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Abstract

In this paper we propose a new decentralized algorithm to solve the consensus on the average

problem on sensor networks through a gossip algorithm based on broadcasts. We directly extend previous

results by not requiring that the digraph representing the network topology is balanced. Our algorithm

is an improvement respect to known gossip algorithms based on broadcasts in that the average of the

initial state is preserved after each broadcast. The nodes are assumed to know their out-degree anytime

they transmit information.
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I. INTRODUCTION

In recent years a great effort has been directed to the study of the consensus problem — i.e.

the problem of making the scalar states of a set of agents converge to the same value under local

communication constraints [1], [2], [3], [4], [5], [6] — and of its many applications. One of such

applications, namely wireless sensor networks and in general peer-to-peer networks, is now the

focus of a huge amount of research in many disciplines of information technology. The reason

why the distributed average problem has received great attention is that it allows to achieve tasks

with a minimum overhead of communication since it requires only local information exchange

between nodes directly connected, i.e. no routing is needed and so no congestion due to network

traffic is generated. One of the networks in which this is desirable is the internet in which the

availability of information on the average of local quantities generated by users behavior is of

great relevance for statistical analysis, marketing, security and so on. If such objectives can be

achieved without unnecessarily overloading network nodes and user bandwidth the relevance of

such algorithms becomes clear.

A different kind of networks are wireless embedded sensor networks, intended to be composed

of a huge number of cheap wireless sensors scattered around a target, be it a city, a forest, a

war field or a polluted area. By definition if a wireless sensor is to be cheap it has to consume

very little power for achieving its task and to this end the ability to retrieve the average of the

measurements with only local packet exchange is of great relevance.

Many previous works on the consensus problem and gossip algorithms [2], [4], [5], [6], [7],

[8], [9], [10], [11] are based on bidirectional communications and so represent the network

through an undirected graph, possibly with a switching topology. In [8] a study of convergence

times of gossip algorithms based on pairwise random communications is presented for different

network topologies. In [10] consensus on the average in presence of intermittent links and noise

is addressed. In [11] the problem of designing the topology to maximize the rate of convergence

of average consensus is addressed taking into account communication costs and constraints.

The requirement of bidirectional communications requires synchronization between transmitter

and receiver and some overhead required by the communication protocols like acknowledgments.

Furthermore even if a set of nodes can communicate between each other, communications are

inherently sequential and pairwise if they are not done in the form of broadcasts. An attempt



to use broadcasts in the distributed average problem has been made with gossip algorithms, the

tradeoff of this approach is that agreement is only reached in the form of a random variable

whose expectation corresponds to the average of the initial measurements and whose shape is

deeply affected by the sequence in which the nodes perform broadcasts.

A different approach to this issue is the use of distributed Kalman filtering based on consensus

[12], [13]. A couple of years ago this problem was solved by adapting the optimal Kalman gain

of such filter with respect to the outflow of each node [14] to achieve consensus on the average

on arbitrary strongly connected digraphs. The proposed technique was time-variant and proposed

as a decentralized iterative algorithm with synchronized updates. In this paper, that is a journal

version of [15], we propose an alternative approach based on gossip.

In [2] the study of consensus on digraphs was motivated by reduction in communication costs.

Unfortunately the conclusion of the authors was that consensus on the average is achievable only

for balanced digraphs, i.e. graphs in which the in-degree and out-degree of each node are the

same.

Starting from this, we developed a new algorithm, with the same feature of Laplacian-based

consensus, that can achieve the same objective for the wider class of arbitrary digraphs. This

generalizes the consensus problem and allows a consistent reduction of complexity since it allows

the use of only broadcasting as communication mean.

Furthermore wireless sensor networks are usually required to perform tasks more complex than

just computing the average of some quantity. We argue that an algorithm that allows consensus

on directed graphs can actually be implemented as simple and small "overhead" on normal

communication between the sensors. For instance with the ZigBee protocol for wireless networks

we have packets with a maximum payload of around 104 bytes, which it is clearly much more

than what is required to just send a scalar integer value of 16 bits. We argue that such consensus

protocol could have a more meaningful and real application if thought as network overhead for

distributed estimation purposes that does not actually "increase" the load in the network. Since

no specific acknowledge or response is required, no dedicated communication is required and

only the usual communication due to data transfer between nodes for other purposes is needed.

With the previous assumption while the nodes use only mono-directional communications, they

always know their out-degree.

Finally, the proposed algorithm poses new theoretical questions on stability of gossip al-



gorithms since it is an instance of gossip algorithm in which local interactions are based on

asymmetric, non-contractive matrices with possibly both positive and negative elements taken

from a set all the products of which converge [16].

Note that, even if a formal proof of convergence of the algorithm we propose is missing, a

series of simulations are presented to illustrate the effectiveness of the approach. In particular,

different network topologies have been considered that are scalable in the number of nodes,

and for such topologies the dependence of the convergence times upon the number of nodes is

shown. Finally, the paper presents a series of simulations to compare the proposed algorithm

with other gossip algorithms known in the literature.

The structure of the paper is as follows. In Section II some background on graph theory

and the notation used in the paper is introduced. In Section III the main contribution of this

paper is presented, namely an algorithm to solve the consensus on the average problem using

asynchronous broadcasts. In Section IV the convergence properties of the proposed algorithm

are discussed. In Section V the results of several numerical simulations are presented. In Section

VI the concluding remarks are given.

II. PROBLEM STATEMENT

We model the network of agents as a directed graph G(t) = {V,E(t)}, with V = {1, . . . , n}

the set of nodes (or vertices) that represent the agents, E(t) ⊆ {V ×V } the time varying edge set

that encodes the network topology, (i, j) ∈ E(t) if and only if agent i may receive information

from agent j at time t. In the following directed edges from j to i are considered to have their

"tail" in j and the "head" in i.

The graph can be encoded through its n× n adjacency matrix

A(t) = {ai,j(t)} with ai,j(t) =

 1 if (i, j) ∈ E(t);

0 otherwise.

The in-degree of a node corresponds to the number of "heads" incident in such node while

the out-degree is the number of "tails" incident on it.

We define the two n× n matrices

∆in(t) = diag (δin,1(t), . . . , δin,n(t))



and

∆out(t) = diag (δout,1(t), . . . , δout,n(t))

where δin,i and δout,i, for i = 1, . . . , n, are respectively the in-degree and out-degree of node i.

The Laplacian of a time-varying digraph is defined as

L(t) = ∆in(t)− A(t). (1)

It is a positive semi-definite matrix and weak diagonally row dominant. Defining 0 and 1 column

vectors whose n elements are all, respectively, zeros and ones, we have that L(t)1 = 0 by

construction.

To each node i for i = 1, . . . , n is associated a scalar xi(t) with an arbitrary initial value

xi(0) = xi0.

Furthermore we define the set of neighbors of node i as Ni(t) = {j : (j, i) ∈ E} and with

|Ni(t)| its cardinality. We point out that since the graph is directed, node i may be a neighbor

of node j while node j is not a neighbor of node i.

Note that the underlying topology of the network is deterministic and specifies the edges that

may be selected by the gossip algorithm at any time. What is random is the selection of the

node that performs a broadcast, involving only the edges connected to it. So at any time instant

the interaction topology is a set of neighbors of the broadcaster node which is taken at random.

Our objective is to find a decentralized control law that satisfies the network topology con-

straints given by G(t) and achieves consensus on the average on the initial states.

III. CONSENSUS ON THE AVERAGE ON ARBITRARY DIGRAPHS

In our approach we associate to each node i for i = 1, . . . , n, in addition to xi(t) on which value

a consensus on the average is sought, a companion variable zi(t) with initial value zi(0) = 0.

In the following we study a gossip algorithm based on mono-directional communications. Each

node at each instant of time is then either transmitting information, receiving information or in

an idle state.

RULE 1, Transmitter state update, node i xi(t+ 1) = xi(t),

zi(t+ 1) = 0.
(2)



RULE 2, Receiver state update, node j ∈ Ni(t) xj(t+ 1) =
xj(t)+xi(t)

2
+ 0.5zj(t) +

zi(t)
2δout,i(t)

,

zj(t+ 1) =
xj(t)−xi(t)

2
+ 0.5zj(t) +

zi(t)
2δout,i(t)

.
(3)

RULE 3, Idle nodes, k ̸= i, k ̸∈ Ni(t) xk(t+ 1) = xk(t),

zk(t+ 1) = zk(t).
(4)

Algorithm 1 (Extended Gossip based on Broadcasts (EGB)):

1) Let t=0, let x(0) = x0 and z(0) = 0.

2) A node i at random executes RULE 1

3) Each node j ∈ Ni(t) that listens to the broadcast applies RULE 2.

4) All the other nodes k ̸= i, k ̸∈ Ni(t) keep their state variable and their companion variable

constant (RULE 3).

5) Let t = t+ 1 and go back to step 2. �

These interaction rules can be explained in simple words.

• The transmitter node i broadcasts its state value xi to all nodes j ∈ Ni. In doing so, it

knows its out-degree and it also broadcasts the value zi(t)/δout,i(t) by dividing the value of the

companion variable by the number of nodes that receive the information. The transmitter node

i does not change its value of xi(t) while it resets to 0 the companion variable zi(t).

• The receiver nodes update their xj(t) variable by computing the average between their and

the received state value. Furthermore they correct their update by a fraction of their companion

variable zj(t) and a fraction of the companion variable of the transmitter node zi(t). The

receiver nodes update their companion variable by adding up several terms, designed to preserve

the average of the network at each iteration while converging to the average of the initial

measurements.

The sequence of nodes that perform the broadcast at the different time instants t ∈ N defines

a signal I(t). As an example if node 3 is the transmitter node at time t = 0 then I(0) = 3.

Assume that at time t node i = I(t) performs a broadcasts, the interaction topology at time t

is represented by a graph Gi(t), obtained from G(t) removing all arcs whose tail is not node i.



We let Ai(t), ∆in,i(t) and Li(t) denote, respectively, the incidence matrix, the in-degree matrix

and the Laplacian of this graph.

Let us define

Pi(t) = I − 0.5Li(t), Γ̂i(t) =
Ai(t)

2δout,i(t)
+ 0.5∆in(t),

Γi(t) =
Ai(t)

2δout,i(t)
− 0.5∆in(t) + (I − eie

T
i ),

where I is the identity matrix and ei is the i-th canonical basis vector of dimension n.

We denote

Ci(t) =

 Pi(t) Γ̂i(t)

I − Pi(t) Γi(t)

 . (5)

Under the decentralized state update rule (2), (3) and (4), the system dynamics at time t, is: x(t+ 1)

z(t+ 1)

 = Ci(t)

 x(t)

z(t)

 , i = I(t). (6)

Remark 1: In this paper it is assumed that at each instant of time each node has a strictly

positive probability of broadcasting its state to the neighboring nodes. This assumption is to

model the inherent asynchrony of wireless communications between sensor nodes. The results

on the convergence properties of algorithms developed with this assumption hold for any deter-

ministic scheduling of the communications between the nodes because the order in which the

updates are performed is not relevant to the stability of the equilibrium point of the algorithm.

We point out that at each time instant t only the broadcaster node i has to know the number

of local neighbors |Ni|, which correspond to its out-degree at time t. The most trivial case in

which such assumption holds is when the sensor network is not just executing a distributed

average algorithm but is also providing other services that require the knowledge of the network

topology. Our algorithm reduces the resources dedicated to the distributed average algorithm by

not requiring acknowledgements to the transmitted information and fully exploits dense proximity

networks by using broadcasts.

The main difference between the proposed algorithm and other consensus algorithms based

on broadcasts is that in our approach convergence toward the exact initial average is ensured.

In the other cases presented in the literature the consensus state is not the initial average of the

measurements, but it may be any value inside the convex hull spanned by the initial conditions

in the network depending on the sequence of broadcasts [17], [18].



Furthermore given that the sensor network is distributed in space, any pair of nodes sufficiently

far apart can perform a broadcast while not interfering with each other. The inherent parallelism

of the network is fully exploited and is expected to greatly improve the convergence time of the

proposed algorithm. Nonetheless in this paper we focus our attention in studying the stability of

the equilibrium point of the algorithm leaving the study of its convergence time to future work.

�
In the following, for simplicity of explanation the dependence of Ci from t will be omitted.

IV. ALGORITHM CONVERGENCE PROPERTIES

In this section we study the convergence properties of the algorithm. We first characterize the

eigenstructure of matrices Ci and then we present a conjecture on the convergence to consensus.

Proposition 1: Ci is idempotent for any i = 1, . . . , n.

Proof: Using the general identities A2
i = Ai∆in,i = 0 and ∆in,iAi = Ai, one can readily

verify that for all i = 1, . . . , n it holds C2
i = Ci. �

Since Ci is idempotent, its eigenvalues are always either 0 or 1. Unfortunately since it is not

symmetric, it represents an oblique projection which does not result in a contractive matrix in

general.

We observe, however, that the system is conservative.

Proposition 2: System (6) evolves on the hyperplane

1Tx(t) + 1Tz(t) = 1Tx(0) + 1Tz(0).

Proof: For all i = 1, . . . , n, the row vector [1T 1T ] is a left eigenvector for matrix Ci

associated to eigenvalue 1, because it holds [1T 1T ]Ci = [1T (Pi+I−Pi) 1
T (Γ̂i+Γi)] = [1T 1T ].

�
Since the system is autonomous and the companion initial state can be arbitrary chosen, we

select z(0) = 0. With such assumption we obtain that the information about the average of

the initial state is preserved despite communications are mono-directional and asynchronous. In

particular, if there exists a time t in which z(t) = 0, then at that time t it holds 1Tx(t) = 1Tx(0).

In the following we provide an analysis of the equilibrium states of the proposed algorithm

and corroborate the conjectured asymptotic stability of the equilibrium states by simulations.



Let us now consider the equilibrium points.

Proposition 3: The consensus state in which x(t) = α1 for some scalar α and z(t) = 0 is

an equilibrium state for system (6).

Proof: For all i = 1, . . . , n, the column vector [1T 0T ]T is a right eigenvector for matrix

Ci associated to eigenvalue 1, because it holds

Ci(t)

 1

0

 =

 Pi1

(I − Pi)1

 =

 1

0

 ,

due to the Laplacian property L1 = 0. �
We now consider the null space of the consensus matrices.

Proposition 4: For all i = 1, . . . , n, the kernel of Ci(t) has dimension dim(Ker(Ci)) =

|Ni(t)|+ 1.

Proof: It can be shown that the multiplicity of the null eigenvalue of Ci is |Ni(t)| + 1. A

set of linearly independent eigenvectors that form a basis of the null space are:

• for j ∈ Ni a vector vj = [eTj − eTj ]
T ;

• a vector v̂i = [x̂T
i ẑTi ]

T with

x̂i(j) =

 1 if j ∈ Ni,

0 otherwise

and

ẑi(j) =


−2δout,i if j = i,

1 if j ∈ Ni,

0 otherwise

.
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Fig. 1. Network considered in Example 1 (left). Interaction topology when node 2 performs a broadcast in Example 1 (right).

Example 1: Let us consider the network on the left of Fig. 1. When node 2 performs a

broadcast, the interaction topology is represented by a directed graph, shown on the right of Fig.

1. The adjacency matrix for the resulting graph is A2 = [0 1 0 0; 0 0 0 0; 0 1 0 0; 0 0 0 0].



Following our previous definitions, δout,2 = 2, and we have:

P2 = [1/2 1/2 0 0; 0 1 0 0; 0 1/2 1/2 0; 0 0 0 1] ,

Γ2 = [1/2 1/4 0 0; 0 0 0 0; 0 1/4 1/2 0; 0 0 0 1] ,

Γ̂2 = [1/2 1/4 0 0; 0 0 0 0; 0 1/4 1/2 0; 0 0 0 0] ;

finally

C2 =



1/2 1/2 0 0 1/2 1/4 0 0

0 1 0 0 0 0 0 0

0 1/2 1/2 0 0 1/4 1/2 0

0 0 0 1 0 0 0 0

1/2 −1/2 0 0 1/2 1/4 0 0

0 0 0 0 0 0 0 0

0 −1/2 1/2 0 0 1/4 1/2 0

0 0 0 0 0 0 0 1



.

By Proposition 4 the following is a basis of linearly independent eigenvectors for the null

space:

[
v1 v3 v̂2

]
=



1 0 1

0 0 0

0 1 1

0 0 0

−1 0 1

0 0 −4

0 −1 1

0 0 0



.

�
Now we consider a property that holds for strongly connected graphs.

Proposition 5: If

Ĝ[t1, t2] =
t2∪

t=t1

Gi(t), i = I(t)



is strongly connected, then

dim

(
t2∨

t=t1

ker(Ci(t))

)
= 2n− 1,

where ∨ denotes the linear combination of vector spaces.

Proof: To show this, let us take the union of all basis vectors for the null spaces of all

matrices Ci, as defined in the proof of Proposition 4. Since Ĝ[t1, t2] is strongly connected

(sufficient condition), each node is at least once a transmitter and at least once a receiver.

Thus combining all vectors we obtain the following matrix

V = [v1 · · · vn v̂1 · · · v̂n] =

 I A(t)

−I A(t)− 2∆out(t)

 .

By elementary row operations we show this matrix to be equivalent to I A(t)

0 2A(t)− 2∆out(t)

 =

 I A(t)

0 −2Lout(t)


where Lout = ∆out − A denotes the out-degree Laplacian, whose rank is n − 1 if the graph is

strongly connected.

Thus matrix V has rank 2n− 1 and this proves the result. �
Thanks to the above propositions the following important result can be proved.

Proposition 6: If ∀t > 0 there exists T (t) > 0 such that

Ĝ[t, t+ T (t)] =

t+T (t)∪
τ=t

Gi(τ), i = I(τ),

is strongly connected, then the subspace

span

 1

0


is the largest invariant subspace for system (6).

Proof: The fact that span
([

1T0T
]T)

is an invariant subspace was shown is Proposition 3.

The fact that it is the largest invariant subspace follows from Proposition 5. In fact, the strongly

connectedness of Ĝ[t, t + T (t)] implies the existence of a basis composed by vector
[
1T0T

]T
plus a set of vectors that span K =

∨t+T (t)
τ=t ker(Ci(τ)). Hence any vector that has initially a

component along a basis vector of K will have that component eventually filtered. �



We point out that the assumption of strong connectivity of the network topology does not

require a fixed and constant time window T over which it is strongly connected. For Proposition 6

to hold it is sufficient that for any t there exists a T (t) > 0 possibly varying but finite in which

Ĝ[t, t + T (t)] is strongly connected. Note that such assumption is one of the most general

assumptions that can be made regarding network connectivity because if for some time instant

t there does not exists a T (t) > 0 in which Ĝ[t, t + T (t)] is strongly connected, then starting

from such t there exists at least a node not reachable from all the others.

Now we state the main result of this paper for which a formal proof is missing but whose

relevance is shown by simulations.

Conjecture 1: If ∀t, there exists T (t) > 0 such that

Ĝ[t, t+ T (t)] =

t+T (t)∪
τ=t

Gi(τ), i = I(τ)

is strongly connected, if the system evolves according to the state update rule described by (6)

with z(0) = 0, then:

lim
t→∞

x(t) =
11T

n
x(0).

�
The above conjecture is validated by several numerical experiments, some of which are

reported in the following simulations section, and by the following theoretical observations.

First, by Proposition 3, it holds that [α1T 0T ]T is an equilibrium state for system (6) for some

scalar α. Secondly, by Proposition 2, being by assumption z(0) = 0, it holds that 1Tx(t) +

1Tz(t) = 1Tx(0) for any t. Finally, by Proposition 6, span
([

1T0T
]T)

is the largest invariant

subspace for system (6).

Unfortunately, the problem of deciding wether the random product of a finite set of matrices

converges is still an open problem in matrix theory and all the results are either not applicable

or relate to classes of matrices not suitable for our purposes.

The proposed conjecture, while intuitive and validated by simulation results poses great

difficulties in its proof. First, the description of the stability of a switching linear system of

the type of system (6) has been treated only for simple cases in which at each instant of time t

the system matrix is at least para-contractive. Others have used Markov chain theory and applied



it to the study of consensus problems. Some other results use the Common Lyapunov function

approach to study the convergence properties of such systems. In our case the system matrix C

is not symmetric, is not contractive, nor is it with non-negative elements thus invalidating almost

all known general results for stability analysis of such system.

V. SIMULATIONS

In this section we provide simulations in order to corroborate the algorithm analysis.

Each node is initialized with values between 0 and 1 chosen at random from a uniform

distribution. The simulations are scaled respect to the number of nodes in the network for

topologies whose features do not change as the number of nodes is increased.

We now define an error performance index:

V (t) = ∥x(t)− 11T

n
x(0)∥2 + ∥z(t)∥2.

Such index is a measure of how far the state of the network is from its equilibrium state,

namely

x(∞) =
11T

n
x(0), z(∞) = 0.

The convergence time is function of the network topology and the number of nodes. Let us

define the convergence time proposed in the simulations as

Tcon = inf{τ > 0 :
V (τ)

V (0)
< 0.05}, (7)

i.e. the number of broadcasts needed such that the error modeled by the performance index

V (t) becomes less then 5% of its value at initialization time. Note that, since V (t) is not a

non-increasing function of t, the fact that V (t) is less than 5% of its initial value at a given time

t, does not imply that it remains less than this value for all τ > t.

The following simulations show the average value of Tcon over 100 realizations of the algo-

rithm. We consider three different topologies:

• Fully connected topology: each broadcast is received by every node in the network.

• Line topology: each broadcast is received only by the 2 adjacent nodes of the broadcaster

expect for the one of the end nodes.

• Square grid topology: each broadcast is received only by those nodes in proximity of the

broadcaster in a square grid.
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Fig. 2. Average value of Tcon for a fully connected network with respect to the number of nodes.

The selected topologies specify the edges that may be selected by the gossip algorithm at any

given time instant. We simulated the algorithm on regular and well defined graphs topologies

so that the presented simulations results are easily reproducible. Furthermore by selecting well

defined topologies we can easily compute average convergence times when transmitter nodes are

selected at random. On the contrary, in the case of random topologies the convergence time not

only would vary depending on the edge selection process but also due to the given realizations

of the random topologies, thus greatly increasing the variance of the convergence time and

impairing the clarity of the results.

Fig. 2 is relative to simulations performed on fully connected networks with an increasing

number of nodes. Simulations show that the average convergence time scales linearly with the

number of nodes as Tcon ≈ 10n.

In Fig. 3 the simulations are performed for line networks of increasing number of nodes.

Simulations show that the convergence time scales polynomially respect to the diameter of the

graph which is equal to n− 1 for line graphs.

In Fig. 4 the simulations are performed for square grid networks of increasing number of nodes,

such that the total number of nodes is perfect square. Simulations show that the convergence

time scales polynomially respect to the diameter of the graph which is equal to
√
n− 1 for grid

graphs.

The improvement of the proposed algorithm respect to other gossip algorithms is that by using

broadcasts the inherent parallelism in a distributed network is fully exploited between all the

nodes and not only between nodes not directly connected. This feature is especially relevant in

networks with small diameter where few nodes have a very high out-degree such as small world
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Fig. 3. Average value of Tcon for a line network with respect to the number of nodes.

5 10 15 20 25 30 35
10

1

10
2

10
3

10
4

Number of nodes

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e

Fig. 4. Average value of Tcon for a square grid network with respect to the number of nodes.

networks.

A comparison with the Standard Gossip based on Broadcast

We now compare the proposed algorithm with a simple gossip algorithm illustrated in [17],

[18] without our average preserving properties. In these works a gossip algorithm based on

broadcasts is studied which can be summarized as follows.

Algorithm 2 (Standard Gossip based on Broadcasts (SGB)):

• At each instant of time a node broadcasts its value to its neighbors.

• If at any time a node listens to a broadcast, it computes the average between its state and

the broadcaster state. It then takes this new value as its state.

• Repeat until all the nodes have the same value. �

Remark 2: The following numerical simulations compare our algorithm with the SGB al-

gorithm [17], [18] in terms of convergence rate. However, the main difference among the two



algorithms is qualitative: the proposed algorithm converges exactly to the average of the initial

states while the SGB algorithm may converge to any point inside the convex hull spanned by the

initial network conditions depending on the sequence of broadcasts. It has been shown that, if the

number of nodes is sufficiently high and broadcasts occur at random, then the SGB converges

statistically sufficiently close to the initial average. Indeed, the main point of adding more sensors

to a network to measure the same scalar quantity is to get out of cheap sensors a measurement

whose precision is far greater than the precision of the single units but this can be achieved

through averaging only if the network does actually converge to the initial average. �
Now, since the SGB algorithm does not converge to the average, we define a different

performance index which becomes zero only when each node has the same value:

V̂ (t) = ∥x(t)− 11

n
x(t)∥.

In the simulations of Algorithm 2 we adopt the following definition of convergence time:

T̂con = inf{τ > 0 :
V̂ (τ)

V̂ (0)
< 0.05}. (8)

To corroborate the simulation results, we show the average error over the 100 realizations

respect to the initial average of the network at t = T̂con, namely

Err(T̂con) =
∥x(T̂con)−

11

n
x(0)∥

n
.

The simulations are again performed for the three topologies taken into consideration:

• Simulations on a Fully connected topology are shown in Fig. 5. The convergence time results

to be constant when increasing the number of nodes. This can be explained by the fact that being

the network fully connected, at each broadcast all the nodes receive information disregarding

the size of the network. In Fig. 6 the average error at convergence time is shown for the same

simulations: the error decreases as more nodes are added.

• Simulations on a Line topology are shown in Fig. 7. The convergence time appears to be

polynomial in the number of nodes and an order of magnitude lower than our proposed algorithm.

In Fig. 8 is shown the average error at convergence time for the same simulations: also in this

case adding more nodes reduces the final average error.
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Fig. 5. Average value of Tcon (dashed line) and T̂con (continuous line) for a fully connected network with respect to the

number of nodes.
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Fig. 6. Average value of Err(T̂con) for a fully connected topology using the SGB algorithm.

• Simulations on a Grid topology are shown in Fig. 9. The convergence time appears to be

polynomial and faster than our proposed algorithm. In Fig. 10 is shown the average error at

convergence time for the same simulations: again it decreases when increasing the number of

nodes.

Summarizing, simulations show that the SGB algorithm achieves better convergence times for

growing network size trading off a finite error in the final state that decreases with network size.

Such trade-off is the highest when the number of nodes is small.

A comparison with standard Gossip based on pairwise averaging

We now compare our algorithm with the standard gossip algorithm based on random pairwise

averaging (SGP) [8], [9], [10], [11]. We believe that comparing the performances of these two
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Fig. 7. Average value of Tcon (dashed line) and T̂con (continuous line) for a line topology with respect to the number of nodes.
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Fig. 8. Average value of Err(T̂con) for a line topology using the SGB algorithm.
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Fig. 9. Average value of Tcon (dashed line) and T̂con (continuous line) for a square grid topology with respect to the number

of nodes.
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Fig. 10. Average value of Err(T̂con) for a square grid topology using the SGB algorithm.

algorithms is significant because they both converge exactly to the average of the initial state of

the network.

A gossip algorithm based on pairwise communications can be summarized as follows.

Let G = {V,E} represent the network topology at time t. Let x(t) be an n-element vector

representing the state of the network where the generic element xi(t) is the state of node i. Let

E(t) : R+ → E be the edge selection process that at any given time instant outputs an edge

eij ∈ E.

Algorithm 3 (Standard Gossip based on pairwise averaging):

• Let t = 0 and x(t) = x0 be the initial state of the network.

• Select the edge eij given by the edge selection process E(t).

• Let 
xi(t+ 1) =

xi(t) + xj(t)

2
,

xj(t+ 1) =
xi(t) + xj(t)

2
.

• Let t = t+ 1 and go back to step 2. �

Remark 3: Before presenting the results of numerical simulations, let us discuss some quali-

tative difference between the two algorithms: the proposed algorithm works on arbitrary strongly

connected directed graphs while the SGP algorithm requires bidirectional information exchange

at each time step and thus can only be applied to connected undirected graphs. For this reason we

can compare the performance of the two algorithms only for those restricted network topologies

that satisfy the connectivity requirements of the SGP algorithm.

Moreover, several gossip algorithms based on pairwise averaging differ in the edge selection



Convergence time Total Energy

Broadcast radius Transmission power SGP Algorithm EGB Algorithm SGP Algorithm EGB Algorithm

1.10 1.23 1406 9405 1406 9406

1.57 2.43 931 3948 2095 8883

2.10 4.41 680 1271 2723 5086

2.97 8.82 528 421 4445 3544

3.10 9.61 494 341 4446 3077

4.10 16.81 445 253 7133 4059

4.39 19.27 451 241 8352 4455

5.10 26.01 426 227 10659 5684

5.80 33.64 434 236 14100 7678

6.10 37.21 433 233 15592 8391

7.22 52.13 434 228 21894 11511

8.63 74.48 426 232 30809 16810

TABLE I

SIMULATION ON A 49 NODE GRID PROXIMITY NETWORK.

process, for instance in [8] the nodes are selected according to a Poisson process. In general,

the edge selection process affects the convergence time in absolute terms, while the sequence

in which edges are chosen affects the number of iterations required, which indirectly affects the

convergence time. To perform a single iteration of the GSP algorithm requires two transmissions,

node i needs to send it’s state value to node j and node j has to reply to node i with its own

state. In this paper we neglect the complexity of data link and physical layers because, even with

this crude simplification of the bidirectional communication process, we can show the advantage

of our algorithm respect to the SGP algorithm in terms of the total energy required to achieve

a given performance.

�
In the following simulations a set of 49 wireless sensors has been placed in a 7×7 grid spaced

1 unit of length [m] between each other. The network has been simulated by varying the total

transmitted power of each node to compute how the energy consumed by the algorithms scale

with the transmitted power on proximity graphs. Note that we take into consideration a grid

network and not the more general set of random geometric graphs, to eliminate the contribution



of the randomness of the topology to the energy spent during the algorithm execution, which is

already random due to the particular edge selection process.

In these simulations we take inspiration from [11] that as in our case simulates changes in

network topologies due to increases in transmitted power. Such changes of the communication

range are proportional to the square root of the transmitted power taking into account total

communication costs in the performance index.

To model the proximity range as function of the transmitted power we consider the standard

equation for radio frequency communications:

Pr =
Ptgtgr
4πr2

where Pt and Pr are, respectively, the transmitted and received power in watt [W ], gt and gr

are the antenna gains of the receiver and the transmitter and r is the line of sight distance between

transmitter and receiver. The receiver, given the technological constraints due to the electronics

and noise, needs to receive at least a given power Pr to be able to decode the message sent.

In our simulations we simplify this model by allowing the effective communication radius

r to scale as r ∝
√
Pt. The topology of the grid network then requires at least Pt = 1 to be

connected, i.e. to allow each node to communicate bidirectionally with at least one neighbor.

Increasing the transmitted power the number of neighbors that each node can communicate with

increases until the transmitted power is enough to reach any node in the network, roughly for

r = 6
√
2 and Pt = r2 = 72.

Each transmission is assumed to last τ seconds and so consume E = Ptτ [J ] units of energy.

Again we simplify the simulation assuming τ = 1 since the improvement of the proposed

algorithm respect to the SGP algorithm is the reduction of total number of transmissions and

does not depend on τ .

The execution of the algorithms is stopped as soon as the performance index

Ṽ (t) = ∥x(t)− 11T

n
x(0)∥2

reaches 10% of its initial value, i.e., we define the average convergence time as

T̃con = inf{τ > 0 :
Ṽ (τ)

Ṽ (0)
< 0.1}, (9)

In Fig. 11 and 12 a comparison between the proposed algorithm (continuous line with square
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Fig. 11. Total number of transmissions executed by the SGP algorithm (dashed line) and the proposed algorithm (continuous

line) respect to the broadcast radius for a grid of sensors.

markers) and the SGP algorithm (dashed line with round markers) is shown. In particular, in

Fig. 11 the total number of transmissions is plotted against the broadcast radius which affects

the topology by increasing the number of neighbors of each agent in the grid. In Fig. 12 the

total energy consumption is shown respect to the transmitted power at the nodes.

It can be seen that, when the number of neighbors of each node is small due to little transmitted

power, the SGP algorithm performs better both in number of transmissions and energy saving.

This is reasonable because there is no gain in performing broadcasts if the number of nodes that

can listen to it is very small. As soon as the out-degree of each node increases for increasing

values of the broadcast radius, the performance of the proposed algorithm based on broadcasts

becomes significantly better of almost one order of magnitude in number of transmissions and

energy saving. In particular, it is clear that the proposed algorithm achieves a better performance,

in the case of the grid topology, achieving a minimum-energy consumption when the broadcast

radius equals 3.1, corresponding to the case in which each node can reach other nodes distant

at most 3 rows or columns in the grid network (sample marked in red). The results of the above

numerical simulations are also summarized in Table I.
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Fig. 12. Total energy in [J] consumed by the execution of the SGP algorithm (dashed line) compared with the proposed

algorithm based on broadcasts respect to normalized transmitted power [W] for a grid of sensors.

VI. CONCLUSIONS

In this paper we have proposed a novel gossip algorithm based on broadcasts that achieves

consensus on the average on arbitrary strongly connected digraphs. The study of the convergence

properties is preliminary and convergence is shown by simulations. The proposed algorithm is

based on gossip and preserves the information about the average of the initial state during its

execution. The main feature of our algorithm is that it converges exactly to the average of the

initial state. Moreover, it works on arbitrary strongly connected digraphs.

A comparison with the standard gossip algorithm based on broadcast and with the standard

gossip based on pairwise averaging has also been made. Simulations show that the proposed

algorithm achieves better convergence rates and energy saving than the standard gossip based

on pairwise averaging if the number of neighbors of each node is sufficiently high.
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