of labeling functions are usually considered.

• Free labeling: all transitions are labeled distinctly and none is labeled λ, i.e., (∀t, t′ ∈

T) [t 6= t′ =⇒ ℓ(t) 6= ℓ(t′)] and (∀t ∈ T) [ℓ(t) 6= λ].

• λ-free labeling: no transition is labeled λ.

• Arbitrary labeling: no restriction is posed on ℓ.

The labeling function may be extended to a function ℓ : T ∗ → E∗ defining: ℓ(λ) = λ and

(∀t ∈ T, ∀σ ∈ T ∗) ℓ(σt) = ℓ(σ)ℓ(t).

Example 1. Consider the nets in Fig. 1 where the label of each transition is shown below

the transition itself. Net (a) is a free-labeled generator on alphabet E = {a, b}. Nets (b) and

(c) are λ-free generators on alphabet E = {a}. Net (d) is an arbitrary labeled generator on

alphabet E = {a}. �

Three languages are associated with a generator G depending on the different notions of

terminal strings.

• L-type or terminal language:3 the set of strings generated by firing sequences that reach

a final marking, i.e.,

LL(G) = {ℓ(σ) | m0 [σ〉 mf ∈ F}.

• G-type or covering language or weak language: the set of strings generated by firing

sequences that reach a marking m covering a final marking, i.e.,

LG(G) = {ℓ(σ) | m0 [σ〉 m ≥ mf ∈ F}.

• P-type or prefix language:4 the set of strings generated by any firing sequence, i.e.,

LP (G) = {ℓ(σ) | m0 [σ〉 }.

2While in other parts of this book the empty string is denoted ε, in this section we have chosen to use the

symbol λ for consistency with the literature on PN languages.
3This language is called marked behavior in the framework of Supervisory Control and is denoted Lm(G).
4This language is called closed behavior in the framework of Supervisory Control and is denoted L(G).

3

t1
t2

p1 p3

t3

p2

a b

c

Figure 2: Free-labeled generator G of Example 2

Example 2. Consider the free-labeled generator G in Fig. 2. The initial marking, also

shown in the figure, is m0 = [1 0 0]T . Assume the set of final markings is F = {[0 0 1]T }.

The languages of this generator are:

LL(G) = {amcbm | m ≥ 0};

LG(G) = {amcbn | m ≥ n ≥ 0};

LP (G) = {am | m ≥ 0} ∪ {amcbn | m ≥ n ≥ 0}.

�

2.2 Deterministic generators

A deterministic PN generator [7] is such that the word of events generated from the initial

marking uniquely determines the marking reached.

Definition 2. A λ-free generator G is deterministic iff for all t, t′ ∈ T , with t 6= t′, and for

all m ∈ R(N,m0): m [t〉 ∧m [t′〉 =⇒ ℓ(t) 6= ℓ(t′).

According to the previous definition, in a deterministic generator two transitions sharing

the same label may never be simultaneously enabled and no transition may be labeled by

the empty string. Note that a free-labeled generator is also deterministic. On the contrary, a

λ-free (but not free labeled) generator may be deterministic or not depending on its structure

and also on its initial marking.

Example 3. Consider generators (b) and (c) in Fig. 1: they have the same net structure

and the same λ-free labeling, but different initial marking. The first one is deterministic,

because transitions t1 and t2, sharing label a can never be simultaneously enabled. On the

contrary, the second one is not deterministic, because reachable marking [1 1 0]T enables

both transitions t1 and t2: as an example, the observed word aa may be produced by two

different sequences yielding two different markings





2

0

0



 [t1〉





1

1

0



 [t1〉





0

2

0



 or





2

0

0



 [t1〉





1

1

0



 [t2〉





1

0

1



 .

�

The previous definition of determinism was introduced in [18] and used in [7, 12]. It may

be possible to extend it as follows.

Definition 3. A λ-free generator G is deterministic iff for all t, t′ ∈ T , with t 6= t′, and for

all m ∈ R(N,m0): m [t〉 ∧m [t′〉 =⇒ [ℓ(t) 6= ℓ(t′)] ∨ [Post(·, t) − Pre(·, t) = Post(·, t′) −

Pre(·, t′)].

4

Lf → Ld → L → Lλ

↑ ↑

Gf → Gd → G → Gλ

↑ ↑ ↑ ↑

Pf → Pd → P → Pλ

Table 1: Known relations among classes of Petri net languages. An arc → represents the set

inclusion

With this extended definition, we accept as deterministic a generator in which two transi-

tions with the same label may be simultaneously enabled at a marking m, provided that the

two markings reached from m by firing t and t′ are the same. Note that with this extended

definition, while the word of events generated from the initial marking uniquely determines

the marking reached it does not necessarily uniquely determines the sequences that has fired.

2.3 Classes of Petri Net Languages

The classes of Petri net languages are denoted as follows.

• Lf (resp. Gf , Pf) denotes the class of terminal (resp. covering, prefix) languages gen-

erated by free-labeled PN generators.

• Ld (resp. Gd, Pd) denotes the class of terminal (resp. covering, prefix) languages gen-

erated by deterministic PN generators.

• L (resp. G, P) denotes the class of terminal (resp. covering, prefix) languages generated

by λ-free PN generators.

• Lλ (resp. Gλ, Dλ, Pλ) denotes the class of terminal (resp. covering, prefix) languages

generated by arbitrary labeled PN generators.

Fig. 1 shows the relationship among these classes. Here A → B represents a strict set

inclusion A (B.

While a formal proof of all these relations can be found in [1], we point out that the rela-

tions on each line — that compare the same type of languages of nets with different labeling

— are rather intuitive. Additionally, one readily understand that any P-type language of

a generator G may also be obtained as a G-type language defining as set of final markings

F = {~0}.

Parigot and Peltz [10] have defined PN languages as regular languages with the additional

capability of determining if a string of parenthesis is well formed.

If we consider the class L of PN languages, it is possible to prove [12] that L is a strict

superset of regular languages and a strict subset of context-sensitive languages. Furthermore

L and the class of context-free languages are not comparable. An example of a language

in L that is not context-free: L = {ambmcm | m ≥ 0}. An example of a language that is

context-free but is not in L: L = {wwR | w ∈ E∗}5 if |E| > 1.

All these results are summarized in Fig. 3. Note that the class Ld, although contained in

L, occupies the same position of L in the hierarchy shown in the figure.

In the framework of Supervisory Control, we will assume that the generators considered

are deterministic. In particular, class Ld (or possibly Gd for unbounded nets) will be used to

describe marked languages, while class Pd will be used to describe closed languages. There

are several reasons for this choice.

• Systems of interest in supervisory control theory are deterministic.

5The string wR is the reversal of string w.

5

Recursively enumerable

Context sensitive

Context free Regular L

Figure 3: Relations among the class L and other classes of formal languages

• Although each class of deterministic languages here defined is strictly included in the

corresponding class of λ-free languages, it is appropriate to restrict our analysis to

deterministic generators. In fact, several properties of interest are decidable for deter-

ministic nets while they are not for λ-free nets [1, 11, 18]

• In [1] it was shown that the classes Gd and Ld are incomparable, and furthermore

Gd ∩Ld = R, where R is the class of regular languages. Hence taking also into account

the G-type language (in addition to the L-type language) one extends the class of

control problems that can be modeled by deterministic unbounded PNs.

2.4 Other classes of Petri net languages

Gaubert and Giua [1] have explored the use of infinite sets of final markings in the definition

of the marked behavior of a net. With each more or less classical subclass of subsets of Nm

— finite, ideal (or upper), semi-cylindrical, star-free, recognizable, rational (or semilinear)

subsets — it is possible to associate the class of Petri net languages whose set of accepting

states belongs to the class.

When comparing the related Petri net languages, it was shown that for arbitrary or

λ-free PN generators, the above hierarchy collapses: one does not increase the generality

by considering semilinear accepting sets instead of the usual finite ones. However, for free-

labeled and deterministic PN generators, it is shown that one gets new distinct subclasses

of Petri net languages, for which several decidability problems become solvable.

3 Concurrent Composition and System Structure

In this section we recall the definition of the concurrent composition operator on languages

and introduce the corresponding operator on nets.

Definition 4 (Concurrent composition of languages). Given two languages L1 ⊆ E∗
1 and

L2 ⊆ E∗
2 , their concurrent composition is the language L on alphabet E = E1 ∪ E2 defined

as follows:

L = L1 ‖ L2 = { w ∈ E∗ | w ↑E1
∈ L1, w ↑E2

∈ L2 }

where w ↑Ei
denotes the projection of word w on alphabet Ei, for i = 1, 2.

We now consider the counterpart of this language operator on a net structure.

Definition 5 (Concurrent composition of PN generators). Let G1 = (N1, ℓ1,m0,1, F1) and

G2 = (N2, ℓ2,m0,2, F2) be two PN generators. Their concurrent composition, denoted also

G = G1 ‖ G2, is the generatorG = (N, ℓ,m0, F) that generates LL(G) = LL(G1) ‖ LL(G2)

and LP (G) = LP (G1) ‖ LP (G2).

The structure of G may be determined with the following procedure.

6

t1

p1 p2

t2

a

a

p3 p4

b

t3 a

t4

(t1,t3)

p1 p2 p3 p4
b

a

t4

a (t2,t3)

G1 G2

G

Figure 4: Two generators G1, G2 and their concurrent composition G of Example 4

Algorithm 1. Let Pi, Ti and Ei (i = 1, 2) be the place set, transition set, and the alphabet

of Gi.

• The place set P of N is the union of the place sets of N1 and N2, i.e., P = P1 ∪ P2.

• The transition set T of N and the corresponding labels are computed as follows.

– For each transition t ∈ T1 ∪ T2 labeled λ, a transition with the same input and

output bag of t and labeled λ belongs to T .

– For each transition t ∈ T1 ∪ T2 labeled e ∈ (E1 \E2) ∪ (E2 \E1), a transition with

the same input and output bag of t and labeled e belongs to T .

– Consider a symbol e ∈ E1 ∩E2 and assume it labels m1 transitions Te,1 ⊆ T1 and

m2 transitions Te,2 ⊆ T2. Then m1 × m2 transitions labeled e belong to T . The

input (output) bag of each of these transitions is the sum of the input (output) bags

of one transition in Te,1 and of one transition in Te,2.

• m0 = [mT
0,1 mT

0,2]
T .

• F is the cartesian product of F1 and F2, i.e., F = {[mT
1 mT

2]
T | m1 ∈ F1,m2 ∈ F2}.

The composition of more than two generators can be computed by repeated application of

the procedure. Note that while the set of places grows linearly with the number of composed

systems, the set of transitions and of final markings may grow faster.

Example 4. Let G1 = (N1, ℓ1,m0,1, F1) and G2 = (N2, ℓ2,m0,2, F2) be the two generators

shown in Fig. 4. Here F1 = {[1 0]T } and F2 = {[1 0]T , [0 1]T }. Their concurrent composition

G = G1 ‖ G2 is also shown in Fig. 4. The initial marking of G is m0 = [1 0 1 0]T and its

set of final markings is F = {[1 0 1 0]T , [1 0 0 1]T }.

�

4 Supervisory Design Using Petri Nets

In this section we discuss how Petri net models may be used to design supervisors for language

specifications within the framework of Supervisory Control. The design of a supervisor in

the framework of automata was presented in Chapter ?? and we assume the reader is already

familiar with this material.

4.1 Plant, specification and supervisor

Here we comment some of the assumptions that are peculiar to the PN setting.

7

• The plant is described by a deterministic PN generator G on alphabet E. Its closed

language is L(G) = LP (G) while its marked6 language is Lm(G) = LL(G). We assume

such a generator is nonblocking, i.e., LL(G) = LP (G).

The transition set of G is partitioned as follows T = Tc ∪ Tuc, where Tc are the

controllable transitions that can be disabled by a control agent, while Tuc are the un-

controllable transitions. Note that this allows a generalization of the automata settings

where the notion of controllability and uncontrollability is associated to the events.

In fact, it is possible that two transitions, say t′ and t′′, have the same event label

ℓ(t′) = ℓ(t′′) = e ∈ E but one of them is controllable while the other one is not. In the

rest of the chapter, however, we will not consider this case and assume that the event

alphabet may be partitioned as E = Ec ∪ Euc where

Ec =
⋃

t∈Tc

ℓ(t), Euc =
⋃

t∈Tuc

ℓ(t) and Ec ∩ Euc = ∅.

It is also common to consider plants composed bym PN generatorsG1, . . . ,Gm working

concurrently. The alphabets of these generators are E1, . . . , Em. The overall plant is a

PN generator G = G1 ‖ · · · ‖ Gm on alphabet E = E1 ∪ · · · ∪Em.

• The specification is a language K ⊂ Ê∗, where Ê ⊂ E is a subset of the plant

alphabet. Such a specification defines a set of legal words on E given by {w ∈ E∗ |

w ↑
Ê
∈ prefix(K)}.

The specification K is represented by a deterministic nonblocking PN generator H on

alphabet Ê whose marked language is Lm(H) = LL(H) = K. As for the plant, other

choices for the marked language are possible.

• The supervisor is described by a nonblocking PN generator S on alphabet E. It runs

in parallel with the plant, i.e., each time the plant generates an event e a transition

with the same label is executed on the supervisor. The control law computed by S

when its marking is m is given by g(m) = Euc ∪ {e ∈ Ec | (∃t ∈ Tc)m[t〉, ℓ(t) = e}.

4.2 Monolithic Supervisor Design

Themonolithic supervisory design requires three steps. In the first step, a coarse structure for

a supervisor is synthesized by means of concurrent composition of the plant and specification.

In the second step, the structure is analyzed to check if properties of interest (namely, the

absence of uncontrollable and blocking states) hold. In the third step, if the properties do

not hold, this structure is trimmed to avoid reaching undesirable states.

Algorithm 2 (Monolithic supervisory design). We are given a plant G and a specification

H.

1. Construct by concurrent composition the generator J = G ‖ H .

2. Determine if the generator J satisfies the following properties:

• nonblockingness, i.e., it does not contain blocking markings from which a final

marking cannot be reached;

• controllability, i.e., it does not contain uncontrollable markings such that when G

and H run in parallel an uncontrollable event is enabled in G but is not enabled

in H.

If J satisfies both properties, then both H and J are suitable supervisors.

6While in the case of bounded nets the L-type language can describe any marked language, in the case of

unbounded generators other choices for the marked language are possible considering the G-type language of the

generator or even any other type of terminal languages as mentioned in § 2.4. This will be discussed in Section 5.

8

3. If J contains blocking or uncontrollable markings, we have to trim it to obtain a non-

blocking and controllable generator S. The generator S obtained through this procedure

is at the same time a suitable maximally permissive supervisor and the corresponding

closed-loop system.

In the previous algorithm, the generator J constructed in step 1 represents the largest

behavior of the plant that satisfies all the constraints imposed by the specifications. More

precisely, its closed language

L(J) = {w ∈ E | w ∈ L(G), w ↑
Ê
∈ L(H)}

represents the behavior of the plant restricted to the set of legal words, while its marked

behavior

Lm(J) = {w ∈ E | w ∈ Lm(G), w ↑
Ê
∈ Lm(H)}

represents the marked behavior of the plant restricted to the set of legal words marked by

the specification.

In step 2 we have used informally the term ”blocking marking” and ”uncontrollable

marking”. We will formally define these notions in the following.

We first define some useful notation. The structure of the generators is J = (N, ℓ,m0, F),

G = (N1, ℓ1,m0,1, F1), and H = (N2, ℓ2,m0,2, F2), where N = (P, T, Pre,Post) and Ni =

(Pi, Ti,Prei,Posti), (i = 1, 2). We define the projection of a marking m of N on net Ni,

(i = 1, 2), denoted m ↑i, is the vector obtained from m by removing all the components

associated to places not present in Ni.

We first present the notion of a blocking marking.

Definition 6. A marking m ∈ R(N,m0) of generator J is a blocking marking if no final

marking may be reached from it, i.e., R(N,m) ∩ F = ∅. The generator J is nonblocking if

no blocking marking is reachable.

We now present the notion of an uncontrollable marking.

Definition 7. Let Tu ⊆ T be the set of uncontrollable transitions of J . A marking m ∈

R(N,m0) of generator J is uncontrollable if there exists an uncontrollable transition t ∈ Tu

that is enabled by m ↑1 in G but that is not enabled by m ↑2 in H. The generator J is

controllable if no uncontrollable marking is reachable.

Determining if a generator J is nonblocking and controllable is always possible, as we

will show in the next section. We also point out that for bounded nets this test can be done

by construction of the reachability graph7 as in the following example of supervisory design.

Example 5. Consider the generators G1 and G2, and the specification H in Fig. 5 (left).

Note that all nets are free-labeled, hence we have an isomorphism between the set of tran-

sitions T and the set of events E: in the following each transitions will be denoted by the

corresponding event.

G1 describes a conveyor that brings in a manufacturing cell a raw part (event a) that

is eventually picked-up by a robot (event b) so that a new part can enter. G2 describes a

machine that is loaded with a raw part (event c) and, depending on the operation it performs,

may produce parts of type A or type B (events d or e) before returning to the idle state.

The set of final states of both generators consists of the initial marking shown in the figure.

The specification we consider, represented by the generator H , describes a cyclic opera-

tion process where a robot picks-up a raw part from the conveyor, loads it on the machine

7As we have already pointed out, the construction of the reachability graph suffers from the state explosion

problem. An open area for future research is the use of more efficient analysis techniques (e.g., structural) to

check nonblockingness and controllability for language specification.

9

G1

a

p1

b

p2 p4

e

G2

b

c d

p6

p7

p5

H

c

p3

d

a

b

p2

e

c

p6 p7

J

p3

p4

p1

p5

d

Figure 5: Left: Systems G1,G2 and specification H for the control problem of Example 5.

Right: System J = G1 ‖ G2 ‖ H

[1 0 1 0 1 0 0] [0 1 1 0 1 0 0]

[1 0 1 0 0 1 0]

[1 0 0 1 0 0 1]

[1 0 1 0 0 0 1]

a

b

a

a

a

c c

e e

d d

[0 1 1 0 0 0 1]

[0 1 0 1 0 0 1]

[0 1 1 0 0 1 0]

a

b

p2

c

p6

p7

S

p3

p4

p1

p5

d

Figure 6: Left: Reachability graph of generator J of Example 5. Right: the structure of the

trim generator S of Example 6

and after recognizing that a part of type A has been produced repeats the process. The set

of final states consists of the initial marking shown in the figure.

The overall process is G = G1 ‖ G2 and the generator J = G ‖ H, is shown in Fig. 5

(right). Its set of final states consists of the initial marking shown in the figure.

Assume now that the controllable transition/event set is Ec = {a, c, d, e} and the uncon-

trollable transition/event set is Eu = {b}.

It is immediate to show that generator J is blocking and uncontrollable. To show this

we have constructed the reachability graph of J in Fig. 6. The two markings shown in thick

boxes are blocking because from them it is impossible to reach the initial marking (that is

also the unique final marking). The three markings shaded in grey are uncontrollable: in

fact, in all these markings m(p2) = 1, i.e., uncontrollable transition b is enabled in the plant

G, while m(p5) = 0, i.e., b is not enabled in H . �

10

4.3 Trimming

Once the coarse structure of a candidate supervisor is constructed by means of concurrent

composition, we need to trim it to obtain a nonblocking and controllable generator.

The next example shows the problems involved in the trimming of a net.

Example 6. Let us consider the generator J constructed in Example 5.

Refining the PN to avoid reaching the undesirable markings shown in Fig. 6 is complex.

First, we could certainly remove the transition labeled by e since its firing always leads to

an undesirable state and it is controllable. After removal of this transition, the transition

labeled by a will be enabled by the following reachable markings: m′ = [1 0 1 0 1 0 0]T ,m′′ =

[1 0 1 0 0 1 0]T ,m′′′ = [1 0 0 1 0 0 1]T . We want to block the transition labeled a when the

markings m′′ and m′′′ are reached. Since

m′(p5) = 1 > m′′(p5) = m′′′(p5) = 0,

we can add an arc from p5 to a and from a to p5 as in Fig. 6. �

The following algorithm can be given for the trimming of a net.

Algorithm 3. Let t be a transition to be controlled, i.e., a transition leading from an ad-

missible marking to an undesirable marking. Let e be its label.

1. Determine the set of admissible reachable markings that enable t, and partition this set

into the disjoint subsets Ma (the markings from which t should be allowed to fire), and

Mna (the markings from which t should not be allowed to fire, to avoid reaching an

undesirable marking). If Ma = ∅ remove t and stop, else continue.

2. Determine a construct in the form:

U(m) = [(m(p11) ≥ n1
1) ∧ . . . ∧ (m(p1k1) ≥ n1

k1)]∨

. . .

∨[(m(pl1) ≥ nl
1) ∧ . . . ∧ (m(plkl) ≥ nl

kl)],

such that U(m) = TRUE if m ∈ Ma, and U(m) = FALSE if m ∈ Mna.

3. Replace transition t with l transitions t1, . . . , tl labeled a. The input (output) arcs of

transition tj , j = 1, . . . , l, will be those of transition t plus n
j
i arcs inputting from

(outputting to) place p
j
i , i = 1, . . . , kj.

It is clear that following this construction there is an enabled transition labeled e for

any marking in Ma, while none of these transitions are enabled by a marking in Mna. We

also note that in general several constructs of this form may be determined. The one which

requires the minimal number of transitions, i.e., the one with the smallest l, is preferable.

The following theorem gives a sufficient condition for the applicability of the algorithm.

Theorem 1. The construct of Algorithm 3 can always be determined if the net is bounded.

Proof. For sake of brevity, we prove this result for the more restricted class of conservative

nets. One should keep in mind, however, that given a bounded non conservative net, one

can make the net conservative adding dummy sink places that do not modify its behavior.

A net is conservative if there exists an integer vector Y > ~0 such that for any two markings

m and m′ reachable from the initial marking Y Tm = Y Tm′. Hence if m 6= m′ there exists

a place p such that m(p) > m′(p). Also the set of reachable markings is finite.

On a conservative net, consider mi ∈ Ma, mj ∈ Mna. We have that Ma and Mna are

finite sets and also there exists a place pij such that mi(pij) = nij > mj(pij). Hence

U(m) =
∨

i∈Ma





∧

j∈Mna

(m(pij) ≥ nij)





is a construct for Algorithm 3.

11

Unfortunately, the construct may contain up to |Ma| OR clauses, i.e., up to |Ma| tran-

sitions may be substituted for a single transition to control. Note, however, that it is often

possible to determine a simpler construct as in Example 6, where the construct for the

transition labeled a was U(m) = [m(p5) ≥ 1].

5 Supervisory control of unbounded PN generators

As we have seen in the previous section, the monolithic supervisory design presented in

Algorithm 2 can always be applied when the plant G and the specification H are bounded

PN generators. Here we consider the case of general, possibly unbounded, generators.

In step 1 of the monolithic supervisory design algorithm the unboundedness of the G or

H does not require any special consideration, since the procedure to construct the concurrent

composition J = G ‖ H is purely structural in the PN setting. Thus we need to focus on

the last two steps, and discuss how it is possible to check if an unbounded generator G is

nonblocking and controllable, and eventually how it can be trimmed.

We have previously remarked that in the case of bounded nets the L-type language can

describe any marked language. In the case of unbounded generators other choices for the

marked language are possible considering the G-type language of the generator or even any

other type of terminal language mentioned in § 2.4.

In the rest of this section we will only consider two types of marked languages for a PN

generator G.

• L-type language, i.e., Lm(G) = LL(G). This implies that the set of marked markings

reached by words in Lm(G) is F = F , i.e., it coincides with the finite set of final

markings associated to the generator.

• G-type marked language, i.e., Lm(G) = LG(G). This implies that the set of marked

markings reached by words in Lm(G) is

F =
⋃

mf∈F

{m ∈ Nm | m ≥ mf},

i.e., it is the infinite covering set of F .

5.1 Checking nonblockingness

We will show in this subsection that checking a generator for nonblockingness is always

possible.

Let us first recall the notion of home space.

Definition 8. A marking m ∈ Nm of a Petri net is a home-marking if it is reachable from

all reachable markings.

A set of markings M ⊆ Nm of a Petri net is a home space if for all reachable marking m

a marking in M is reachable from m.

The following result is due to Johnen and Frutos Escrig.

Proposition 1 ([8]). The property of being a home space for finite unions of linear sets8

having the same periods is decidable.

We can finally state the following original result.

Theorem 2. Given a generator J constructed as in step 1 of Algorithm 2 it is decidable if

it is nonblocking when its marked language is the L-type or G-type language.

8We say that E ⊆ Nm is a linear set if there exists some v ∈ Nm and a finite set {v1, · · · ,vn} ⊆ Nm such that

E = {v′ ∈ Nm | v′ = v +
∑

n

i=1
kivi with ki ∈ N}. The vector v is called the base of E , and v1, · · · ,vn are called

its periods.

12

Proof. Let F be the set of marked markings of the generator. According to Definition 6

generator J is nonblocking iff from every reachable markings m a marked marking in F is

reachable. Thus checking for nonblockingness is equivalent to checking if the set of marked

markings F is a home space.

When the marked language is the L-type language, F = F and we observe that each

marking mf can be considered as a linear set with base mf and empty set of generators.

When the marked language is the G-type language,

F =
⋃

mf∈F

{m ∈ Nm | m ≥ mf} = {mf +

m
∑

i=1

kiei | ki ∈ N}

where vectors ei are the canonical basis vectors, i.e., ei ∈ {0, 1}n, with ei(i) = 1 and ei(j) = 0

if i 6= j.

In both cases F is the finite unions of linear sets having the same periods, hence checking

if it is a home space is decidable by Proposition 1.

5.2 Checking controllability

We will show in this subsection that checking a generator for controllability is always possible.

The material presented in this subsection is original and proofs of all results will be given.

We first present some intermediate result.

Lemma 1. Let 〈N,m0〉 be a marked net with N = (P, T,Pre,Post) and |P| = m. Given a

marking m̄ ∈ Nm and a place p̄ ∈ P , we define the set

S(m̄, p̄) = {m ∈ Nm | m(p̄) = m̄(p̄), (∀p ∈ P \ {p̄}) m(p) ≥ m̄(p)}

of those markings that are equal to m̄ in component p̄ and greater than or equal to m̄ in all

other components.

Checking if a marking in this set is reachable in 〈N,m0〉 is decidable.

Proof. To prove this result, we reduce the problem of determining if a marking in S(m̄, p̄)

is reachable to the standard marking reachability problem of a modified net.

Consider in fact net N ′ = (P ′, T ′,Pre′,Post′) obtained from N as follows. P ′ = P ∪

{ps, pf}; T ′ = T ∪ {tf} ∪ {tp | ∀p ∈ P \ {p̄}}. For p ∈ P and t ∈ T it holds Pre′(p, t) =

Pre(p, t) and Post′(p, t) = Post(p, t), while the arcs incident on the newly added places

and transitions are described in the following. Place ps is self-looped with all transitions

in T , i.e., Pre′(ps, t) = Post′(ps, t) = 1 for all t ∈ T . Place pf is self-looped with all new

transitions tp, for all p ∈ P \{p̄}. Transition tf has an input arc from place ps and an output

arc to place pf ; furthermore it has m̄(p) input arcs from any place p ∈ P \ {p̄}. Finally, for

all p ∈ P \ {p̄} transition tp is a sink transition with a single input arc from place p.

We associate to N ′ an initial markingm′
0 defined as follows: for all p ∈ P , m′

0(p) = m0(p),

while m′
0(ps) = 1 and m′

0(pf) = 0. Such a construction is shown in Fig. 7 where the original

net N with set of places P = {p̄, p′, . . . , p′′} and set of transitions T = {t1, ldots, tn} is shown

in a dashed box. Arcs with starting and ending arrows represent self-loops.

We claim that a marking in the set S(m̄, p̄) is reachable in the original net if and only if

marking m′
f is reachable in 〈N ′,m′

0〉, where m′
f (p̄) = m̄(p̄), m′

f (pf) = 1 and m′
f (p̄) = 0 for

p ∈ P ′ \ {p̄, pf}.

This can be proved by the following reasoning. The evolution of net N ′ before the firing

of tf mimics that of N . Transition tf may only fire from a marking greater than or equal to

m̄ in all components but eventually p̄. After the firing of tf , the transitions of the original

net are blocked (ps is empty) and only the sink transitions tp, for all p ∈ P \ {p̄}, may fire

thus emptying the corresponding places. The only place whose markings cannot change after

the firing of tf is p̄.

13

p’
t1

p’’

tn

p

ps

tp’ tp’’

pf

�

_

m(p’) m(p’’)

_ _

tf

. . .

. . .

. . .

. . .

Figure 7: Construction of Lemma 1

Theorem 3. Given a generator J = G ‖ H constructed as in step 1 of Algorithm 2 it is

decidable if it is controllable.

Proof. We will show that the set of uncontrollable markings to be checked can be written as

the finite union of sets of the form S(m̄, p̄).

Given an uncontrollable transition t ∈ Tuc let PG(t) (resp., PH(t)) be the set of input

places of t that belong to generator G (resp., H). Consider now a place p ∈ PH(t) and

an integer k ∈ {0, 1, . . . , P re(p, t) − 1} and define the following marking mt,p,k such that

mt,p,k(p) = k,mt,p,k(p
′) = Pre(p′, t) if p′ ∈ PG(t), elsemt,p,k(p

′) = 0. Clearly such a marking

is uncontrollable because the places in G contain enough tokens to enable uncontrollable

transition t while place p in H does not contain enough tokens to enable it. All other

markings in S(mt,p,k, p) are equally uncontrollable.

Thus the overall set of uncontrollable markings to be checked can be written as the finite

union
⋃

t∈Tuc

⋃

p∈PH(t)

⋃

k∈{0,1,...,Pre(p,t)−1}

S(mt,p,k, p)

and by Lemma 1 checking if an uncontrollable marking is reachable is decidable.

5.3 Trimming a blocking generator

The problem of trimming a blocking net is the following: given a deterministic PN generator

G with languages Lm(G) and L(G) ⊃ Lm(G) one wants to modify the structure of the net

to obtain a new DES G′ such that Lm(G′) = Lm(G) and L(G′) = Lm(G′) = Lm(G).

On a simple model such as a state machine this may be done, trivially, by removing all

states that are reachable but not coreachable (i.e., no final state may be reached from them)

and all their input and output edges.

On Petri net models the trimming may be more complex. If the Petri net is bounded, it

was shown in the previous section how the trimming may be done without major changes

of the net structure, in the sense that one has to add new arcs and eventually duplicate

transitions without introducing new places. Here we discuss the general case of possibly

unbounded nets.

When the marked language of a net is its L-type Petri net language, the trimming of the

net is not always possible as will be shown by means of the following example.

Example 7. Let G be the deterministic PN generator in Fig. 8 (left), with m0 = [1 0 0 0]T

and set of final markings F = {[0 0 0 1]T}. The marked (L-type) and closed behaviors

of this net are: Lm(G) = {ambamb | m ≥ 0} and L(G) = {ambanb | m ≥ n ≥ 0}. The

infinite reachability graph of this net is partially shown in Fig. 8 (right): here the unique

final marking is shown in a box.

14

[1 0 0 0]

a
[1 1 0 0]

a
[1 2 0 0]

a

[0 0 1 0]

a
[0 1 1 0]

a
[0 2 1 0]

a

[0 0 0 1] [0 1 0 1] [0 2 0 1]

b

b

b

b

b

b

t1

t2

p1 p3

t3

p2

a a

b b
p4

t4

Figure 8: Left: Blocking net of Example 7: Right: Its labeled reachability graph

One sees that all markings of the form [0 k 0 1]T with k ≥ 1 are blocking. To avoid reach-

ing a blocking marking one requires that p2 be empty before firing the transition inputting

into p4. However, since p2 is unbounded this cannot be done with a simple place/transition

structure. �

It is possible to prove formally that the prefix closure of the marked language of the

net discussed in Example 7 is not a P-type Petri net language. The proof is based on the

pumping lemma for P-type PN languages, given in [7].

Lemma 2. (Pumping lemma). Consider a PN language L ∈ P. Then there exist numbers

k, l such that any word w ∈ L, with | w |≥ k, has a decomposition w = xyz with 1 ≤| y |≤ l

such that xyiz ∈ L, ∀i ≥ 1.

Proposition 2. Consider the L-type PN language L′ = {ambamb | m ≥ 0}. Its prefix closure

L = L′ is not a P-type Petri net language.

Proof. Given k according to the pumping lemma, consider the word w = akbakb ∈ L.

Obviously, there is no decomposition of this word that can satisfy the pumping lemma.

When the marked language of a net is its G-type Petri net language, the trimming of the

net is always possible because the prefix closure of such a language is a deterministic P-type

Petri net language. This follows from next theorem, that provides an even stronger result.

Theorem 4. [4] Given a deterministic PN generator G = (N, ℓ,m0, F) with LG(G) (

LP (G), there exists a finite procedure to construct a new deterministic PN generator G
′

such that LG(G
′) = LG(G) and LP (G

′) = LG(G
′).

5.4 Trimming an uncontrollable generator

In this section we show by means of an example that given a PN generator J = G ‖ H

obtained by concurrent composition of a plant and of a specification, it is not always possible

to trim it removing the uncontrollable markings.

Example 8. Consider a plant G described by the PN generator on the left of Fig. 8 (in-

cluding the dashed transition and arcs). We are interested in the closed language of the net,

so we will no specify a set of final markings F : all reachable markings are also final. We

assume Tuc = {t1, t3, t5}, i.e., Euc = {a}.

Consider a specification H described by the PN generator on the left of Fig. 9 (excluding

the dashed transition and arcs).

On the right of Fig. 9 we have represented the labeled reachability graph of G (including

the dashed arcs labeled a on the bottom of the graph) and the labeled reachability graph of

H (excluding the dashed arcs labeled a on the bottom of the graph). Now if we consider

the concurrent composition J = G ‖ H and construct its labeled reachability graph, we

obtain a graph isomorphic to the labeled graph of generator H (only the labeling of the

nodes changes).

15

[1 0 0 0]

a
[1 1 0 0]

a
[1 2 0 0]

a

[0 0 1 0]

a
[0 1 1 0]

a
[0 2 1 0]

a

[0 0 0 1] [0 1 0 1] [0 2 0 1]

b

b

b

b

b

b

t1

t2

p1 p3

t3

p2

a a

b b p4

t4

t5 a

a a a

Figure 9: Left: Generators of Example 8. Right: Their labeled rechability graphs

All markings of the form [0 k 0 1]T with k ≥ 1 are uncontrollable: in fact, when the plant

is in such a marking the uncontrollable transition t5 labeled a is enabled, while no event

labeled a is enabled on J . If we remove all uncontrollable markings, we have a generator

whose closed language is L = {ambamb | m ≥ 0} that, however, as shown in Proposition 2,

is not a P-type language. �

Based on these results in [3] the following result was proven.

Theorem 5. The classes Pd, Gd and Ld of PN languages are not closed under the supremal

controllable sublanguage operator9.

5.5 Final remarks

The results we have presented in this section showed that in the case of unbounded PN

generators a supervisor may not always be represented as a PN. In fact, while it is always

possible to check a given specification for nonblockingness and controllability — even in the

case of generators with an infinite state space — when these properties are not satisfied the

trim behavior of the closed loop system may not be represented as a net. A characterization

of those supervisory control problems that admit PN supervisors is an area still open to

future research.

6 Further readings

The book by Peterson [12] contains a good introduction to PN languages, while other relevant

results can be found in [18, 10, 11, 7, 1, 16].

Many issues related to PNs as discrete event models for supervisory control have been

discussed in the survey by Holloway et al. [5] and in the works of Giua and DiCesare [3, 4].

The existence of supervisory control policies that enforce liveness have been discussed by

Sreenivas in [15, 17].

Finally, an interesting topic that has received much attention in recent years is the super-

visory control of PNs under a special class of state specifications called Generalized Mutual

Exclusion Constraints (GMECs) that can be enforced by controllers called monitor places

[2]. Several monitor based techniques have been developed for the control of Petri nets with

uncontrollable and unobservable transitions and good surveys can be found in [9, 6].

References

[1] Gaubert, S., Giua, A.: Petri net languages and infinite subsets of Nm. In: Journal of

Computer and System Sciences 59:373-391 (1999)

9See Chapter 3 for a formal definition of this operator.

16

[2] Giua, A., DiCesare, F., Silva, M.: Generalized Mutual Exclusion Constraints for Nets

with Uncontrollable Transitions. In: Proc. IEEE Int. Conf. on Systems, Man, and

Cybernetics (Chicago, USA), 974-799 (1992)

[3] Giua, A., DiCesare, F.: Blocking and controllability of Petri nets in supervisory control.

In: IEEE Transactions on Automatic Control 39(4): 818-823 (1994)

[4] Giua, A., DiCesare, F.: Decidability and closure properties of weak Petri net languages

in supervisory control. In: IEEE Transactions on Automatic Control 40(5):906-910

(1995)

[5] Holloway, L.E., Krogh, B.H., Giua, A.: A Survey of Petri Net Methods for Controlled

Discrete Event Systems. In: Discrete Event Dynamic Systems, 7:151-190 (1997).

[6] Iordache, M.V., Antsaklis, P.J.: Supervision Based on Place Invariants: A Survey. In:

Discrete Event Dynamic Systems, 16:451–492 (2006)

[7] Jantzen, M.: Language theory of Petri nets. In: Petri Nets: Central Models and Their

Properties, Advances in Petri Nets, Lecture Notes in Computer Science 254-I, Brauer,

W., Reisig, W., Rozenberg, G. (Editors), Springer Verlag, New York, pp: 397-412

(1987)

[8] Johnen, C., Frutos Escrig, D.: Decidability of home space property. In: LRI 503, Univ.

d’Orsay (1989)

[9] Moody, J.O.. Antsaklis, P.J.: Supervisory Control of Discrete Event Systems Using

Petri Nets. Kluwer (1998)

[10] Parigot, M., Pelz, E.: A logical formalism for the study of finite behaviour of Petri

nets. In: Advances in Petri Nets, Lecture Notes in Computer Sciences 222, Springer

Verlag, New York, pp: 346-361 (1985)

[11] Pelz, E.: Closure properties of deterministic Petri net languages. In: Proc. STACS

1987, Lecture Notes in Computer Sciences 247, Springer Verlag, New York, pp: 373-

382 (1985)

[12] Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Engle-

wood Cliffs, NJ (1981)

[13] Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. In: Proceedings

of the IEEE 77(1):81-98 (1989)

[14] Reutenauer, C.: The Mathematics of Petri Nets. Masson and Prentice-Hall (1990)

[15] Sreenivas, R.S.: On the existence of supervisory policies that enforce liveness in discrete-

event dynamic systems modeled by controlled Petri nets. In: IEEE Transactions on

Automatic Control 42(7):928-945 (1997)

[16] Sreenivas, R.S.: On minimal representations of Petri net languages. In: IEEE Trans-

actions on Automatic Control 51(5):799- 804 (2006)

[17] Sreenivas, R.S.: On the Existence of Supervisory Policies That Enforce Liveness in Par-

tially Controlled Free-Choice Petri Nets. In: IEEE Transactions on Automatic Control

57(2):435-449 (2012)

[18] Vidal-Naquet, G.: Deterministic Petri net languages. In: Application and Theory of

Petri Net, Girault, C., Reisig, W. (Editors), Informatick-Fachberichte 52, Springer

Verlag, New York (1982)

17

