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I. INTRODUCTION

In the last decade the control community has devoted a great deal of attention to the study

of switched systems. A switched system has a discrete dynamics represented by a finite state

machine that evolves according to the occurrence of discrete events. To each discrete state (or

“mode") a continuous dynamics is associated (34; 27; 26; 28; 7; 1). A problem of great interest is

the reconstruction of the discrete-state through the observation of measurable system outputs. The

techniques developed in this framework can be applied to several problems where the discrete

events are not observable. In the framework of discrete event systems, several approaches have

been proposed to estimate the discrete state (3; 4). In a more general hybrid context, the discrete

state estimation has been discussed in (5; 6).

The problem of invertibility of nonlinear systems (32), i.e the problem of reconstructing the

input and switching signal uniquely from given output and initial state, was addressed in (23) for

the class of switched nonlinear systems affine in the control variables. In general, the problem of

invertibility for switched systems, especially linear switched systems, has received considerable

attention (25; 24; 33; 31).

In (19) was proved the equivalence between piecewise affine systems and a broad class of

hybrid systems and is shown through counterexamples that observability and controllability

properties cannot be easily deduced from those of the component linear subsystems.

In (20) the architecture of an hybrid observer consisting of both a discrete and continuous state

identification part is presented and it is shown that under certain assumptions the discrete state

of the system is identified in a finite number of steps. In their approach the discrete observer

is a DES system and continuous dynamics are linear and time-invariant, it assumes that some

events causing the dynamics switchings are observable.

In (21) is studied the observability of piecewise linear systems and some linear-algebraic

characterization of some observability properties are given. Finally in (22) the observability of

the continuous and discrete states of a class of linear hybrid systems is addressed and rank

conditions on the structural parameters of the model are given.

In this paper we investigate the problem of the discrete state reconstruction for switched

systems building on the idea that a general class of switched systems can be modeled by nonlinear

systems with an affine binary input representing the system discrete state.
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Our work differs from (20) in that we assume that the switching signal is completely un-

observable and only the continuous state of the system is accessible. Furthermore we address

nonlinear, time-varying systems with model uncertainties.

Objective of the present work, based upon (15), is to reconstruct such a binary input despite

bounded uncertainties affecting the system dynamics. To this aim we propose a sliding mode

based unknown input reconstruction technique, that exhibits remarkable properties of robustness

against uncertainties and disturbances (47). In (44) an overview of some recent results in the

field of sliding mode based observers is presented.

In (49), within a distinct framework related to FDI, an approach to unknown input recon-

struction was suggested based on a first-order sliding mode control technique. Such an approach

could be used to reconstruct the discrete state of the switched system using the equivalent control

principle through low pass filtering. However, it is well known that the methods based on low

pass filtering can guarantee, at best, the asymptotic reconstruction of the discrete system state

(48; 49).

Recently several methodologies have been proposed in the literature for the finite time re-

construction of unknown inputs based on higher order sliding mode theory, via the so called

hierarchical HOSM observation approach (45; 46). In this paper a finite time observer based on

the sub-optimal sliding mode algorithm will be suggested, which provides the exact unknown

input reconstruction and a guaranteed convergence time in spite of model uncertainties.

The organization of the paper is as follows. Section II describes the considered class of

uncertain switched systems. It is pointed out, in particular, that the considered class, that embeds

both analog and binary terms, can capture switched dynamics of a certain degree of generality.

Section III presents the proposed discrete state reconstruction scheme which is based on the

second-order sliding mode (2-SM) approach. Section IV introduces a case study of a physical

example (an hydraulic three-tank system) that falls into the considered class of switched systems.

Section V deals with the simulation results while in Section VI we verify the effectiveness of the

proposed scheme by real experiments using a laboratory-size three-tank system set up. Section

VII summarizes the attained results and draws possible lines for future improvements of the

presented results.
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II. PROBLEM FORMULATION

In this paper we examine the class of nonlinear systems that can be represented in the form:

ẋ(t) = G(x,u, t)+D(x,u, t)δ (t)+ ε(x, t) (1)

where x(t) ∈ X ⊂ Rn is the continuous state, u(t) ∈ U ⊂ Rp is the continuous input, δ (t) ∈
{0,1}L is a binary discrete input, G(x,u, t) ∈ Rn and D(x,u, t) ∈ Rn×L are known vector fields,

and ε(x, t) ∈Rn is an uncertain nonlinear term representing model mismatches and/or external

disturbances.

According to a widely used terminology (29), the nonlinear system (1) can be classified as a

system “affine" in the binary discrete input vector δ (t), and the problem tackled in this paper is

the reconstruction of this vector.

A. Assumptions

We now specify the assumptions that the considered class of systems (1) must satisfy. In the

following ‖ · ‖ denotes the 2-norm.

1) The continuous state x(t) is supposed to be fully measurable.

2) The time evolutions of the continuous state x and exogenous input u variables are confined

in the compact domains X and U.

3) The dimension L of vector δ (t) must not exceed the dimension of the continuous state:

L≤ n (2)

4) The binary vector δ (t) is piecewise constant and there exists a minimal dwell time td > 0

such that if [ti, ti+1) is a maximal interval in which δ is constant it holds ti+1− ti ≥ td .

5) Matrices G(x,u, t), D(x,u, t) are supposed to be known.

6) The full-rank matrix D(x,u, t) and the unmeasurable state dependent uncertainty or dis-

turbance term ε(x, t) satisfy the next inequalities:

‖D(x,u, t)‖ ≤ D0 ‖Ḋ(x,u, t)‖ ≤ D1 (3)

‖[DT (x,u, t)D(x,u, t)]−1DT (x,u, t)‖ ≥ D2 (4)
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‖ε(x, t)‖ ≤ ε̄0 ‖ε̇(x, t)‖ ≤ ε̄1 (5)

Note that no smoothness and norm-boundedness assumptions are made with respect to the

vector field G(x,u, t).

Assumption 1 could be considered quite restrictive since usually in observation problems only

an output vector (having dimension lower than that of the state) is assumed to be available for

measurements. It is worth noting, however, that the problem of estimating simultaneously the

continuous and discrete state of a nonlinear and uncertain switched system is very challenging.

In this work, we address the preliminary step of reconstructing the discrete state by assuming

the measurement for the full continuous state vector, and the generalization to the output-

feedback case, which is not trivial, calls for future investigations. Assumption 2 could be possibly

relaxed by using different “global" versions of the suboptimal algorithm (see, e.g. (9)). Also, this

extension is not trivial. Assumption 3 is a structural requirement that cannot be removed, as well

as the assumptions 4 and 5. The latter, in particular, is necessary if one wants to reconstruct the

binary vector exactly. Assumption 6 is mainly of technical nature, in the sense that an effective

tuning of the proposed scheme can be carried out dispensing with the precise knowledge of the

constants involved in (3)-(5). In summary, the overall set of Assumptions 1-6 appear to be mild

enough to include systems of practical relevance, as confirmed by the successful experimental

results.

B. Comments on the considered class of systems

We observe that the considered class of nonlinear systems (1) can also be seen as a switched

system where the value of the binary discrete input determines a mode of evolution.

In particular the considered model is general enough to represent the following continuous-

time switched nonlinear dynamics

ẋ(t) = Gσ(t)(x,u, t)+ ε(x, t) (6)

where piecewise-constant integer function σ(t) ∈ {0, . . . ,k− 1} specifies the evolution mode

(i.e., the discrete state) active at time t.

A simple systematic procedure to put system (6) into the form (1) is now given. Define the

matrices D(x,u, t) and G(x,u, t) as follows (omitting the dependence of its entries from x, u and
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t)
D(x,u, t) =

[
G1−G0 G2−G0 · · · Gk−1−G0

]

G(x,u, t) = G0(x,u, t).
(7)

Now let L = k−1 and define

δ (t) = [δ1(t), . . . ,δL(t)]T = γ(σ(t)) = [γ1(σ(t)), . . . ,γL(σ(t))]T (8)

where γ : {0,k−1}→ {0,1}L is such that for j = 1,2, ...,L

γ j(σ) =





1 if σ = j

0 otherwise
(9)

One can readily verify that system (6) is equivalent to (1),(7)-(9). At each instant of time

σ(t) ∈ {0, . . . ,k−1} defines a discrete state and function γ maps the the discrete state σ(t) into

an L-dimensional binary vector δ (t) which “encodes” the current discrete state. Note that more

efficient encodings are also possibile — in general with an L-dimensional binary vector it is

possible to encode up to 2L discrete states — provided that each discrete state σ(t) is uniquely

mapped into a binary vector δ (t), and viceversa.

According to Assumption 4 in the previous subsection, the only requirement on the evolution

of the discrete state is that the time between two consecutive switchings must be greater or equal

to a fixed dwell time td .

III. DISCRETE STATE OBSERVER DESIGN

The proposed discrete state estimator (which assumes the knowledge of the continuous system

state) takes the following form:

ż = G(x,u, t)+w(t) (10)

where z represents the observer state and w is an observer input to be designed. Let e = x− z

be the observer error variable. Then, from (1) and (10), the observer error dynamics is

ė = D(x,u, t)δ (t)+ ε(x, t)−w(t) (11)
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A. Observer input design

Our objective is to design an observer control vector w guaranteeing the finite-time conver-

gence to zero of e and ė.

A second-order sliding modes based approach, that enables us to reconstruct the discrete state,

will be proposed. It must be highlighted that, dissimilar to other works (40) within a distinct

framework related to a fault diagnosis, such approach, theoretically exact, exhibit a solution

converging in finite time.

Consider the second time derivative of the error variable e

ë = Ḋ(x,u, t)δ (t)+D
d
dt

δ (t)− ε̇(x, t)− ẇ(t) (12)

which can be rewritten in compact form as follows:

ë = ϕ(x,u, t)− ẇ(t) (13)

The uncertain “drift term" ϕ(·) = [ϕ1(·),ϕ2(·), ...,ϕn(·)]T takes the following form

ϕ(x,u, t) = Ḋ(x,u, t)δ (t)+D
d
dt

δ (t)− ε̇(x, t) (14)

which depend from δ (t) that must be reconstructed.

Denote v(t) = [v1,v2, ...,vn]T ≡ −ẇ(t), yi,1 = ei and yi,2 = ėi, where ei and ėi represent the

i-th entry of vectors e and ė. Then it is possible to rewrite system (13) in terms of n de-coupled

single input subsystems having the following form




ẏi,1 = yi,2, i = 1,2, ..,n

ẏi,2 = ϕ i(x,u, t)+ vi
(15)

The problem is to find a set of control inputs vi stabilizing the uncertain SISO systems (15)

in finite time. To solve this problem, the second-order sliding mode control approach (11),(16)

appears to be particularly appropriate because of systems (15) have relative degree two with

respect to the inputs vi’s which are treated as auxiliary control variables. The control task is

complicated by the two issues: (a) variables yi,2 (i = 1,2, ...,n) are not measurable, and (b) the

drift terms ϕ i(x,u, t) are uncertain.

Let the mode switching sequence of the hybrid dynamics have a dwell time td . This means

that ti+1− ti ≥ td , for i≥ 0. The main idea is to use the discontinuous controller in (36). Under
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the condition that a constant upperbound Φi to the drift term magnitude can be computed

|ϕ i(x,u, t)| ≤Φi ∀t (16)

such controller is able to stabilize the uncertain SISO systems (15) in a finite time t∗ << td

starting from any initial conditions (yi,1(0),yi,2(0)) norm bounded by arbitrarily large constants.

Denote as ti (i = 1,2, ...) the switching instants at which the active dynamics is commuting.

The discrete state σ(t), and then also the vector δ (t), are piecewise constant during the time

intervals Ti = (ti, ti+1) between two adjacent mode switchings. The effect of the impulsive term
d
dt δ (t) at the switching instants ti is a jump in the (e, ė) state trajectories of system (13), and in

particular, from (12), it result ‖ė‖= ‖D(x,u, t)‖‖δ (t)‖ ≤D0
√

n, since the Euclidean norm of the

n-dimensional binary vector δ will never exceed the value
√

n. So, considering the single i-th

decoupled subsystem (15), at the first switching instant t1 the point (yi,1(t1),yi,2(t1)) will leave

the origin according to (0,yi,2(t+1 )) with

‖yi,2(t+1 )‖ ≤ D0 (17)

After a new transient whose duration can be made less than t∗ the system will be steered back to

the origin. Thus, at any time t ∈ [t1 + t∗, t2) and any i = 1, ..,n, the conditions yi,1(t) = yi,2(t) = 0,

i.e., e(t) = ė(t) = 0 will be satisfied. The reasoning is repeated over all the successive switching

intervals. The key point is the capability of the robust controller presented in (36), that will be

specified in the sequel, of steering to zero the SISO systems (15) arbitrarily fast during the time

interval between two adjacent mode switchings.

Along any interval Ti ≡ (ti−1, ti), (i = 1,2, ...), t0 ≡ 0, the drift term (14), considering the

assumptions (3)-(5), can be upper bounded by

‖ϕ(x,u, t)‖ ≤ Φ̄≡ D1
√

n+ ε̄1, t ∈ (ti−1, ti) (18)

The existence of such a constant upper bound allows for designing a robust controller fea-

turing the desired finite time convergence properties. Next theorem outlines the main result by

introducing the so-called “ Suboptimal“ second-order sliding mode control algorithm (36; 37),

together with the tuning rules that allow to obtain an arbitrarily fast convergence, which is a

basic requirement of the present problem.
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Theorem 1: Consider system (15) and the control law

vi(t) =−VM sign
(
yi,1(t)− 1

2yi,1(ξi, j)
)

ξi, j ≤ t < ξi, j+1

j = 1,2, ...
(19)

where ξi,0 = t0 ≡ 0, ξi, j is the sequence of time instants at which yi,2(t) = 0, and

VM = ΓΦ̄ (20)

Denote the sequence of the switching instants as th, h = 1,2, .... Then there is Γ∗ such that, for

any Γ≥ Γ∗, the following conditions are provided.

yi,1(t) = yi,2(t) = 0, t ∈ (th + t∗, th+1). (21)

where i = 1,2, ...,n and with t∗ being arbitrarily small.

Proof of Theorem 1 The proof exploits the basic convergence properties of the suboptimal

second-order sliding mode control algorithm (37). Let us consider the single i− th decoupled

subsystem (15) and denote with t1 the first switching instant. At t = t1, when the yi,1 and yi,2

variables are assumed both zero, on the basis of (17), we can infer that yi,2 undergoes a jump that,

for the worst case, lead the system states (yi,1(t+1 ),yi,2(t+1 )) in the point (0,D0). Starting from

here, after a the time tM1 ≤ D0
Φ̄(Γ−1) , the extremal point ( D0

2

2Φ̄(Γ−1) ,0) is reached . The suboptimal

control strategy, with the additional constraint Γ > 2, causes the generation of a sequence of

states, with coordinates (yi,1M1,0), featuring the following contraction property:

|yi,1M1+ j| ≤ α |yi,1M1|, j = 1,2, ....., α =
1

Γ−1
∈ [0,1) (22)

Such sequence converge to the origin at finite time t∗ that can be made arbitrarily small

opportunely tuning the gain parameter Γ. By imposing the following condition t∗ < td , descend

D0

Φ̄(Γ−1)
+

2ΓΦ̄
√

D0
2

2Φ̄(Γ−1)

(Γ−1)
√

Φ̄(Γ+1)

1

1−
√

1
Γ−1

< td (23)

From (23) it follows the rule for selecting Γ in such a way that the convergence time t∗ fulfills

the inequality t∗ < td . An admissible interval for Γ exist due to the fact that the left and side, i.e.

t∗, converge to zero for Γ −→ ∞. On the basis of previous observations, denoting with Γ∗ the
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value of Γ such that t∗ = td , choosing the tuning parameter Γ ∈]Γ∗,∞), the the condition t∗ < td

is guaranteed.

¤

B. Discrete state reconstruction

It was shown in the previous Section that there is t∗ such that, in every “inter-switching"

interval Ti ≡ (ti−1, ti) the next conditions hold

e = ė = 0, t ∈ [ti−1 + t∗, ti) (24)

From the definition (11) of ė, its zeroing implies that

D(x,u, t)δ (t)+ ε(x, t)−w(t) = 0 (25)

Notice that the observer input w(t) is obtained integrating the discontinuous signal v(t), whose

sign switches at very high (theoretically infinite) frequency (Zeno behaviour), then w(t) is a

continuous signal.

By neglecting the uncertainty ε(x, t) in (25) it yields naturally the following reconstruction

formula that defines a “non-thresholded" estimate of the binary vector δ .

δ̃ (t) = [DT (x,u, t)D(x,u, t)]−1DT (x,u, t)w(t) (26)

The non-thresholded estimate is not robust against the uncertainty ε(x, t). By (25), the esti-

mation error δ̃ (t)−δ (t) will be such that

‖δ̃ (t)−δ (t)‖ ≤ ‖[DT (x,u, t)D(x,u, t)]−1DT (x,u, t)‖‖ε‖

(27)

It can be fruitfully exploited the binary nature of the vector δ (t) by introducing a thresholding

that rounds the value of δ̃ (t) to the closest integer value between 0 and 1. It yields the

“thresholded" estimate δ̂ (t) defined according to

δ̂i(t) =





1 δ̃i(t) > 0.5

0 δ̃i(t)≤ 0.5
(28)

where δ̃i(t) and δ̂i(t) are the i-th entries of vectors δ̃ (t) and δ̂ (t) respectively. The thresholded

estimate results to be robust against any error (δ̃i(t)−δi(t)) less, in magnitude, than 0.5. Thus

it can be explicitly given a bound to the maximal tolerated magnitude for the uncertainty term.
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From the requirement that ‖δ̃ (t)−δ (t)‖≤ 0.5 it yields by (27), (4), (5) the following maximal

acceptable bound for the norm of the uncertainty term

‖ε(x, t)‖ ≤ ε0 ≤ 0.5
D2

(29)

The fulfillment of (29) guarantees the insensitivity of the estimate δ̂ against the uncertainty,

namely the condition

δ̂ (t) = δ (t), t ∈ [ti−1 + t∗, ti), i = 1,2, ... (30)

Lemma 1 Under the condition that the norm of the uncertain term ε(x, t) fulfills the restriction

(29), the proposed estimation procedure given by (26), (28) provides the exact reconstruction

of the binary vector δ in the time intervals t ∈ [ti−1 + t∗, ti), according to (30)

Remark 1 The requirement of providing the observer convergence within the arbitrarily small

transient time t∗ << td would correspond, in the linear context, to locate the eigenvalues of the

error dynamics far away from the origin. Generally, this strongly deteriorates the robustness

against the measurement noise of the resulting linear “high gain" observer. It can be argued, due

to the analysis made in (10; 11), that the magnification of the noise in the considered 2-SMC

observer could be less severe than in the linear observer counterpart. This topic will be addressed

in more detail in next research activities.

IV. THE THREE-TANK SYSTEM CASE STUDY

The three-tank water process is regarded as a valuable setup for investigating nonlinear

multivariable control as well as fault diagnosis schemes (43). Let us show that it can be modelled

as a switched affine system according to the general formulation (1).

The vertical multi-tank system that we shall consider is composed of three tanks of different

shape interconnected as shown in Fig. 1, a water inflow q(t) that supplies the upper tank n.

1 and three on-off valves V 1sw,V 2sw,V 3sw that determine whether an outflow from each Tank

exists or not. The on-off state of the three valves define the 8 possible operating mode of the

considered system.

Refer to the schematic representation in Fig. 1. Signal q(t), the inflow to the upper tank,

represents a measurable input to the system, the binary signals U1,U2 and U3 are the unknown

states of the on-off valves, and H1,H2 and H3 are the water levels which represent the continuous
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state of the three-tank system. It is the objective of the present work to present a scheme for

reconstructing the states of the three on-off valves by assuming the knowledge of the water

levels and of the input inflow q(t) to the upper tank.

Fig. 1. System inputs and outputs

Let us model the three tank system. The flow balance equations lead to

V̇1 = q(t)−C1(t)
√

H1 (31)

V̇2 = C1(t)
√

H1−C2(t)
√

H2 (32)

V̇3 = C2(t)
√

H2−C3(t)
√

H3 (33)

where V1,V2,V3 correspond to the actual volume of water in the three tanks and C1(t),C2(t)

and C3(t) are the outflow nonnegative coefficients of the respective valves that can be adjusted.

Obviously when the generic i− th valve is in fully closed position, the corresponding coefficient

Ci is equal to zero, vice versa if the valve is in fully opened condition Ci = C∗i . Therefore
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seems appropriate to represent such outflow coefficients by the notation Ci(t) = C∗i Ui(t), where

Ui(t) ∈ [0,1] is time-varying and represents the relative actual valve opening.

It results

Ci(t) =





0 when valve Visw is OFF

C∗i when valve Visw is ON
(34)

Further, the following simple relationships holds

V̇i = βi(Hi)Ḣi, i = 1,2,3 (35)

where βi(Hi) (i = 1,2,3) represents the cross sectional area of the i− th tank i at the level height

Hi. It yields the simple model

Ḣ1 = 1
β1(H1)

[
q(t)−C∗1

√
H1U1(t)

]
(36)

Ḣ2 = 1
β2(H2)

[
C∗1
√

H1U1(t)−C∗2
√

H2U2(t)
]

(37)

Ḣ3 = 1
β3(H3)

[
C∗2
√

H2U2(t)−C∗3
√

H3U3(t)
]

(38)

Collecting into a binary vector the discrete states of the on-off valves as follows

δ (t) = [U1(t),U2(t),U3(t)]T ∈ {0,1}3 (39)

it is straightforward to rewrite the model (36)-(38) in the form (1) with x = [H1,H2,H3]T , u = q(t)

and

G(x,u, t) =




q(t)
β1(H1)

0

0


 (40)

D(x,u, t) =




−C1
∗√H1

β1(H1)
0 0

C1
∗√H1

β2(H2)
−C2

∗√H2
β2(H2)

0

0 C2
∗√H2

β3(H3)
−C3

∗√H3
β3(H3)




(41)

According to the notation introduced in section II, it must be highlighted that in our case a

particular instance for (39) represents one of the possible k = 8 discrete states σ(t) associated

to a respective nonlinear dynamic in which the three-tank system could be found. A possible

realization for σ(t) could be as follows
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σ(t) = δ1(t) ·22 +δ2(t) ·21 +δ3(t) ·20 (42)

In the derived three tank system the dimension L of vector δ (t) is L = 3 which does not

exceed the dimension n = 3 of the continuous state, as required in assumption (2).

The assumptions (3) on the matrix D(x,u, t) are trivially satisfied if the water levels H1(t),H2(t),H3(t)

remain strictly positive during the observation process. Further the assumption (4) requires that

the square matrix D(x,u, t) is nonsingular. Since

detD(x,u, t) =− C1
∗C2

∗C3
∗

β1(H1)β2(H2)β3(H3)

√
H1H2H3 (43)

again the assumption (4) is fulfilled if none of the water levels become zero during the

observation process. Assuming that an appropriate closed-loop supervisory system has been

designed, capable of guaranteeing that Hi(t) ≥ H∗
i > 0, i = 1,2,3, the proposed observer can

provide for the reconstruction of the binary signal vector δ (t).

An additive error term ε(x, t) may take into account possible discrepancies between the actual

and nominal system model as well as possible external disturbances. It is stated in the Lemma

1 that the discrete state can be still reconstructed exactly provided that the norm of ε(x, t) is

sufficiently small.

It is worth noting that the discrete state σ(t) ∈ {0,1, · · · ,7} can be reconstructed from the

thresholded estimates δ̂1(t), δ̂2(t), δ̂3(t), according to (42), by means of the following expression

σ̂(t) = δ̂1(t) ·22 + δ̂2(t) ·21 + δ̂3(t) ·20 (44)

V. SIMULATION RESULTS

The effectiveness of the suggested discrete state observer is now studied by means of some

simulative analysis conducted on the three tank model (36)−(38). The inflow input q(t) and

the binary state δ (t) have been selected in such a way that the tanks never become empty, that

would cause the loss of observability for the system.

The cross-sectional area functions β1(H1),β2(H2),β3(H3) have the following analytical ex-

pressions which depend on the particular, different, shapes for the considered three tank system
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Fig. 2. TEST 1. δi(t) vs. the corresponding non-thresholded estimations δ̃i(t). From top to bottom: i = 1,2,3.

represented in Figure 1:

β1(H1) = aw

β2(H2) = cw+bwH2

β3(H3) = w
√

R2− (R−H3)2

where a,b,c,w,R are appropriate constant geometric parameters.

The parameter values used in the simulations, evaluated by means of an identification proce-

dure, are reported in the Table 1.

Euler integration method with the fixed sampling time Ts = 0.001s has been used. A disturbance

vector with elements of the form

εi(x, t) = 0.1(|H1(t)|+ |H2(t)|+ |H3(t)|)sin(ωt), i = 1,2,3 (45)

is considered, and a band-limited additive white noise is added to the level measurements

H1,H2,H3. The binary signal inputs U1(t),U2(t),U3(t) defining the discrete state of the system

have been selected as shown in the plot of the next figure 2 (the same profile for all the simulation

tests has been used). It can be noted that a dwell time of 0.5s has been used.
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Fig. 3. TEST 1. δi(t) vs. the corresponding thresholded estimations δ̂i(t). From top to bottom: i = 1,2,3.

In the first TEST 1, the disturbance vector ε(x, t) and the measurement noise are not included.

The plots in the figure 2 show the actual δi(t) values together with the non-thresholded

reconstructed ones δ̃i(t). Figure 3 makes the same comparison by considering the thresholded

reconstructed values δ̂i(t). Figure 4 shows the actual and reconstructed discrete states σ(t) and

σ̂(t). It can be seen that the suggested method provides a prompt identification of the active

mode.

In TEST 2 it is shown that by increasing the VM observer parameter it can be achieved an

arbitrarily fast identification of the current mode after the mode switchings. To this end three

different values of VM have been considered, and a zoom across some switching instant is made

in the Fig. 5. The differences in the transient duration confirm the expected performance.

In the last TEST 3, disturbances and measurement noise are considered. Figure 6 shows that

signals δi(t) are corrupted by the noise as compared with the TEST 1. But, since the resulting

errors are less than 0.5, the successive thresholding removes the errors and recovers the correct

discrete state estimates according to Lemma 1 (see figure 7)

January 9, 2012 DRAFT



17

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8
Actual and reconstructed discrete state

Time (sec)

Fig. 4. TEST 1. Actual σ(t) and reconstructed σ̂(t)
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Fig. 5. TEST 2. σ(t) (solid line) and σ̂(t) (dashed lines) using different values for the VM observer gain
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Fig. 7. TEST 3. Actual σ(t) and reconstructed σ̂(t) discrete states
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VI. EXPERIMENTAL RESULTS

Experimental results using the three-tank laboratory-size apparatus by Inteco (18) are presented

and commented in this section. A picture of the experimental setup is shown in the Figure 8.

Fig. 8. The laboratory-size three-tank system

The multi-tank system is interfaced with an external PC-based data acquisition and control

system. The development of, both, the controller and observer systems is made in the MAT-

LAB/Simulink environment, and the associated executable code is automatically generated by

the RTW rapid prototyping environment. The water levels are measured by means of piezo

resistive pressure transducers and acquired by a multipurpose DAC I/O board.

There are four control signals generated by the DAC board: the three binary control signals

U1(t),U2(t),U3(t) for the on-off valves V 1sw,V 2sw,V 3sw and the pump control signal q(t). As

previously described, the on-off states of the three valves define 8 possible operating modes for

the considered system.
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The identification of the plant parameters has been carried out in order to minimize the

discrepancies between the real process and its mathematical model (36)−(38).

The dimensional parameters a,w,b,c,R have been directly measured, and suitable identification

procedures, based on independent tests on each tank, have been implemented. The obtained

values are reported in the Table 1.

TABLE I

IDENTIFIED PARAMETERS

Parameter Value Unit

C1
∗ 6.1∗10−5

C2
∗ 6.5∗10−5

C3
∗ 6.4∗10−5

a 0.035 m

w 0.035 m

b 0.348 m

c 0.1 m

R 0.365 m

The closed-loop control system is based on anti wind-up PI controllers. The sampling time

is 0.01 sec. In Fig 9 it is shown a generic trend of the binary state δ1(t) of valve V 1sw and the

corresponding reconstructed one δ̃1(t). It must be highlighted that, after an initial transient time,

the reconstructed signal matches quite precisely the signal δ1(t).

Figure 10 shows how, after the thresholding procedure (28), apart from a transient time

depending on the magnitude VM of corresponding injection signal, the current mode can be

precisely reconstructed. In particular, as shown in Fig. 10, two different values for VM have

been used, and as expected, increasing VM the transient time can be reduced.

It must be highlighted that differently from what stated in the theoretical analysis, the transient

time cannot be made arbitrarily small. This is due to several reasons, like discretization ad

noise effect. Furthermore sensors and actuators are unavoidably affected by unmodelled dynamic

effects.

The plots in Fig. 11 show the actual δi(t) values together with the thresholded reconstructed

ones δ̂i(t).

Figure 12 shows the actual and reconstructed discrete states σ(t) and σ̂(t). It can be seen that
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Fig. 10. δ1(t) (solid line) and δ̂1(t) (dashed lines) using different values for the VM observer gain
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Fig. 11. δi(t) vs. the corresponding thresholded estimations δ̂i(t). From top to bottom: i = 1,2,3.

the suggested method provides a prompt identification of the active mode.
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Fig. 12. TEST 3. Actual σ(t) and reconstructed σ̂(t) discrete state
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VII. CONCLUSIONS

A scheme for the reconstruction of the discrete state in a class of nonlinear uncertain switched

systems has been proposed. Key ingredients of the proposed approach are the use of a second

order sliding mode observer approach in the presence of an impulsive drift term, that as far as

we know was never studied before, followed by a thresholding procedure that allows to exactly

reject the effect of a sufficiently small uncertainty term. Robustness against significant classes of

disturbances is guaranteed by the proposed procedure that has been verified by simulations and

experiments. Next activities could be devoted to relax the requirement of knowing the continuous

state by providing the simultaneous reconstruction of continuous and discrete state by output

measurements, and to enlarge the observed system class by including, for instance, switching

dynamics which are not-affine on the binary vector δ (t).
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robust against the measurement noiseŤ, IEEE Trans. on Automatic Control, vol. 49, n. 10,

pp. 1731-1737, 2004.

[11] G. Bartolini, A. Levant, A. Pisano, E. Usai "Higher-Order Sliding Modes for Output-

Feedback Control of Nonlinear Uncertain Systems", in "Variable Structure Systems:

Towards the 21-st century" X. Yu and J, Xu eds., Lecture Notes in Control and Information

Sciences, vol. 274, pp. 83-108, Springer Verlag, 2002.

[37] G. Bartolini, A. Ferrara, A. Pisano and E. Usai, “On the convergence properties of a 2-

sliding control algorithm for nonlinear uncertain systems," Int. J. Control, vol. 74, pp.718-

731, 2001.

January 9, 2012 DRAFT



25

[40] X.G.Yan, C.Edwards,“Nonlinear robust fault reconstruction and estimation using a sliding

mode observer, Automatica, vol. 43,pp. 1605-1614, 2007.

[42] V.I. Utkin, Sliding Modes In Control And Optimization, Springer Verlag, Berlin, (1992).

[15] N. Orani, A.Pisano, M. Franceschelli, A. Giua and E. Usai . “Robust reconstruction of

the discrete state for a class of nonlinear uncertain switched systems“, ADHS09: 3rd IFAC

Conference on Analysis and Design of Hybrid Systems. Zaragoza, Spain September 16-18,

2009

[16] A. Levant, “Sliding order and sliding accuracy in sliding mode control“. International

Journal of Control, 58:6, pp.1247-1263, 1993.

[43] C. Join, J.C. Ponsart, D. Sauter and D. Theilliol “Nonlinear filter design for fault diagnosis:

application to the three-tank system". IEE Proceedings - Control Theory and Applications.

Volume 152, Issue 01, pp. 55- 64, 2005

[18] http://www.inteco.com.pl/index.php

[19] A. Bemporad, G. Ferrari-Trecate and M. Morari. “Observability and controllability of

piecewise affine and hybrid systems“, IEEE Trans. on Autom. Control, 45(10):1864-1876,

2000.

[20] A. Balluchi, L. Benvenuti and A. Sangiovanni-Vincentelli “Observers for hybrid systems

with continuous state resets“. In Proc. of the 10th Mediterranean conference on control

and automation, Lisbon, Portugal, July 2002.

[21] M. Babaali and M. Egerstedt. “On the observability of piecewise linear systems“. In Proc.

of IEEE Conference on Decision and Control, vol. 1, pages 26-31, 2004.

[22] R. Vidal, A. Chiuso and S. Soatto. “Observability and identifiability of jump linear systems

“. In Proc. of IEEE Conference on Decision and Control, vol. 4, pages 3614-3619, 2002.

[23] A. Tanwani and D. Liberzon. “Invertibility of nonlinear switched systems" , 47th IEEE

Conference on Decision and Control, Cancun, Mexico, Dec 2008.

[24] L. Vu and D. Liberzon. “Invertibility of switched linear systems", Automatica, vol. 44, no.

4, pp. 949 - 958, 2008.

[25] S. Sundaram and C.N. Hadjicostis. “Designing Stable Inverters and State Observers for

Switched Linear Systems with Unknown Inputs", 45th IEEE Conference on Decision and

Control, San Diego, CA, USA, Dec 2006.

[26] D. Liberzon and A.S. Morse. “Basic problems in stability and design of switched systems",

January 9, 2012 DRAFT



26

Control Systems Magazine, IEEE, Oct 1999, vol. 19, no. 5, pp. 59-70.

[27] M.S. Branicky, V.S. Borkar and S.K. Mitter. “A Unified Framework for Hybrid Control:

Model and Optimal Control Theory", IEEE Transactions on Automatic Control, vol. 43,

no. 1, jan 1998.

[28] A.J. van der Schaft and H. Schumacher. “An Introduction to Hybrid Dynamical Systems",

Lecture Notes in Control and Information Sciences, vol. 251, 2000.

[29] A. Isidori. Nonlinear Control Systems. Third edition. Springer Verlag, London, 1995.

[30] S. Chaib, D. Boutat, A. Banali and F. Kratz. “Invertibility of switched nonlinear systems.

Application to missile faults reconstruction", 46th IEEE Conference on Decision and

Control, New Orleans, Louisiana, USA, Dec 2007.

[31] A. Alessandri and P. Coletta. “Design of Luenberger Observers for a Class of Hybrid Linear

Systems", HSCC ’01: Proceedings of the 4th International Workshop on Hybrid Systems,

2001.

[32] R. Hirschorn. “Invertibility of multivariable nonlinear control systems", IEEE Transactions

on Automatic Control, Dec 1979, vol 24, no. 6, pp. 855-865.

[33] D. Liberzon. Switching in Systems and Control. Birkhauser, 2003.

[34] R. Alur, C. Courcoubetis, T. A. Henzinger and Pei -Hsin Ho. “Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems", Lecture Notes

in Computer Science, vol. 736, 2003, pp. 209-229.

[35] M. Basseville, I. V. Nikiforov. “Detection of Abrupt Changes: Theory and Application“.

Prentice-Hall Inc, 1993.

[36] G. Bartolini, A. Ferrara, and E. Usai. “Output tracking control of uncertain nonlinear

second-order systems" ,Automatica, vol. 33, n. 12, pp.2203-2012, 1997.

[37] G. Bartolini, A. Ferrara, A. Pisano and E. Usai. “On the convergence properties of a 2-

sliding control algorithm for nonlinear uncertain systems," Int. J. Control, vol. 74, pp.718-

731, 2001.

[38] G. Bartolini, A. Pisano, E. Punta and E. Usai. “A survey of applications of second order

sliding mode control to mechanical systems," Int. J. Control,vol. 76, no. 9/10, pp.875-892,

2003.

[39] C. Edwards, S.K. Spurgeon, R.J. Patton. “Sliding mode observer for fault detection and

isolation, Automatica, vol. 36(4),pp. 541-553, 2000.

January 9, 2012 DRAFT



27

[40] X.G.Yan, C.Edwards. “Nonlinear robust fault reconstruction and estimation using a sliding

mode observer, Automatica, vol. 43,pp. 1605-1614, 2007.

[41] G. Bartolini, A. Ferrara, A. Levant and E. Usai. “On Second Order Sliding Mode

Controllers", in Variable Structure Systems, Sliding Mode and Nonlinear Control, K.D.

Young and U. Ozguner (Eds.), Lecture Notes in Control and Information Sciences, Springer-

Verlag, vol. 247, pp. 329-350 , 1999.

[42] V.I. Utkin. Sliding Modes In Control And Optimization, Springer Verlag, Berlin, (1992).

[43] C. Join, J.-C. Ponsart, D. Sauter and D. Theilliol. “Nonlinear filter design for fault

diagnosis: application to the three-tank system". IEE Proc.,. IEEE Trans. on Control System

Technology, VOL. 13, NO. 3, MAY 2005

[44] G. Bartolini, L. Fridman, A. Pisano, E. Usai (Eds). “Modern Sliding Mode Control Theory.

New Perspectives and Applications" Springer Lecture Notes in Control and Information

Sciences , Vol. 375., april 24, 2008.

[45] J. F. Bejarano, L. Fridman, A. Poznyak. “Exact state estimation for linear systems with

unknown inputsbased on hierarchical super-twisting algorithm" Int. Journal on Robust and

Nonlinear Control, vol. 17(18),pages 1734-1753, 2007.

[46] J. F. Bejarano, L. Fridman, A. Poznyak. “Unknown input and state estimation for

unobservable systems" SIAM J. of Optimal Control, Vol. 48, No. 2, pp. 1155Ű1178, 2009.
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