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Abstract

In this paper an approach to on-line diagnosis of discrete event systems based on labeled
Petri nets is presented. The approach is based on the notion of basis markings and justifica-
tions and it can be applied both to bounded and unbounded Petri nets whose unobservable
subnet is acyclic. Moreover it is shown that, in the case of bounded Petri nets, the most bur-
densome part of the procedure may be moved off-line, computing a particular graph called
Basis Reachability Graph.

Finally, the effectiveness of the proposed procedure is analyzed applying a MATLAB
diagnosis toolbox we developed to a manufacturing example taken from the literature.
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1 INTRODUCTION

Failure detection and isolation in industrial systems is a subject that has received a lot of
attention in the past few decades. A failure is defined to be any deviation of a system from its
normal or intended behavior. Diagnosis is the process of detecting an abnormality in the system
behavior and isolating the cause or the source of this abnormality.

Failures are inevitable in today’s complex industrial environment and they could arise from
several sources such as design errors, equipment malfunctions, operator mistakes, and so on. As
technology advances, as systems of increasing size and functionality are built, and as increasing
demands on the performance of these systems are placed, then the complexity of these systems
increases. Consequently (and unfortunately), the potential for systems to fail is enhanced, and
no matter how safe the designs are, how improved the quality control techniques are, and how
better trained the operators are, system failures become unavoidable (Sampath, 1995).

Given the fact that failures are inevitable, the need for effective means of detecting them is quite
apparent if their consequences and impacts are considered not just on the systems involved but
on the society as a whole. Moreover, note that effective methods of failure diagnosis can not
only help avoiding the undesirable effects of failures, but can also enhance the operational goals
of industries. Improved quality of performance, product integrity and reliability, and reduced
cost of equipment maintenance and service are some major benefits that accurate diagnosis
schemes can provide, especially for service and product oriented industries such as home and
building environment control, office automation, automobile manufacturing, and semiconductor
manufacturing. Thus, one can see that accurate and timely methods of failure diagnosis can
enhance the safety, reliability, availability, quality, and economy of industrial processes. The need
of automated mechanisms for the timely and accurate diagnosis of failures is well understood
and appreciated both in industry and in academia. A great deal of research effort has been and
is being spent in the design and development of automated diagnostic systems, and a variety of
schemes, differing both in their theoretical framework and in their design and implementation
philosophy, have been proposed.

The diagnosis of discrete event systems (DES) is a research area that has received a lot of
attention in the last years. Faults may correspond to any discrete event. As an example, in a
telecommunication system, a fault may correspond to a message that is lost or not sent to the
appropriate receiver. Similarly, in a transportation system, a fault may be a traffic light that
does not switch from red to green according to the given schedule. In a manufacturing system
(Viswanadham and Johnson, 1988; Baviehi and Chong, 1994; Lunze and Schroder, 2004; Garcia
et al., 2005), it may be the failure of a certain operation, e.g., a wrong assembly, or a part put
in a wrong buffer, and so on.

A categorization of faults arises from the manner in which faults are reset after they occur. It can
be distinguished between permanent and intermittent faults. A fault is permanent if the recovery
event occurs only due to a repair/replacement of the fault that is controllable and observable.
On the contrary, a fault is intermittent if the recovery event can occur either spontaneously or
through repair/replacement; it tends to be uncontrollable and unobservable. Example is a loose

2



 

�
 

��
 ��

 �
 

�
 

�
 �

 

��
 �

 
�
 

(a) (b) 

Figure 1: An example of net system with a permanent fault (a) and with an intermittent fault (b).

wire that makes and breaks contact spontaneously. It is important to distinguish between these
two types of faults. In fact, intermittent faults may spontaneously recover, making the system
oscillate between non-faulty and fault states. On the other hand, in the case of permanent faults,
the system cannot spontaneously move from a fault state to a non-fault one (Huang et al., 2003).
Examples of permanent and intermittent faults in a given net system are presented in Fig. 1.(a)
and Fig. 1.(b) respectively. In particular, the net system during the nominal behavior produces
a cyclic sequence of “a” followed by “b”. In Fig. 1.(a) a permanent fault to the sensor that
produces “b” is modeled: after the occurrence of the fault f only events a will be produced. On
the contrary, Fig. 1.(b) represents an intermittent fault to the sensor “b”: after the occurrence
of the fault event f the sensor that produces b may start working again.

In the diagnosis framework two different problems can be solved: the problem of diagnosis and
the problem of diagnosability.

Solving a problem of diagnosis means that to each observed string of events is associated a
diagnosis state, such as “normal” or “faulty” or “uncertain”. Solving a problem of diagnosability
is equivalent to determine if the system is diagnosable, i.e., to determine if, once a fault has
occurred, the system can detect its occurrence in a finite number of steps. This paper is focused
on the problem of diagnosis; see Cabasino et al. (2009a) and Cabasino et al. (2009c) for an
extension of the methodology here proposed to the diagnosability problem. However, it is well
known that diagnosability is an essential property that must hold if a diagnosis approach is to
be applied in real life applications. Thus, the manufacturing example considered in this paper
is diagnosable. In particular, it is a parametric example that is diagnosable for any values of the
input parameters. This property has been tested using the MATLAB tool in Pocci (2009). Note
that if a system contains a non diagnosable fault there exist sequences of unbounded length that
lead the system through diagnosis states that are uncertain. This means that when the fault
occurs the diagnoser may not be able to detect its firing.

As discussed in the next session the first results on diagnosis of DES have been presented within
the framework of automata. More recently, the diagnosis problem has also been addressed using
Petri nets (PNs). In fact, the use of PNs offers significant advantages because of their twofold
representation: graphical and mathematical. Moreover, the intrinsically distributed nature of
PNs where the notion of state (i.e., marking) and action (i.e., transition) is local reduces the
computational complexity involved in solving a diagnosis problem.
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This paper is focused on arbitrary labeled PNs where there is an association between sensors
and observable events, while no sensor is available for certain activities — such as faults or other
unobservable but regular transitions — due to budget constraints or technology limitations. It
is assumed that several different transitions might share the same sensor in order to reduce cost
or power consumption. If two transitions are simultaneously enabled and one of them fires it
is impossible to distinguish which one has fired, thus they are called undistinguishable. The
diagnosis approach here presented is based on the definition of four diagnosis states modeling
different degrees of alarm and it applies to all systems whose unobservable subnet is acyclic. Two
are the main advantages of this procedure. First, it is not necessary an exhaustive enumeration
of the states in which the system may be: this is due to the introduction of basis markings.
Secondly, in the case of bounded net systems the most burdensome part of the procedure,
namely building a finite graph called basis reachability graph (BRG), can be moved off-line.

Note that the approach here presented, as most of the approaches dealing with diagnosis of
discrete event systems (Debouk et al., 2000; Sampath et al., 1995, 1998; Zad et al., 2003a),
assumes that the faulty behavior is completely known, thus a fault model is available. Such an
assumption is applicable to interesting classes of problems: this is the case of many manufac-
turing systems where the set of possible faults is often predictable and finite in number (Garcia
et al., 2005; Baviehi and Chong, 1994; Lunze and Schroder, 2004; Viswanadham and Johnson,
1988). Moreover, the proposed diagnosis approach allows one to deal with both permanent and
intermittent faults. However, in the case of intermittent faults, once a fault is detected, even if
a recovery event occurs, the diagnosis state associated to the fault is not reset to a non faulty
state. The procedure can be easily extended to overcome this limitation. In particular, if the
recovery event is observable a simple reset rule on the diagnosis state should be introduced. On
the contrary, if the recovery event is not observable a detection procedure on such an event,
based on the same features of the fault detection procedure here presented, should be applied.

The paper is organized as follows. In Section 2 the state of art of diagnosis for discrete event
systems is illustrated. In Section 3 a background on PNs is provided. In Section 4 are introduced
the definitions of minimal explanations, justifications and basis markings, that are the basic
notions of the diagnosis approach presented in Section 5. In Section 5 the diagnosis states are
defined and a characterization of them in terms of basis markings and j-vectors is given. In
Section 6 it is shown how the most burdensome part of the procedure can be moved off-line in
the case of bounded PNs. In Section 7 a MATLAB toolbox for PNs diagnosis is presented and
in Section 8 some numerical results obtained applying our tool to a manufacturing model taken
from the literature are presented. In Section 9 conclusions are drawn.

2 LITERATURE REVIEW

In this section the state of the art of diagnosis of DES using automata and PNs is presented.

4



2.1 Diagnosis of DES using Automata

In the contest of DES several original theoretical approaches have been proposed using automata.

Lin (1994); Lin et al. (1993) propose a state-based DES approach to failure diagnosis. The
problems of off-line and on-line diagnosis are addressed separately and notions of diagnosability
in both of these cases are presented. The authors give an algorithm for computing a diagnostic
control, i.e., a sequence of test commands for diagnosing system failures. This algorithm is
guaranteed to converge if the system satisfies the conditions for on-line diagnosability.

Sampath et al. (1995, 1996) propose an approach to failure diagnosis where the system is modeled
as a DES in which the failures are treated as unobservable events. The level of detail in a discrete
event model appears to be quite adequate for a large class of systems and for a wide variety of
failures to be diagnosed. The approach is applicable whenever failures cause a distinct change
in the system status but do not necessarily bring the system to a halt. Sampath et al. (1995)
provide a definition of diagnosability in the framework of formal languages and present necessary
and sufficient conditions for diagnosability of systems. Moreover a systematic approach to solve
the problem of diagnosis using diagnosers is introduced.

In a related work Sampath et al. (1998) present an integrated approach to control and diag-
nosis. More specifically, authors present an approach for the design of diagnosable systems by
appropriate design of the system controller and this approach is called active diagnosis. They
formulate the active diagnosis problem as a supervisory control problem. The adopted procedure
for solving the active diagnosis problem is the following: given the non-diagnosable language
generated by the system of interest, they first select an “appropriate” sublanguage of this lan-
guage as the legal language. Choice of the legal language is a design issue and typically depends
on considerations such as acceptable system behavior (which ensures that the system behavior
is not restricted more than necessary in order to eventually make it diagnosable) and detec-
tion delay for the failures. Once the appropriate legal language is chosen, they then design a
controller (diagnostic controller), that achieves a closed-loop language that is within the legal
language and is diagnosable. This controller is designed based on the formal framework and the
synthesis techniques that supervisory control theory provides, with the additional constraint of
diagnosability.

Debouk et al. (2000) deal with the problem of failure diagnosis in DES with decentralized infor-
mation. In particular, they propose a coordinated decentralized architecture consisting of two
local sites communicating with a coordinator that is responsible for diagnosing the failures occur-
ring in the system. They extend the notion of diagnosability, originally introduced in Sampath
et al. (1995) for centralized systems, to the proposed coordinated decentralized architecture. In
particular, they specify three protocols that realize the proposed architecture and analyze the
diagnostic properties of these protocols.

Boel and van Schuppen (2002) address the problem of synthesizing communication protocols and
failure diagnosis algorithms for decentralized failure diagnosis of DES with costly communication
between diagnosers. The costs on the communication channels may be described in terms of
bits and complexity. The costs of communication and computation force the trade-off between
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the control objective of failure diagnosis and that of minimization of the costs of communication
and computation. The results of this paper is an algorithm for decentralized failure diagnosis of
DES for the special case of only two diagnosers.

Zad et al. (2003b) present a state-based approach for on-line passive fault diagnosis. In this
framework, the system and the diagnoser (the fault detection system) do not have to be initialized
at the same time. Furthermore, no information about the state or even the condition (failure
status) of the system before the initiation of diagnosis is required. The design of the fault
detection system, in the worst case, has exponential complexity. A model reduction scheme
with polynomial time complexity is introduced to reduce the computational complexity of the
design. Diagnosability of failures is studied, and necessary and sufficient conditions for failure
diagnosability are derived.

2.2 Diagnosis of DES using Petri nets

Among the first pioneer works dealing with PNs, let us recall the approach of Prock (1991).
He proposes an on-line technique for fault detection that is based on monitoring the number of
tokens residing into P-invariants: when the number of tokens inside P-invariants changes, then
the error is detected.

Sreenivas and Jafari (1993) employ time PNs to model the DES controller and backfiring tran-
sitions to determine whether a given state is invalid. Later on, time PNs have been employed by
Ghazel et al. (2005) that propose a monitoring approach for DES with unobservable events and
to represent the “a priori” known behavior of the system, and track on-line its state to identify
the events that occur.

Hadjicostis and Veghese (1999) use PN models to introduce redundancy into the system and
additional P-invariants allow the detection and isolation of faulty markings.

Wu and Hadjicostis (2005) use redundancy into a given PN to enable fault detection and iden-
tification using algebraic decoding techniques. In this paper the authors consider two types of
faults: place faults that corrupt the net marking, and transition faults that cause a not correct
update of the marking after event occurrence. Although this approach is general, the net mark-
ing has to be periodically observable even if unobservable events occur. Analogously, Lefebvre
and Delherm (2007) investigate on the determination of the set of places that must be observed
for the exact and immediate estimation of faults occurrence.

Miyagi and Riascos (2010) introduce a methodology, based on the hierarchical and modular
integration of PNs, for modeling and analyzing fault-tolerant manufacturing systems that not
only optimizes normal productive processes, but also performs detection and treatment of faults.

Ramirez-Treviño (2007) employ Interpreted PNs to model the system behavior that includes
both events and states partially observable. Based on the Interpreted PN model derived from
an on-line methodology, a scheme utilizing a solution of a programming problem is proposed to
solve the problem of diagnosis.
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Note that all papers in this topic assume that faults are modeled by unobservable transitions.
However, while the above mentioned papers assume that the marking of certain places may be
observed, a series of papers have been recently presented that are based on the assumption that
no place is observable (Basile et al., 2009; Benveniste et al., 2003; Dotoli et al., 2008; Genc and
Lafortune, 2007).

In particular, Genc and Lafortune (2007) propose a diagnoser on the basis of a modular approach
that performs the diagnosis of faults in each module. Subsequently, the diagnosers recover the
monolithic diagnosis information obtained when all the modules are combined into a single
module that preserves the behavior of the underlying modular system. A communication system
connects the different modules and updates the diagnosis information. Even if the approach
does not avoid the state explosion problem, an improvement is obtained when the system can
be modeled as a collection of PN modules coupled through common places.

The main advantage of the approaches in Genc and Lafortune (2007) consists in the fact that,
if the net is bounded, the diagnoser may be constructed off-line, thus moving off-line the most
burdensome part of the procedure. Nevertheless, a characterization of the set of markings
consistent with the actual observation is needed. Thus, large memory may be required.

An improvement in this respect has been given in Benveniste et al. (2003); Basile et al. (2009);
Dotoli et al. (2008).

In particular, Benveniste et al. (2003) use a net unfolding approach for designing an on-line
asynchronous diagnoser. The state explosion is avoided but the on-line computation can be
high due to the on-line building of the PN structures by means of the unfolding.

Basile et al. (2009) build the diagnoser on-line by defining and solving Integer Linear Program-
ming (ILP) problems. Assuming that the fault transitions are not observable, the net marking is
computed by the state equation and, if the marking has negative components, an unobservable
sequence is occurred. The linear programming solution provides the sequence and detects the
fault occurrences. Moreover, an off-line analysis of the PN structure reduces the computational
complexity of the ILP problem.

Dotoli et al. (2008) propose a diagnoser that works on-line in order to avoid the redesign and
the redefinition of the diagnoser when the structure of the system changes. In particular, the
diagnoser waits for an observable event and an algorithm decides whether the system behavior
is normal or may exhibit some possible faults. To this aim, some ILP problems are defined
and provide eventually the minimal sequences of unobservable transitions containing the faults
that may have occurred. The proposed approach is a general technique since no assumption
is imposed on the reachable state set that can be unlimited, and only few properties must be
fulfilled by the structure of the PN modeling the system fault behavior. A problem strictly
related to diagnosis has been recently studied by Dotoli et al. (2010). They address the problem
of identifying the model of the unobservable behavior of PN systems in the industrial automation
framework. Assuming that the fault-free system structure and dynamics are known, the paper
proposes an algorithm that monitors the system on-line, storing the occurred observable event
sequence and the corresponding reached states.

7



A series of contributions dealing with diagnosis of PNs (Cabasino et al., 2010; Lai et al., 2008;
Cabasino et al., 2009b) have also been proposed by the authors of this paper. In particular, in
Cabasino et al. (2010); Lai et al. (2008) free-labeled PNs are considered, while in Cabasino et al.
(2009b), as well as in this paper, the focus is on labeled PNs.

Some authors of this paper have also addressed the problem of diagnosability, namely the prob-
lem of providing a procedure to verify if it is possible to reconstruct the occurrence of fault events
observing words of finite length. In particular, two different approaches for bounded (Cabasino
et al., 2009a) and unbounded (Cabasino et al., 2009c) PNs have been proposed.

Very few other results deal with diagnosability within the framework of PNs.

The first contribution was given by Ushio et al. (1998) that extend a necessary and sufficient
condition for diagnosability given in Sampath et al. (1995, 1996) to unbounded PN. They assume
that the set of places is partitioned into observable and unobservable places, while all transitions
are unobservable in the sense that their occurrences cannot be observed. Starting from the
PN they build a diagnoser called simple ω diagnoser that gives them sufficient conditions for
diagnosability of unbounded PNs.

Chung (2005), in contrast with Ushio’s paper, assumes that part of the transitions of the PN
modelling is observable and shows as the additional information from observed transitions in
general adds diagnosability to the analysed system. Moreover starting from the diagnoser he pro-
poses an automaton called verifier that allows a polynomial check mechanism on diagnosability
but for finite state automata models.

Finally, Wen and Jeng (2005) propose an approach to test diagnosability by checking the struc-
ture property of T-invariants of the nets. They use Ushio’s diagnoser to prove that their method
is correct, however they don’t construct a diagnoser for the system to do diagnosis. Moreover
Wen et al. (2005) also present an algorithm, based on a linear programming problem, of poly-
nomial complexity in the number of nodes for computing a sufficient condition of diagnosability
of DES modeled by PNs.

3 BACKGROUND

In this section the formalism used in the paper is recalled. For more details on PNs the reader
is referred to Murata (1989).

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre– and
post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a nonnegative integer
number of tokens, represented by black dots. The marking of place p is denoted as M(p). A P/T

system or net system 〈N, M0〉 is a net N with an initial marking M0. A transition t is enabled at
M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ = M + C(· , t). One writes M [σ〉 to
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denote that the sequence of transitions σ = tj1 · · · tjk
is enabled at M , and M [σ〉 M ′ to denote

that the firing of σ yields M ′. One writes t ∈ σ to denote that a transition t is contained in σ.

The set of all sequences that are enabled at the initial marking M0 is denoted L(N, M0), i.e.,
L(N, M0) = {σ ∈ T ∗ | M0[σ〉}.

Given a sequence σ ∈ T ∗, let π : T ∗ → Nn be the function that associates to σ a vector y ∈ Nn,
called the firing vector of σ. In particular, y = π(σ) is such that y(t) = k if the transition t is
contained k times in σ.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .
The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted
R(N,M0).

A PN having no directed circuits is called acyclic. A net system 〈N,M0〉 is bounded if there
exists a positive constant k such that, for M ∈ R(N, M0), M(p) ≤ k.

The association between sensors and transitions can be captured by a labeling function L : T →
L ∪ {ε} assigns to each transition t ∈ T either a symbol from a given alphabet L or the empty
string ε.

The set of transitions whose label is ε is denoted as Tu, i.e., Tu = {t ∈ T | L(t) = ε}. Transitions
in Tu are called unobservable or silent. To denotes the set of transitions labeled with a symbol
in L. Transitions in To are called observable because when they fire their label can be observed.
Note that in this paper it is assumed that the same label l ∈ L can be associated to more than
one transition. In particular, two transitions t1, t2 ∈ To are called undistinguishable if they share
the same label, i.e., L(t1) = L(t2). The set of transitions sharing the same label l are denoted
as Tl.

In the following let Cu (Co) be the restriction of the incidence matrix to Tu (To) and nu and no,
respectively, be the cardinality of the above sets. Moreover, given a sequence σ ∈ T ∗, Pu(σ),
resp., Po(σ), denotes the projection of σ over Tu, resp., To.

The word w of events associated to sequence σ is w = Po(σ). Note that the length of a sequence σ

(denoted |σ|) is always greater than or equal to the length of the corresponding word w (denoted
|w|). In fact, if σ contains k′ transitions in Tu then |σ| = k′ + |w|.

Definition 3.1 (Cabasino et al., 2009b) Let 〈N, M0〉 be a labeled net system with labeling
function L : T → L ∪ {ε}, where N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be an
observed word. Let

S(w) = {σ ∈ L(N,M0) | Po(σ) = w}
be the set of firing sequences consistent with w ∈ L∗, and

C(w) = {M ∈ Nm | ∃σ ∈ T ∗ : Po(σ) = w ∧M0[σ〉M}
be the set of reachable markings consistent with w ∈ L∗. ¥

In plain words, given an observation w, S(w) is the set of sequences that may have fired, while
C(w) is the set of markings in which the system may actually be.
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Figure 2: The PN system considered in Sections 3 to 6.

Example 3.2 Consider the PN in Fig. 2. Assume To = {t1, t2, t3, t4, t5, t6, t7} and Tu =
{ε8, ε9, ε10, ε11, ε12, ε13}, where for a better understanding unobservable transitions have been de-
noted εi rather than ti. The labeling function is defined as follows: L(t1) = a, L(t2) = L(t3) = b,
L(t4) = L(t5) = c, L(t6) = L(t7) = d.

First consider w = ab. The set of firing sequences that is consistent with w is S(w) = {t1t2,
t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}, and the set of markings consistent with w is C(w) =
{[0 0 1 0 0 0 0 1 0 0 0]T , [0 0 0 1 0 0 0 1 0 0 0]T , [0 0 0 0 1 0 0 1 0 0 0]T , [0 1 0 0 0 0 0 1 0 0 0]T ,

[0 0 0 0 0 1 0 1 0 0 0]T }.

If w = acd is considered the set of firing sequences that are consistent with w is S(w) =
{t1t5t6, t1t5ε12ε13t7}, and the set of markings consistent with w is C(w) = {[0 1 0 0 0 0 0 1 0 0 0]T }.
Thus two different firing sequences may have fired (the second one also involving silent transi-
tions), but they both lead to the same marking. ¥

Finally, consider the following definition.

Definition 3.3 Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, let
us define the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′

are the restrictions of Pre, Post to T ′. The net N ′ can be thought as obtained from N removing
all transitions in T \ T ′. Let us also write N ′ ≺T ′ N . ¥

4 Characterization of the set of consistent markings

To solve a diagnosis problem, it is essential to be able to compute the set of sequences and
markings consistent with a given observation w. In this section a formalism that allows one to
characterize these sets without resorting to explicit enumeration is provided. The approach is
based on the notions of minimal explanations and basis markings that are introduced in the
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following two subsections.

4.1 Minimal explanations and minimal e-vectors

In this subsection the notion of minimal explanation for unlabeled PNs is introduced and later
it is extended to labeled PNs.

Definition 4.1 Given a marking M and an observable transition t ∈ To, let

Σ(M, t) = {σ ∈ T ∗u | M [σ〉M ′, M ′ ≥ Pre(·, t)}

be the set of explanations of t at M , and let

Y (M, t) = π(Σ(M, t))

be the e-vectors (or explanation vectors), i.e., firing vectors associated to the explanations. ¥

Thus Σ(M, t) is the set of unobservable sequences whose firing at M enables t. Among the above
sequences select those whose firing vector is minimal. The firing vector of these sequences are
called minimal e-vectors.

Definition 4.2 Given a marking M and a transition t ∈ To, let us define1

Σmin(M, t) = {σ ∈ Σ(M, t) | @ σ′ ∈ Σ(M, t) :
π(σ′) � π(σ)}

the set of minimal explanations of t at M , and let us define

Ymin(M, t) = π(Σmin(M, t))

the corresponding set of minimal e-vectors. ¥

Example 4.3 Consider the PN in Fig. 2 previously introduced in Example 3.2. It holds that
Σ(M0, t1) = {ε}. Then Σ(M0, t2) = ∅. Finally, let M = [ 0 0 1 0 0 0 0 1 0 0 0 ]T , it
holds that Σ(M, t5) = {ε, ε8, ε8ε9, ε8ε11, ε8ε9ε10}, while Σmin(M, t5) = {ε}. It follows that
Y (M, t5) = {[0 0 0 0 0 0]T , [1 0 0 0 0 0]T , [1 1 0 0 0 0]T , [1 0 0 1 0 0]T , [1 1 1 0 0 0]T }, and
Ymin(M, t5) = {[0 0 0 0 0 0]T }.

¥

In Corona et al. (2004) it was shown that, if the unobservable subnet is acyclic and backward
conflict-free, then |Ymin(M, t)| = 1.

Different approaches can be used to compute Ymin(M, t), e.g., Boel and Jiroveanu (2004);
Jiroveanu and Boel (2004). In this paper it is suggested an approach that terminates find-
ing all vectors in Ymin(M, t) if applied to nets whose Tu-induced subnet is acyclic. It simply

1Given two vectors x and y, x � y denotes that all components of x are less than or equal to all corresponding

components of y and there exists at least one component of x that is strictly less than the corresponding component

of y.
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requires algebraic manipulations, and is inspired by the procedure proposed by Martinez and
Silva (1982) for the computation of minimal P-invariants. It can be briefly summarized by the
following algorithm.

Algorithm 4.4 [Computation of Ymin(M, t)]

1. Let Γ :=
CT

u Inu×nu

A B
where A := (M − Pre(·, t))T , B := ~0 T

nu
.

2. While A has negative entries do,
2.1. choose an element A(i∗, j∗) < 0;
2.2. let I+ = {i | CT

u (i, j∗) > 0};
2.3. for all i ∈ I+, add to [A | B] a new row

[A(i∗, ·) + CT
u (i, ·) | B(i∗, ·) + ~e T

i ]
where ~ei is the i-th canonical basis vector.

2.4. Remove the row [A(i∗, ·) | B(i∗, ·)] from the table.
3. Remove from B any row that covers other rows.
4. Each row of B is a vector in Ymin(M, t).

¥

The above algorithm can be explained as follows.

Given a marking M and a transition t, Algorithm 4.4 computes the minimal e-vectors , i.e., the
firing vectors of unobservable sequences whose firing at M is necessary to enable t.

At Step 1 a row vector is defined, A = A(1, ·), that has a number of columns equal to number
of places of the net. This vector contains a negative element A(1, j) if place pj does not enable
t at M . In particular, the absolute value |A(1, j)| denotes the number of tokens missing from pj

to enable t at M . Finally, B is initially a null firing vector.

While A has negative entries, one of such entries is chosen and at Step 2.2 it is checked if there
exists an unobservable transition whose firing may increase the number of tokens in pj : if so all
possible such firings (of a single transition) computing the markings reached by each of these
firings are considered. Vector B, in the right part of the table, denotes the corresponding firing
vector. These new markings and the correspondent firing vectors will be the new rows of matrix
A, while the previous row is removed.

Note that at Step 2.3 it may be possible that the new row [A(i∗, ·) + CT
u (i, ·) | B(i∗, ·) + ~e T

i ]
is identical to a row already in the table: if such is the case it is not necessary to add it.

The while loop is repeated until all markings represented by matrix A have non negative com-
ponents.

4.2 Basis markings and j-vectors

In this subsection the definitions of basis markings and justifications, that are the crucial notions
of the diagnosis approach presented in this paper, are introduced.
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In particular, given a sequence of observed events w ∈ L∗, a basis marking Mb is a marking
reached from M0 with the firing of the observed word w and of all unobservable transitions
whose firing is strictly necessary to enable w. Such a sequence of unobservable transitions is
called justification. Note that in general several sequences σo ∈ T ∗o may correspond to the same
w, i.e., there are several sequences of observable transitions such that L(σo) = w that may
have actually fired. Moreover, in general, to any of such sequences σo a different sequence of
unobservable transitions interleaved with it is necessary to make it firable at the initial marking.
Thus the introduction of the following definition of pairs (sequence of transitions in To labeled
w; corresponding justification) is needed.

Definition 4.5 Let 〈N,M0〉 be a net system with labeling function L : T → L ∪ {ε}, where
N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be a given observation. Let

Ĵ (w) = { (σo, σu), σo ∈ T ∗o , L(σo) = w, σu ∈ T ∗u |
[∃σ ∈ S(w) : σo = Po(σ), σu = Pu(σ)]∧
[6 ∃σ′ ∈ S(w) : σo = Po(σ′), σ′u = Pu(σ′)∧

π(σ′u) � π(σu)]}

be the set of pairs (sequence σo ∈ T ∗o with L(σo) = w, corresponding justification of w). More-
over, let

Ŷmin(M0, w) = {(σo, y), σo ∈ T ∗o ,L(σo) = w, y ∈ Nnu |
∃(σo, σu) ∈ Ĵ (w) : π(σu) = y}

be the set of pairs (sequence σo ∈ T ∗o with L(σo) = w, corresponding j-vector).

¥

In simple words, Ĵ (w) is the set of pairs whose first element is the sequence σo ∈ T ∗o labeled w

and whose second element is the corresponding sequence of unobservable transitions interleaved
with σo whose firing enables σo and whose firing vector is minimal. The firing vectors of these
sequences are called j-vectors.

Example 4.6 Consider the PN in Fig. 2 previously introduced in Example 3.2.

Assume w = ab. In this case Ĵ (w) = {(t1t2, ε)} and Ŷmin(M0, w) = {(t1t2,~0)}. Now, consider
w = acd. The set Ĵ (w) = {(t1t5t6, ε), (t1t5t7, ε12ε13)} and Ŷmin(M0, w) = {(t1t5t6,~0), (t1t5t7,
[0 0 0 0 1 1]T )}. ¥

The main difference among minimal explanations and justifications is that the first ones are
functions of a generic marking M and transition t, while justifications are functions of the initial
marking M0 and w. Moreover, as will be claimed in the following Proposition 4.9, in the case of
acyclic unobservable subnets, justifications can be computed recursively summing up minimal
explanations.

Definition 4.7 Let 〈N,M0〉 be a net system with labeling function L : T → L ∪ {ε}, where
N = (P, T, Pre, Post) and T = To ∪ Tu. Let w be a given observation and (σo, σu) ∈ Ĵ (w) be
a generic pair (sequence of observable transitions labeled w; corresponding justification). The
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marking
Mb = M0 + Cu · y + Co · y′, y = π(σu), y′ = π(σo),

i.e., the marking reached firing σo interleaved with the justification σu, is called basis marking
and y is called its j-vector (or justification-vector). ¥

Obviously, because in general more than one justification exists for a word w (the set Ĵ (w) is
generally not a singleton), the basis marking may be not unique as well.

Definition 4.8 Let 〈N,M0〉 be a net system with labeling function L : T → L ∪ {ε}, where
N = (P, T, Pre, Post) and T = To ∪ Tu. Let w ∈ L∗ be an observed word. Let

M(w) = {(M, y) | (∃σ ∈ S(w) : M0[σ〉M) ∧
(∃(σo, σu) ∈ Ĵ (w) : σo = Po(σ),

σu = Pu(σ), y = π(σu))}
be the set of pairs (basis marking, relative j-vector) that are consistent with w ∈ L∗. ¥

Note that the set M(w) does not keep into account the sequences of observable transitions that
may have actually fired. It only keeps track of the basis markings that can be reached and
of the firing vectors relative to sequences of unobservable transitions that have fired to reach
them. Indeed, this is the information really significant when performing diagnosis. The notion
of M(w) is fundamental to provide a recursive way to compute the set of minimal explanations.

Proposition 4.9 Given a net system 〈N,M0〉 with labeling function L : T → L ∪ {ε}, where
N = (P, T, Pre, Post) and T = To ∪ Tu. Assume that the unobservable subnet is acyclic. Let
w = w′l be a given observation.

It holds:
Ŷmin(M0, w

′l) = {(σo, y) | σo = σ′ot ∧ y = y′ + e :
(σ′o, y′) ∈ Ŷmin(M0, w

′),
(t, e) ∈ Ŷmin(M ′

b, l) and L(t) = l},
where M ′

b = M0 +Cu · y′+Co ·π(σ′o) and Ŷmin(M ′
b, l) is the set of pairs (transition labeled l that

may have fired at M ′
b, corresponding j-vector) introduced in Definition 4.5.

Proof: Let us prove this result by induction on the length of the observed string w.

(Basis step) For w = ε the result trivially follows from Definitions 4.5 and 4.7.

(Inductive step) Assume the result is valid for w′. Let us prove it is also true for w = w′l where
l = L(t).

In fact, if there exists a sequence w = w′l ∈ L∗, such that M0[σo〉M̃ with L(σo) = w then there
exist sequences σ′ and σ′′ such that

M0[σ′〉M ′[t〉M ′′[σ′′〉M̃

where L(σ′) = w′, L(t) = l and σ′′ ∈ T ∗u . By induction, there exists (M ′
b, y

′) ∈M(w′) such that

M0[σ′a〉M ′
b[σ

′
b〉M ′[t〉M ′′[σ′′〉M̃
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where L(σ′a) = w′, π(σ′a) = π(σ′o) + y′ and σ′b ∈ T ∗u . Now there exists at least one minimal
explanation2 σ′c ∈ Σ̂min(M ′

b, l) such that π(σ′c) ≤ π(σ′b) and, since the Tu-induced subnet is
acyclic the state equation gives necessary and sufficient conditions for the reachability, thus the
marking reached is not dependent by the order of the firing of the unobservable transitions, thus

M0[σ′a〉M ′
b[σ

′
c〉M ′

c[t〉M ′
d[σ

′
d〉M ′′[σ′′〉M̃ (1)

where π(σ′c) + π(σ′d) = π(σ′b) and (M ′
d, π(σ′c)) ∈M(w′l) = M(w). From eq. (1) it holds

M ′
b = M0 + C · π(σ′a) = M0 + Cu · y′ + Co · π(σ′o),

M ′
d = M ′

b + Cu · π(σ′c) + Co · ~t = M0 + Cu · (y′ + π(σ′c)) + Co · (π(σ′o) + ~t).

Thus σo = σ′ot and y = y′ + π(σ′c), where (σ0, y) ∈ Ŷmin(M0, w
′l). ¤

Example 4.10 Consider the PN in Fig. 2 previously introduced in Example 3.2.

Assume w = ab. As shown in Example 4.6 Ĵ (w) = {(t1t2, ε)}, thus the basis marking is
Mb = [0 0 1 0 0 0 0 1 0 0 0]T , and M(w) = {(Mb,~0)}.

Now, consider w = acd. As computed in Example 4.6, the set Ĵ (w) = {(t1t5t6, ε), (t1t5t7, ε12ε13)}.
All the above j-vectors lead to the same basis marking Mb = [0 1 0 0 0 0 0 1 0 0 0]T thus
M(w) = {(Mb,~0), (Mb, [0 0 0 0 1 1]T )}.

¥

By Proposition 4.9, under the assumption of acyclicity of the unobservable subnet, the setM(w)
can be easily constructed as follows.

Algorithm 4.11 [Computation of the basis markings and j-vectors]

1. Let w = ε.
2. Let M(w) = {(M0,~0)}.
3. Wait until a new label l is observed.
4. Let w′ = w and w = w′l.
5. Let M(w) = ∅.
6. For all M ′ such that (M ′, y′) ∈M(w′) , do

6.1. for all t ∈ Tl, do
6.1.1. for all e ∈ Ymin(M ′, t), do
6.1.1.1. let M = M ′ + Cu · e + C(·, t),
6.1.1.2. for all y′ such that (M ′, y′) ∈M(w′), do

6.1.2.1. let y = y′ + e,
6.1.2.2. let M(w) = M(w) ∪ {(M, y)}.

7. Goto Step 3.

¥
2In fact, being the Tu−induced subnet acyclic, this is always true for all sequences σ′c enabled at M and such

that π(σ′c) = π(σ′b) (in such case π(σ′d) = ~0).

15



In simple words, the above algorithm can be explained as follows. Assume that, after a certain
word w′ has been observed, a new observable t fires and its label l = L(t) is observed. Consider
all basis markings at the observation w′ and select among them those that may have allowed
the firing of at least one transition t ∈ Tl, also taking into account that this may have required
the firing of appropriate sequences of unobservable transitions. In particular, let us focus on the
minimal explanations, and thus on the corresponding minimal e-vectors (Step 6.1.1). Finally,
update the set M(w′t) including all pairs of new basis markings and j-vectors, taking into
account that for each basis marking at w′ it may correspond more than one j-vector.

Definition 4.12 Let 〈N,M0〉 be a net system where N = (P, T, Pre, Post) and T = To ∪ Tu.
Assume that the unobservable subnet is acyclic. Let w ∈ T ∗o be an observed word. Let

Mbasis(w) = {M ∈ Nm | ∃y ∈ Nnu and (M, y) ∈M(w)}

be the set of basis markings at w. Moreover, denote as

Mbasis =
⋃

w∈T ∗o

Mbasis(w)

the set of all basis markings for any observation w. ¥

Note that if the net system is bounded then the setMbasis is finite being the set of basis markings
a subset of the reachability set.

In the following theorem a result proved for unlabeled PNs (Cabasino et al., 2010) is extended
to labeled PNs.

Theorem 4.13 Consider a net system 〈N, M0〉 whose unobservable subnet is acyclic. For any
w ∈ L∗ it holds that

C(w) = {M ∈ Nm | M = Mb + Cu · y : y ≥ ~0 and Mb ∈Mbasis(w)}.

Proof: This proof has been given for unlabeled PNs in Cabasino et al. (2010). Also in the case
of labeled PNs a formal proof can be given by induction on the length of observed string w,
following the same arguments in the proof of Proposition 4.9. ¤

The above result shows that the set C(w) can be characterized in linear algebraic terms given
the set Mbasis(w), thus not requiring exhaustive enumeration. This is the main advantage of
the approach here presented.

5 Diagnosis using Petri nets

Assume that the set of unobservable transitions is partitioned into two subsets, namely Tu =
Tf ∪ Treg where Tf includes all fault transitions (modeling anomalous or fault behavior), while
Treg includes all transitions relative to unobservable but regular events. The set Tf is further
partitioned into r different subsets T i

f , where i = 1, . . . , r, that model the different fault classes.
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Usually, fault transitions that belong the same fault class are transitions that represent similar
physical faulty behavior.

The following definition introduces the notion of diagnoser.

Definition 5.1 A diagnoser is a function ∆ : L∗×{T 1
f , T 2

f , . . . , T r
f } → {0, 1, 2, 3} that associates

to each observation w ∈ L∗ and to each fault class T i
f , i = 1, . . . , r, a diagnosis state.

• ∆(w, T i
f ) = 0 if for all σ ∈ S(w) and for all tf ∈ T i

f it holds tf 6∈ σ.

In such a case the ith fault cannot have occurred, because none of the firing sequences
consistent with the observation contains fault transitions of class i.

• ∆(w, T i
f ) = 1 if:

(i) there exist σ ∈ S(w) and tf ∈ T i
f such that tf ∈ σ but

(ii) for all (σo, σu) ∈ Ĵ (w) and for all tf ∈ T i
f it holds that tf 6∈ σu.

In such a case a fault transition of class i may have occurred but is not contained in any
justification of w.

• ∆(w, T i
f ) = 2 if there exist (σo, σu), (σ′o, σ′u) ∈ Ĵ (w) such that

(i) there exists tf ∈ T i
f such that tf ∈ σu;

(ii) for all tf ∈ T i
f , tf 6∈ σ′u.

In such a case a fault transition of class i is contained in one (but not in all) justification
of w.

• ∆(w, T i
f ) = 3 if for all σ ∈ S(w) there exists tf ∈ T i

f such that tf ∈ σ.

In such a case the ith fault must have occurred, because all firable sequences consistent
with the observation contain at least one fault in T i

f .

¥

Note that assuming that certain transitions belong to the same fault class is not a restrictive
assumption. On the contrary, it makes the presentation more general. If one is interested
in reconstructing the occurrence of a particular transition tf , with no ambiguity with other
transitions, it is sufficient to define a fault class only containing tf .

Example 5.2 Consider the PN in Fig. 2 previously introduced in Example 3.2. Let Tf =
{ε11, ε12}. Assume that the two fault transitions belong to different fault classes, i.e., T 1

f = {ε11}
and T 2

f = {ε12}.

Let us observe w = a. Then ∆(w, T 1
f ) = ∆(w, T 2

f ) = 0, being Ĵ (w) = {(t1, ε)} and S(w) = {t1}.
In simple words no fault of both fault classes may have occurred.

Let us observe w = ab. Then ∆(w, T 1
f ) = 1 and ∆(w, T 2

f ) = 0, being Ĵ (w) = {(t1t2, ε)} and
S(w) = {t1t2, t1t2ε8, t1t2ε8ε9, t1t2ε8ε9ε10, t1t2ε8ε11}. This means that a fault of the first fault
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class may have occurred (firing the sequence t1t2ε8ε11) but it is not contained in any justification
of ab, while no fault of the second fault class can have occurred.

Now, consider w = abb. In this case ∆(w, T 1
f ) = 2 and ∆(w, T 2

f ) = 0, being Ĵ (w) =
{(t1t2t2, ε8ε9ε10), (t1t2t3, ε8ε11)} and S(w) = {t1t2ε8ε9ε10t2, t1t2ε8ε9ε10t2ε8, t1t2ε8ε9ε10t2ε8ε9,

t1t2ε8ε9ε10t2ε8ε9ε10, t1t2ε8ε9ε10t2ε8ε11, t1t2ε8ε11t3}. This means that no fault of the second
fault class can have occurred, while a fault of the first fault class may have occurred since one
justification does not contain ε11 and one justification contains it.

Finally, consider w = abbccc. In this case ∆(w, T 1
f ) = 3 and ∆(w, T 2

f ) = 1. In fact since Ĵ (w) =
{(t1t2t3t5t4t4, ε8ε11), (t1t2t3t4t5t4, ε8ε11), (t1t2t3t4t4t5, ε8ε11), (t1t2t3t4t4t4, ε8ε11)} a fault of the
first fault class must have occurred, while a fault of the second fault class may have occurred
(e.g. t1t2ε8ε11t3t4t4t5ε12) but it is not contained in any justification of w. ¥

The following two results proved in Cabasino et al. (2010) for unlabeled PNs still hold in the
case of labeled PNs. In particular, the following proposition presents how the diagnosis states
can be characterized analyzing basis markings and justifications.

Proposition 5.3 Consider an observed word w ∈ L∗.

• ∆(w, T i
f ) ∈ {0, 1} iff for all (M, y) ∈M(w) and for all tf ∈ T i

f it holds y(tf ) = 0.

• ∆(w, T i
f ) = 2 iff there exist (M, y) ∈M(w) and (M ′, y′) ∈M(w) such that:

(i) there exists tf ∈ T i
f such that y(tf ) > 0,

(ii) for all tf ∈ T i
f , y′(tf ) = 0.

• ∆(w, T i
f ) = 3 iff for all (M, y) ∈M(w) there exists tf ∈ T i

f such that y(tf ) > 0.

Proof: By Definition 5.1, ∆(w, T i
f ) = 0 iff no fault transition tf ∈ T i

f is contained in any firing
sequence that is consistent with w, while ∆(w, T i

f ) = 1 iff no fault tf ∈ T i
f is contained in any

justification of w but there exists at leat one sequence that is consistent with w that contains a
transition tf ∈ T i

f . Therefore, a necessary and sufficient condition to have ∆(w, T i
f ) ∈ {0, 1} is

that for all j-vectors y at w and all tf ∈ T i
f it is y(tf ) = 0, thus proving the first item.

Analogously, ∆(w, T i
f ) = 2 if a transition tf ∈ T i

f is contained in at least one (but not in all)
justification of w. Thus, to have ∆(w, T i

f ) = 2 it is necessary and sufficient that there exists at
least one j-vector y that contains at least one transition tf ∈ T i

f and one j-vector y′ that does
not contain transitions tf ∈ T i

f , thus proving the second item.

Finally, given an observed word w and a fault class T i
f it holds ∆(w, T i

f ) = 3 if all firable sequences
consistent with w contain at least one fault transition tf ∈ T i

f . Thus, to have ∆(w, T i
f ) = 3 it

is necessary and sufficient that all justifications contain at least one transition tf ∈ T i
f . This

proves the third item. ¤

The following proposition shows how to distinguish between diagnosis states 0 and 1.

Proposition 5.4 For a PN whose unobservable subnet is acyclic, let w ∈ L∗ be an observed
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word such that for all (M, y) ∈M(w) it holds y(tf ) = 0 ∀ tf ∈ T i
f . Consider the constraint set

T (M, T i
f ) =





M + Cu · z ≥ ~0,∑

tf∈T i
f

z(tf ) > 0,

z ∈ Nnu .

(2)

• ∆(w, T i
f ) = 0 if ∀ (M, y) ∈M(w) the constraint set (2) is not feasible.

• ∆(w, T i
f ) = 1 if ∃ (M, y) ∈M(w) such that the constraint set (2) is feasible.

Proof: Let w ∈ L∗ be an observed word such that ∀(M,y) ∈M(w) it is y(tf ) = 0 ∀ tf ∈ T i
f . By

Definition 5.1 it immediately follows that:

• ∆(w, T i
f ) = 0 if ∀(M, y) ∈ M(w) and ∀tf ∈ T i

f there does not exist a sequence σ ∈ T ∗u
such that M [σ〉 and tf ∈ σ;

• ∆(w, T i
f ) = 1 if ∃ at least one (M, y) ∈M(w) and a sequence σ ∈ T ∗u such that for at least

one tf ∈ T i
f , M [σ〉 and tf ∈ σ.

Now, as proved in Corona et al. (2007) if a generic PN is acyclic its state equation gives necessary
and sufficient conditions for marking reachability. Therefore, if such a result is applied to the
unobservable subnet, that is acyclic by assumption, it can be concluded that the set T (M, T i

f )
characterizes the reachability set of the unobservable net at marking M . Thus, due to this fact
and the above two items, it can be concluded that there exists a sequence containing a transition
tf ∈ T i

f firable at M on the unobservable subnet if and only if T (M,T i
f ) is feasible. ¤

On the basis of the above two results, if the unobservable subnet is acyclic, diagnosis may be
carried out by simply looking at the setM(w) for any observed word w and, should the diagnosis
state be either 0 or 1, by additionally evaluating whether the corresponding integer constraint
set (2) admits a solution.

Example 5.5 Consider the PN in Fig. 2 where T 1
f = {ε11} and T 2

f = {ε12}.

Let w = ab. In this case M(w) = {(M1
b ,~0)}, where M1

b = [0 0 1 0 0 0 0 1 0 0 0]T . Being
T (M1

b , T i
f ) feasible only for i = 1 it holds ∆(w, T 1

f ) = 1 and ∆(w, T 2
f ) = 0.

Let w = abb. It is M(w) = {(M1
b , [1 1 1 0 0 0]T ), (M2

b , [1 0 0 1 0 0]T )}, where M2
b =

[0 0 0 0 0 0 1 1 0 0 0]T . It is ∆(w, T 1
f ) = 2 and ∆(w, T 2

f ) = 0 being both T (M1
b , T 2

f ) and
T (M2

b , T 2
f ) not feasible.

Let w = abbccc. In this case M(w) = {(M3
b , [1 1 1 0 0 0]T ), (M4

b , [1 1 1 0 0 0]T )}, where
M3

b = [0 0 0 0 0 0 1 1 0 0 0]T and M4
b = [0 0 0 0 0 0 1 0 1 0 0]T . It is ∆(w, T 1

f ) = 3 and being
T (M4

b , T 2
f ) feasible it holds ∆(w, T 2

f ) = 1. ¥
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The approach described above requires to compute for each observed word w and for each fault
class i a diagnosis state ∆(w, T i

f ). Let us conclude this section with a brief discussion on the
definition of diagnosis states ∆ = 1 and ∆ = 2. Firstly, observe that both the diagnosis states
correspond to uncertain states even if a higher degree of alarm is associated to ∆ = 2 with
respect to ∆ = 1. Secondly, observe that an advantage in terms of computational complexity
can be obtained by splitting the uncertain condition in two diagnosis states, namely ∆ = 1
and ∆ = 2. In fact, the diagnosis approach is based on the preliminary computation of the set
M(w). If ∆ = 2 or ∆ = 3 no additional computation is required. On the contrary to distinguish
among ∆ = 0 and ∆ = 1 an integer programming problem should be solved.

6 Basis Reachability Graph

Diagnosis approach described in the previous section can be applied both to bounded and
unbounded PNs. The proposed approach is an on-line approach that for each new observed
event updates the diagnosis state for each fault class computing the set of basis markings and
j-vectors. Moreover if for the fault class T i

f is necessary to distinguish between diagnosis states
0 and 1, it is also necessary to solve for each basis marking Mb the constraint set T (Mb, T

i
f ).

In this section it is shown that if the considered net system is bounded, the most burdensome
part of the procedure can be moved off-line defining a graph called Basis Reachability Graph
(BRG).

Definition 6.1 The BRG is a deterministic graph that has as many nodes as the number of
possible basis markings.

To each node is associated a different basis marking M and a row vector with as many entries
as the number of fault classes. The entries of this vector may only take binary values: 1 if
T (M, T i

f ) is feasible, 0 otherwise.

Arcs are labeled with observable events in L and e-vectors. More precisely, an arc exists from
a node containing the basis marking M to a node containing the basis marking M ′ if and only
if there exists a transition t for which an explanation exists at M and the firing of t and one of
its minimal explanations leads to M ′. The arc going from M to M ′ is labeled (L(t), e), where
e ∈ Ymin(M, t) and M ′ = M + Cu · e + C(·, t). ¥

Note that the number of nodes of the BRG is always finite being the set of basis markings a
subset of the set of reachable markings, that is finite being the net bounded. Moreover, the row
vector of binary values associated to the nodes of the BRG allows us to distinguish between the
diagnosis state 1 or 0.

The main steps for the computation of the BRG in the case of labeled PNs are summarized in
the following algorithm.

Algorithm 6.2 [Computation of the BRG]
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1. Label the initial node (M0, x0) where ∀i = 1, . . . , r,

x0(T i
f ) =

{
1 if T (M0, T

i
f ) is feasible,

0 otherwise.
Assign no tag to it.

2. While nodes with no tag exist
select a node with no tag and do
2.1. let M be the marking in the node (M, x),
2.2. for all l ∈ L

2.2.1. for all t : L(t) = l ∧ Ymin(M, t) 6= ∅, do
• for all e ∈ Ymin(M, t), do
• let M ′ = M + Cu · e + C(·, t),
• if @ a node (M, x) with M = M ′, do
• add a new node to the graph containing
(M ′, x′) where ∀i = 1, . . . , r,

x′(T i
f ) =

{
1 if T (M ′, T i

f ) is feasible,
0 otherwise.

and arc (l, e) from (M, x) to (M ′, x′)
• else
• add arc (l, e) from (M,x) to (M ′, x′)
if it does not exist yet

2.3. tag the node ”old”.
3. Remove all tags.

¥

The algorithm constructs the BRG starting from the initial node to which it corresponds the
initial marking and a binary vector defining which classes of fault may occur at M0. Now,
consider all the labels l ∈ L such that there exists a transition t with L(t) = l for which a
minimal explanation at M0 exists. For each of these transitions compute the marking resulting
from firing t at M0 + Cu · e, for any e ∈ Ymin(M0, t). If a pair (marking, binary vector) not
contained in the previous nodes is obtained, a new node is added to the graph. The arc going
from the initial node to the new node is labeled (l, e). The procedure is iterated until all
basis markings have been considered. Note that the approach here presented always requires
to enumerate a state space that is a subset (usually a strict subset) of the reachability space.
However, as in general for diagnosis approaches, the combinatory explosion cannot be avoided.

Example 6.3 Consider again the PN in Fig. 2, where To = {t1, t2, t3, t4, t5, t6, t7}, Tu =
{ε8, ε9, ε10, ε11, ε12, ε13}, T 1

f = {ε11} and T 2
f = {ε12}. The labeling function is defined as

follows: L(t1) = a, L(t2) = L(t3) = b, L(t4) = L(t5) = c, L(t6) = L(t7) = d.

The BRG is shown in Fig. 3. The notation used in in this figure is detailed in Tables 1 and
2. Each node contains a different basis marking and a binary row vector of dimension two,
being two the number of fault classes. As an example, the binary vector [0 0] is associated to
M0 because T (M0, T

i
f ) is not feasible for i = 1 and i = 2. From node M0 to node M1 there

is one arc labeled a with the null vector as minimal explanation. The node containing the
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M0 [ 1 0 0 0 0 0 0 0 0 0 0 ]T

M1 [ 0 1 0 0 0 0 0 1 0 0 0 ]T

M2 [ 0 1 0 0 0 0 0 0 1 0 0 ]T

M3 [ 0 0 1 0 0 0 0 1 0 0 0 ]T

M4 [ 0 0 1 0 0 0 0 0 1 0 0 ]T

M5 [ 0 0 0 0 0 0 1 1 0 0 0 ]T

M6 [ 0 0 0 0 0 0 1 0 1 0 0 ]T

Table 1: The markings of the BRG in Fig. 3.

 

M0, [0 0] 

a,0 

M1, [0 0] 

M2, [0 1] 

d,0 
c,0 

M6, [0 1] 

d,e1 

b, e3 
 

M3, [1 0] 

M4, [1 1] 

b,0 

b,e2 

b,0 

M5, [0 0] b, e3 

b,e2 

d,0 

c,0 

c,0 

c,0 
d,e1 

c,0 

d,0 d,e1 

Figure 3: The BRG of the PN in Fig. 2.

basis marking M2 has binary vector [0 1], because T (M2, T
i
f ) is feasible only for i = 2. Node

(M2, [0 1]) has two output arcs both labeled with d and both directed to node (M1, [0 0]) with
two different minimal explanations ~0 and e1, respectively, plus another output arc (b,~0) directed
to node (M4, [1 1]). ¥

The following algorithm summarizes the main steps of the on-line diagnosis carried out by
looking at the BRG.

Algorithm 6.4 [Diagnosis using the BRG]

1. Let w = ε.
2. Let M(w) = {(M0,~0)}.
3. Wait until a new observable transition fires.

Let l be the observed event.
4. Let w′ = w and w = w′l.
5. Let M(w) = ∅, [Computation of M(w)]
6. For all nodes containing M ′ : (M ′, y′) ∈M(w′), do

6.1. for all arcs exiting from the node with M ′, do
6.1.1. let M be the marking of the output node
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and e be the minimal e-vector on the edge from M ′ to M ,
6.1.2. for all y′ such that (M ′, y′) ∈M(w′), do

6.1.2.1. let y = y′ + e,
6.1.2.2. let M(w) = M(w) ∪ {(M,y)},

7. for all i = 1, . . . , r, do [Computation of the diagnosis state]
7.1. if ∀ (M, y) ∈M(w) ∧ ∀tf ∈ T i

f it is y(tf ) = 0, do
7.1.1. if ∀ (M,y) ∈M(w) it holds x(i) = 0,

where x is the binary vector in node M , do
7.1.1.1. let ∆(w, T i

f ) = 0,
7.1.2. else

7.1.2.1. let ∆(w, T i
f ) = 1,

7.2. if ∃ (M, y) ∈M(w) and (M ′, y′) ∈M(w) s.t.:
(i) ∃tf ∈ T i

f such that y(tf ) > 0,
(ii) ∀tf ∈ T i

f , y′(tf ) = 0, do
7.2.1. let ∆(w, T i

f ) = 2,
7.3. if ∀ (M, y) ∈M(w) ∃tf ∈ T i

f : y(tf ) > 0, do
7.3.1. let ∆(w, T i

f ) = 3.
8. Goto Step 3.

¥

Steps 1 to 6 of Algorithm 6.4 enable us to compute the set M(w). When no event is observed,
namely w = ε, then M(w) = {(M0,~0)}. Now, assume that a label l is observed. All couples
(M, y) such that an arc labeled l exits from the initial node and ends in a node containing the
basis marking M are included in the set M(l). The corresponding value of y is equal to the
e-vector in the arc going from M0 to M , being ~0 the j-vector relative to M0. In general, if
w′ is the actual observation, and a new event labeled l fires, one has to consider all couples
(M ′, y′) ∈ M(w′) and all nodes that can be reached from M ′ with an arc labeled l. Let M be
the basis marking of the generic resulting node. Include in M(w) = M(w′l) all couples (M,y),
where for any M , y is equal to the sum of y′ plus the e-vector labeling the arc from M ′ to M .

Step 7 of Algorithm 6.4 computes the diagnosis state. Consider the generic ith fault class. If
∀(M, y) ∈ M(w) and ∀tf ∈ T i

f it holds y(tf ) = 0, the ith entry of all the binary row vectors
associated to the basis markings M has to be checked, such that (M,y) ∈M(w). If these entries
are all equal to 0, it holds ∆(w, T i

f ) = 0, otherwise it holds ∆(w, T i
f ) = 1. On the other hand, if

there exists at least one pair (M, y) ∈M(w) with y(tf ) > 0 for any tf ∈ T i
f , and there exists at

least one pair (M ′, y′) ∈M(w) with y(tf ) = 0 for all tf ∈ T i
f , then ∆(w, T i

f ) = 2. Finally, if for
all pairs (M, y) ∈M(w), y(tf ) > 0 for any tf ∈ T i

f , then ∆(w, T i
f ) = 3.

The following example shows how to perform diagnosis on-line simply looking at the BRG.

Example 6.5 Consider the PN in Fig. 2 and its BRG in Fig. 3. Let w = ε. By looking at the
BRG it holds that ∆(ε, T 1

f ) = ∆(ε, T 2
f ) = 0 being both entries of the row vector associated to

M0 equal to 0.

Now, consider w = ab. In such a case M(w) = {(M3,~0)}. It holds ∆(ab, T 1
f ) = 1 and

23



ε8 ε9 ε10 ε11 ε12 ε13

e1 0 0 0 0 1 1
e2 1 1 1 0 0 0
e3 1 0 0 1 0 0

Table 2: The e-vectors of the BRG in Fig. 3.

∆(ab, T 2
f ) = 0 being the row vector in the node equal to [1 0].

Finally, for w = abbc it holds ∆(abbc, T 1
f ) = 2 and ∆(abbc, T 2

f ) = 1. In fact M(w) =
{(M4, y1), (M5, y2), (M6, y3)}, where y1 = e2, y2 = y3 = e3, and the row vectors associated
to M4 and M5 are respectively [1 1], [0 0] and [0 1]. ¥

Let us conclude this section observing that the BRG is a graph containing all information
necessary for the construction of an observer. In the case of bounded PNs a modified version
of the BRG is used to build the diagnoser that it is used to study the diagnosability of the
system (Cabasino et al., 2009a). Note that, if an automaton has a number N of states, in the
worst case (that depends on the labeling of events) the cardinality of the set of nodes of its
observer is 2N − 1 (Cassandras and Lafortune, 2007). On the contrary, the number of nodes
of the BRG is equal to the number of basis markings that is at most equal to the number of
reachable markings.

7 Matlab toolbox

In this section it is briefly illustrated a MATLAB function (BRG.m) that, given a bounded
labeled PN, builds the basis reachability graph. This function, together with other MATLAB
functions for diagnosis of labeled PNs, can be downloaded on the web (Pocci, 2009).

The inputs of the MATLAB function BRG.m are:

• the structure of the net, i.e., the matrices Pre and Post;

• the initial marking M0;

• a cell array F that has as many rows as the number of fault classes: each row contains the
indices of the transitions that belong to the corresponding class;

• a cell array L that has as many rows as the cardinality of the considered alphabet: each
row contains the indices of the observable transitions having the corresponding label;

• a cell array E that contains in each row a character (or a string of characters) defining a
label of the considered alphabet. The cell array E is ordered according to L.

As an example, for the PN in Fig. 2 introduced in the Example 3.2 the cell arrays F, L and E

are:
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Figure 4: Layout of the manufacturing system.

F = {[11]; [12]}, L = {[1]; [2 3]; [4 5]; [6 7]}, E = {[′a′]; [′b′]; [′c′]; [′d′]}.

The output of the MATLAB function BRG.m is a cell array T that univocally identifies the
resulting BRG. It has as many rows as the number of nodes of the BRG. A different row is
associated to each node and contains the following information:

• an identifier number of the node;

• the transpose of the basis marking M i
b associated to the node;

• a vector with as many columns as the number of fault classes: the jth element is equal to
xi(T

j
f ) evaluated at M i

b . Thus, xi(T
j
f ) = 0 if T (M i

b , T
j
f ) is not feasible, 1 otherwise;

• the indices of the transitions enabled at the node;

• the identifier number of the nodes that are reached firing an enabled transition and the
corresponding j-vector.

8 A manufacturing example

In this section the diagnosis approach proposed in Section 5 is applied to an example modeling a
manufacturing system. The considered net is similar to the one described in Zhou and DiCesare
(1993). The automated manufacturing system layout is shown in Fig. 4 and the corresponding
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Figure 5: Petri net model of the manufacturing system in Fig. 4.
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PN is depicted in Fig. 5, where thick transitions represent observable events and thin transitions
represent unobservable events.

The plant consists of four machines (M1 to M4), four robots (R1 to R4), one AGV system
(AGV), one buffer of finite capacity (B), two inputs of parts to be processed (I1 and I2) and two
outputs for the processed parts (O1 and O2). The two production lines produce two different
kinds of final product.

This PN has 46 places and 39 transitions. The marking of place p41 (γ) represents the number
of free slots of the buffer, while α (the marking of place p1) and β (the marking of place p16)
represent the number of parts of type 1 and 2, respectively. Places from 42 to 46 represent the
faulty behavior (in the sense that these places are marked only if a fault has occurred).

The set of observable transitions To is composed by transitions from t1 to t13, the set of unobserv-
able but regular transitions Treg is composed by transitions from ε14 to ε35 and the set of fault
transitions is partitioned into three fault classes: T 1

f = {ε36}, T 2
f = {ε37} and T 3

f = {ε38, ε39}.
The first fault class models a fault in the robot R3 that moves a part from the output buffer of
machine M1 to the input buffer of machine M2, rather than putting it in the buffer B. Analo-
gously, the second fault class models a fault in the robot R4 that moves a part from the output
buffer of machine M3 to the input buffer of machine M4, rather than putting it in the buffer B.
Finally, the third fault class models a fault in the AGV. In particular, when the AGV is working
correctly, a processed part exits the system and a new one is admitted. If a fault in the AGV
occurs parts do not exit the production lines, and are not replaced by new input parts. However,
in faulty behavior the sensors associated to the AGV may indefinitely produce the same signal
they provide when a part regularly exits the production line.

Assume that each robot is equipped of a sensor that observes each time that the robot picks up
a part. In particular, for R1 L(t1) = a and L(t6) = e, for R2 L(t4) = c and L(t9) = l, for R3
L(t2) = L(t3) = L(t11) = b, for R4 L(t7) = L(t8) = L(t12) = g. Moreover assume it is possible
to observe each time that a part is moved by the AGV L(t5) = L(t10) = L(t13) = d.

In this section the results of the computation of the BRG for several initial states are pre-
sented. In particular, the cardinality of the number of nodes of the BRG, denoted as |BRG|,
are summarized in Table 3 for different values of α and β.

The table also shows the cardinality of the reachability set R , i.e., |R|. This is an extremely im-
portant parameter to appreciate the advantage of using basis markings rather than exhaustively
enumerating the set of reachable states, as it typically occurs in the automata based approaches.
The value of |R| has been computed using the PN tool TINA (Time PNs Analyzer) (see TINA
website: http://homepages.laas.fr/bernard/tina).

— Column 1: (α+β) represents the total number of parts to be processed by the two production
lines.

— Columns 2 and 3: α and β represent the number of parts to be processed in the first and
second production line, respectively.
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α + β α β |R| |BRG|
2 2 0 27 9
2 1 1 1,640 170
2 0 2 1 1

3 3 0 27 9
3 2 1 10,260 604
3 1 2 10,260 604
3 0 3 1 1

4 4 0 27 9
4 3 1 35,098 1,343
4 2 2 62,210 2,128
4 1 3 35,098 1,343

5 5 0 27 9
5 4 1 78,404 2,294
5 3 2 205,761 4,691
5 2 3 205,761 4,691
5 1 4 78,404 2,294

6 6 0 27 9
6 5 1 131,614 3,325
6 4 2 448,306 7,963
6 3 3 655,472 10,250
6 2 4 448,306 7,963
6 1 5 131,614 3,325

7 7 0 27 9
7 6 1 186,808 4,373
7 5 2 741,035 11,503
7 4 3 1,383,391 17,273
7 3 4 1,383,391 17,273
7 2 5 741,035 11,503
7 1 6 186,808 4,373

Table 3: Numerical results in the case of γ = 8.

— Column 4 shows the number of nodes |R| of the reachability graph.

— Column 5 shows the number of nodes |BRG| of the BRG.

Table 3 shows how the state space of the reachability graph highly increases with the number of
pallets circulating in the first and in the second production line (places p1 and p16). In particular,
it increases exponentially. Note that, also in the case of the BRG the number of nodes increases
exponentially, but much more slowly with respect to the cardinality of R.

Since robot R1 always starts taking one part from the first production line, all cases in which
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α is equal to zero present only one node corresponding to M0 both in the BRG and in the
reachability graph. Moreover all cases in which β is equal to zero present 9 nodes in the
BRG and 27 nodes in the reachability graph corresponding respectively to the number of basis
markings and consistent markings that can be reached when only one part is introduced in
the first production line. Finally, since the first production line is perfectly symmetric to the
second one the number of nodes both in the BRG and in the reachability graph does not change
exchanging α with β. This is shown in Table 3.

For the considered PN, on the basis of the above simulations, it can be concluded that the
diagnosis approach here presented is suitable from a computational point of view. In fact, thanks
to the basis markings the reachability space can be described in a more compact manner.

Finally, remark that, although in this paper the problem of diagnosability is not addressed, the
manufacturing system illustrated in this section is diagnosable for any value of α, β and γ. The
diagnosability of this system has been tested using the MATLAB tool in Pocci (2009).

9 Conclusions and future work

This paper presents a diagnosis approach for labeled PNs using basis markings. This enables
one to avoid an exhaustive enumeration of the reachability set. This approach applies to all
bounded and unbounded PN systems whose unobservable subnet is acyclic. However, if bounded
net systems are considered the most burdensome part of the procedure may be moved off-line
computing the Basis Reachability Graph. Finally, a tool for the diagnosis of labeled bounded PNs
has been presented and the simulations results using a net system taken from the manufacturing
domain have been shown.

Our future work will be that of studying the diagnosis problem for distributed systems investi-
gating the possibility of extending the approach here presented to this case.
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