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Abstract

Quantized consensus assumes that the state of each node may only take nonnegative integer values.

Reaching consensus under quantization is equivalent to determining a balanced assignment of identical

tasks to nodes. In this paper we generalize this problem in two ways and denote the resulting framework

discrete consensus. First, we consider tasks that are not identical: each one is characterized by its own

weight. Secondly, we assume that nodes are not identical as well. As an example, in the case of task

assignment, that we consider as a reference problem in this framework, nodes may have different speeds

and should be assigned a total weight proportional to their speed.

We provide a gossip-based distributed algorithm that aims to minimize the maximum execution time

over nodes, whose convergence to a bounded set is guaranteed. We show that the convergence time of

the proposed algorithm relies ultimately on the average meeting time between two agents performing a

random walk on a graph.

Published as:

M. Franceschelli, A. Giua, C. Seatzu ”A gossip-based algorithm for discrete consensus over

heterogeneous networks” IEEE Tran. on Automatic Control, Vol. 55, No. 5, pp. 1244-1249, May

2010.

This work has been partially supported by the European Community’s Seventh Framework Programme under project DISC

(Grant Agreement n. INFSO-ICT-224498)

M. Franceschelli, A. Giua and C. Seatzu are with Dip. di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Italy,
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I. INTRODUCTION

The study of consensus networks has recently stirred much interest in the control community

with a particular focus on the deep connection between consensus and algebraic graph theory

[1]–[6]. In several applicative domains related to consensus the assumption that the state of each

node is a continuous variable is clearly an oversimplified assumption, and it is necessary to

explicitly take into account its discrete nature. This defines a new framework called quantized

consensus [7]–[9] where the state only takes nonnegative integer values. It has been observed

in [8] that reaching a consensus under this quantization constraint is equivalent to determining

a balanced assignment of identical tasks to nodes. We generalize this approach, assuming that

the tasks to be assigned to nodes may not be identical. Thus we assume that the state of each

node is not described by an integer number, but by a collection of objects each one with its own

integer weight. We call this framework discrete consensus.

One of the most important classes of problems that can be formulated in terms of discrete

consensus is given by task assignment. Tasks may be generic objects, e.g., spatial locations,

network resources, or classifications. In particular, recent advances in communication and com-

putation have allowed efficient solutions to the problem of task assignment [10]. Both on-

line [11], [12] and off-line [13] approaches have been proposed: on-line approaches keep into

account the variations of the task environment, while off-line approaches assume that the task

environment keeps constant thus a solution can be computed in advance. Processor assignment

and computation of an optimal execution sequence for multiversion software is an example of

this kind of problems [14].

In this paper, that is a journal version of [15], we will focus on a problem of discrete consensus

over heterogeneous networks. To provide a more intuitive interpretation to the considered physical

variables, our problem formulation will be given in terms of task assignment although the

approach is general. We assume that a given set of tasks, that may have different weight, should

be assigned to agents (nodes). Networks are denoted as heterogeneous because nodes may have

different speeds. The consensus problem for this type of nets, as far as we know, has not received

much attention in the control literature.

Our goal is that of determining, using consensus algorithms based on gossip [8], [16], the

solution that minimizes the maximum execution time over nodes. It is based on the recent work
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by Kashyap et al. [8] and on our previous results in [17] where homogeneous networks have

been considered.

Note that due to the discrete nature of tasks and to the assumption that tasks may have arbitrary

weights, the optimality of the solution is not guaranteed. As discussed in [17] this is not related

to our particular approach but is intrinsic in the nature of gossip, that implements at each step

a pairwise optimization, and does not always yield an optimal solution. However, we prove that

there exists a bounded set that contains the optimal solution that is always reachable and we

study the convergence properties and the convergence time to this bounded set.

As mentioned in the literature [8], [17], in the case of discrete consensus to ensure good

convergence properties it is necessary to enrich the gossip algorithm with an appropriate swapping

rule. Whenever a balancing between two nodes is not possible, the swap “shakes” the network

configuration to redistribute the load and allows loads composed by discrete tasks to travel in

the network, reaching a situation in which a new balancing may occur.

When swaps are performed, the maximum average convergence time depends on the average

meeting time of agents performing a random walk in a graph. We show that this can always be

computed numerically, modeling the swap process with a Markov Chain with a single absorbing

state that represents the meeting of the agents. We also discuss two particular net structures

(fully connected networks and networks with ring topology) for which it is possible to compute

the average meeting time analytically.

II. PROBLEM STATEMENT

We consider a heterogeneous network of n nodes whose connections can be described by

an undirected connected graph G = (V,E), where V = {1, 2, . . . , n} is the set of nodes and

E ⊆ V × V is the set of edges.

We assume that K indivisible tasks should be assigned to the nodes, and an integer weight

cj , j = 1, . . . , K, is associated to each task. We define a weight vector c ∈ NK whose j-th

component is equal to cj , and n binary vectors yi ∈ {0, 1}K such that: yi,j = 1 if the j-th task

is assigned to node i, yi,j = 0 otherwise.

To each node i ∈ V is allocated a load xi = cT yi consisting in the sum of the costs of tasks

assigned to node i that must be processed.
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The speed factor, denoted γi, represents the amount of load that can be processed in a time

unit by node i. In the following we denote γmin the smallest speed in the network (clearly

γmin > 0), and cmax the maximum weight of tasks in the network.

The task assignment we are looking for is the one that minimizes the maximum execution

time, starting from any initial condition. Namely, if we define the load and speed vectors

x =
[

x1 x2 . . . xn

]T

, γ =
[

γ1 γ2 . . . γn

]T
and Γ = diag(γ), we would like to

minimize the following objective function:

f(x) = max
i=1,...,n

xi

γi

= ‖Γ−1x‖∞ (1)

under the assumption that the total load remains constant, namely 1T x = 1T x(0), where x(0)

represents the initial load configuration.

Denoting Y (t) = [y1(t) y2(t) . . . yn(t)] the state of the network at time t, a centralized

optimal solution to this problem can be determined solving the following integer programming

problem with binary variables:




min V = ‖cT Y Γ−1‖∞
s.t. Y 1 = 1

yi,j ∈ {0, 1} ∀ i = 1, . . . , n; j = 1, . . . , K.

(2)

We denote Y ∗ (resp., V ∗) the optimal solution (resp., the optimal value of the performance

index) of Problem (2).

III. GOSSIP ALGORITHM

A. A distributed algorithm

We first define a task exchange process between two adjacent nodes that, while not changing

the value of the objective function, modifies the load configuration.

Definition 3.1 (Swap): Let us consider two nodes i and r incident on the same edge. Let

Ki(t), resp. Kr(t), be the set of tasks contained in node i, resp. r, at time t.

Let us call swap the operation that moves the tasks in Ki(t) to r, and the tasks in Kr(t) to i

at time t + 1, reaching the distribution Ki(t + 1) = Kr(t) and Kr(t + 1) = Ki(t), provided that
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the objective function locally defined for the two nodes does not change, i.e.,

max





∑
j∈Ki(t+1)

(
cj

γi

)
,

∑
j∈Kr(t+1)

(
cj

γr

)

 =

max





∑
j∈Ki(t)

(
cj

γi

)
,

∑
j∈Kr(t)

(
cj

γr

)

 .

¥

We denote K̂ir(t) = Ki(t) ∪ Kr(t) the set of tasks present in nodes i and r at time t. We

define ĉ = c ↑ K̂ir(t) the projection of c on K̂ir(t), namely a vector whose elements are the

weights of the tasks present in nodes i and r at time t. Using the same notation we define two

binary vectors ŷi = yi ↑ K̂ir(t) and ŷr = yr ↑ K̂ir(t), in other words each vector has a number

of elements equal to the number of tasks locally present in the nodes.

Algorithm 1 (Gossip Algorithm with discrete tasks):

1) Let t = 0.

2) Select an edge {i, r} at random.

3) Solve the integer programming problem (IPP):




k∗ = min k

s.t.
ĉT ŷi

γi

≤ k

ĉT (1− ŷi)

γr

≤ k

k ∈ R+ ∪ {0},
ŷi ∈ {0, 1}|K̂ir(t)|

(3)

4) If k∗ < max

{
ĉT ŷi(t)

γi

,
ĉT (1− ŷi(t))

γr

}
then

let ŷi(t + 1) = ŷi and ŷr(t + 1) = 1− ŷi,

else execute a swap if possible.

5) Let t = t + 1 and goto step 2. ¥
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 �1 = 1  �2 = 1 

 �3 = 2 

 1  2 

 3 

 

t edge node 1 node 2 node 3 V (Y )

0 4, 10 1, 2, 2, 3, 3, 5, 6, 7 14.5

1 {1, 3} 4, 10 1, 2, 2, 3, 3, 5, 6, 7 14.5

2 {2, 3} 4, 10 2,7 1,2,3,3,5,6 14

3 {1, 3} 5, 6 2, 7 1, 2, 3, 3, 4, 10 11.5

4 {2, 3} 5, 6 1, 2, 7 2, 3, 3, 4, 10 11

Fig. 1. The network discussed in Example 3.2 and the results of Algorithm 1.

In practice IPP (3) provides the task assignment that minimizes the execution time at the two

nodes. If the resulting assignment is better than the previous one, tasks are assigned accordingly,

otherwise a swap is executed if possible.

The swap allows to overcome several blocking conditions: anytime the network reaches a

local minimum of the objective function the swap “shakes” the network ensuring convergence

within some precise bounds (see Theorem 3.7).

Example 3.2: Let us consider the fully connected1 net in Fig. 1 composed by 3 nodes with

speeds γ1 = γ2 = 1 and γ3 = 2. Assume that it contains 10 tasks whose weights are equal to

c1 = 1, c2 = c3 = 2, c4 = c5 = 3, c6 = 4, c7 = 5, c8 = 6, c9 = 7 and c10 = 10 and let the initial

configuration be K1(0) = {6, 10}, K2(0) = ∅, K3(0) = {1, 2, 3, 4, 5, 7, 8, 9}. Using Algorithm 1,

we obtain the optimal task assignment in four steps, as summarized in the Fig. 1. In particular,

the first line of the table summarizes the initial assignment to which it corresponds a value of

the objective function that is equal to 14.5 (see the last column). The other lines point out the

task assignment for t = 1, 2, 3, 4: in the second column we point out the selected edge, columns

3 to 5 point out the task assignment in the three nodes; finally, the last column points out the

corresponding value of the objective function. ¥

B. Convergence properties

The convergence properties of Algorithm 1 depend on the possibility of performing swaps.

1A network is fully connected if there is an arc from each node to any other one.
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 γ5 = 3 
 5 
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 (a)  
 

 1  2  3 

 γ 1 = 1  γ 2 = 1.1  γ 3 = 1.2 

 1 
 1 
 1 

  
 1 
 1 

  
  
 1 

(b)           

 

(3,1) 

(1,4) 

(1,1) 

(3,2) 

(1,2) 

(1,3) 

(2,1) 

(2,3) 

(3,3) 
(3,4) 

(2,2) 

(2,4) 

(c)  

Fig. 2. (a) The network discussed in Example 3.4: (b) Network in example 3.9 (c) A net with a generalized ring topology

where s = 3 and k = 4.

Definition 3.3 (Swap domain): We call swap domain Gγ ⊆ G a connected subgraph induced

by nodes with the same speed. ¥

Example 3.4: Let us consider the network in Fig. 2.a that has seven nodes with three different

speeds. This network can be partitioned in three different subgraphs G1, G2 and G3 induced

respectively by nodes {1, 2}, {3, 4} and {5, 6, 7}. In this case each swap domain is connected

to each other. ¥
Each swap domain identifies a set of nodes where swaps may always happen. On the contrary

swaps between adjacent nodes of different domains may either be possible or not, depending on

the particular tasks and on the speed of nodes. As an example, if we consider the network in

Example 3.2 a swap among nodes 1 and 3, that belong to different swap domains, is not allowed

at time t = 1 because it would lead to an increasing of the maximum execution time at the two

nodes. The following example shows a scenario in which a swap among nodes belonging to

different swap domains is admissible.

Example 3.5: Let us assume that two nodes 1 and 2 have speed equal to γ1 = 10 and γ2 = 11,
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respectively. Moreover, let us assume that node 1 only contains one task of weight 10, while

the second node contains two tasks both of weight equal to 5. The corresponding maximum

execution time is equal to 1. Now, no tasks exchange may occur that leads to a better tasks

assignment, while a swap may happen keeping unaltered the maximum execution time at the

two nodes. ¥

It is relevant to note that the definition of “swap domain” is embedded in the graph topology:

the nodes don’t need to know in which domain they are or even that any domain exists.

Definition 3.6: We call final set

Ỹ = {Y = [y1 y2 · · · yn] |
∣∣∣∣
cT yi

γi

− cT yr

γr

∣∣∣∣ ≤
cmax

γmin

,

∀ i, r ∈ {1, . . . , n}}
(4)

i.e., the set of configurations such that, for any couple of nodes i, r ∈ V , the difference among

their execution times is at most equal to the ratio cmax/γmin. ¥

Theorem 3.7: Let Y (t) be the matrix that summarizes the task assignment resulting from

Algorithm 1 at the generic time t. If each swap domain is connected to each other, it holds

limt→∞ Pr
(
Y (t) ∈ Ỹ

)
= 1 where Pr(Y (t) ∈ Ỹ) denotes the probability that Y (t) ∈ Ỹ .

Proof: We define a Lyapunov-like function

V (t) = [V1(t), V2(t)] (5)

consisting of two terms. The first one is equal to the objective function of (2), namely V1(t) =

‖cT Y (t)Γ−1‖∞. The second one is a measure of the number of nodes whose execution time is

equal to ‖cT Y (t)Γ−1‖∞, i.e., V2(t) =

∣∣∣∣arg max
i=1,...,n

cT yi(t)

γi

∣∣∣∣ .

Note that we impose a lexicographic ordering on the performance index, i.e., V = V̄ if

V1 = V̄1 and V2 = V̄2; V < V̄ if V1 < V̄1 or V1 = V̄1 and V2 < V̄2.

The proof is based on three arguments.

(1) We first prove that V (t) is a non increasing function of t.

This is trivially true when a swap is executed, since in such a case V (t + 1) = V (t).
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Consider the case in which the selected nodes i and r balance their load. It holds

max

{
cT yi(t + 1)

γi

,
cT yr(t + 1)

γr

}
< max

{
cT yi(t)

γi

,
cT yr(t)

γr

}
,

hence three different cases may happen.

(a) One of the selected nodes is the only node in the network such that its execution time is

equal to ‖cT Y Γ−1‖∞. In such a case V1(t + 1) < V1(t) hence V (t + 1) < V (t).

(b) One of selected nodes is such that its execution time is equal to ‖cT Y (t)Γ−1‖∞ but there

exists at least one other node in the network with the same execution time. In such a case

V1(t + 1) = V1(t) and V2(t + 1) = V2(t)− 1, hence V (t + 1) < V (t).

(c) The execution time of both the selected nodes is smaller than ‖cT Y (t)Γ−1‖∞. In such a

case V (t + 1) = V (t).

(2) Secondly, we observe that, if the current configuration is outside the final set Ỹ , then there

exists at least one node whose execution time is equal to ‖cT Y (t)Γ−1‖∞ that could balance his

load with (at least) one other node if they were incident on the same arc: this would reduce

function V (t) (see cases (a) and (b) of the previous item).

To prove this we observe that if the current configuration is outside the final set Ỹ , then there

exists (at least) one couple of nodes i and r such that

cT yi(t)

γi

− cT yr(t)

γr

>
cmax

min{γi, γr} (6)

where
cT yi(t)

γi

is equal to the maximum execution time. If we move a task cj ≤ cmax from

node i to node r we have: cT yi(t + 1) = cT yi(t)− cj , and cT yr(t + 1) = cT yr(t) + cj. Now

cT yi(t + 1)

γi

=
cT yi(t)− cj

γi

<
cT yi(t)

γi

(7)

and
cT yr(t)

γr

+
cj

γr

≤ cT yr(t)

γr

+
cmax

min{γi, γr} <
cT yi(t)

γi

where the second inequality follows from assumption (6); thus

cT yr(t + 1)

γr

=
cT yr(t) + cj

γr

<
cT yi(t)

γi

. (8)
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By (7) and (8) it follows that

max

{
cT yi(t + 1)

γi

,
cT yr(t + 1)

γr

}
< max

{
cT yi(t)

γi

,
cT yr(t)

γr

}
.

(3) Finally, we observe that being each swap domain connected to each other, there exists a

series of swaps that lead to a configuration in which the loads of the two nodes identified in the

previous item are adjacent and the arc between them is selected. This happens with probability

1 as t goes to infinity. ¤

Remark 3.8: Theorem 3.7 characterizes the convergence properties of Algorithm 1 in terms

of a finite set Ỹ . This obviously does not imply that an optimal task assignment is achieved.

As shown in [17] this is not a limitation of the particular algorithm. To reach consensus an

optimization involving more than two nodes at the same time may be necessary. ¥
Finally the following example shows that if each swap domain is not connected to each other,

then the convergence set Ỹ may not be reached by Algorithm 1.

Example 3.9: Let us consider the network in Fig. 2.b where γ1 = 1, γ2 = 1.1, γ3 = 1.2.

Tasks with cost c1 = c2 = . . . c6 = 1 are assigned such that

K1(0) = {1}, K2(0) = {1, 1}, K3(0) = {1, 1, 1}.

It can be seen that the network is in a blocking configuration where no task exchange may

happen according to Algorithm 1. As a result the convergence set Ỹ is not reached being
∣∣∣∣
cT y1

γ1

− cT y3

γ3

∣∣∣∣ =

∣∣∣∣1−
3

1.2

∣∣∣∣ = 1.5 >
cmax

γmin

= 1.

On the other hand if node 3 and node 1 were connected, then node 3 could exchange one

task with node 1 and achieve a configuration included in Ỹ . ¥

IV. CONVERGENCE TIME OF ALGORITHM 1

The convergence time is a random variable defined for a given initial task assignment Y (0) = Y

as: Tconv(Y ) = inf {t | ∀ t′ ≥ t, Y (t′) ∈ Ỹ}. Thus, Tconv(Y ) represents the number of steps

required at a certain execution of Algorithm 1 to reach the convergence set Ỹ starting from a

given tasks distribution. Let us firstly introduce the following notation.
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• Nmax is the maximum number of improvements of V (t) defined as in (5), needed by any

realization of Algorithm 1 to reach the set Ỹ , starting from a given configuration.

• Tmax is the maximum average time between two consecutive improvements of V (t) defined

as in (5), needed by any realization of Algorithm 1, starting from a given configuration.

Using the previous notation, it follows that the expected convergence time is

E [Tconv(Y )] ≤ Nmax · Tmax. (9)

The following proposition provides a topology independent upper bound on Nmax.

Proposition 4.1: Let us consider a net with n nodes and let γ be the corresponding speed

vector. Let x(0) be the vector representative of the initial amount of load at nodes. It holds:

Nmax ≤ (n− 1) · % · (M −m) (10)

where

M = ‖Γ−1x(0)‖∞, m =

n∑
i=1

xi(0)

n∑
i=1

γi

=
1T x(0)

1T Γ1
,

% = max
{i,r}∈E

lcm{γi, γr},

(11)

and lcm denotes the least common multiple.

Proof: By definition the maximum number of improvements of V1 = f needed by any

realization of Algorithm 1 to reach the set Ỹ is smaller or equal to the ratio between the global

improvement of f needed before reaching the convergence set Ỹ starting from x(0), and its

minimum admissible improvement.

By Step 5 of Algorithm 1 the task assignment is updated if and only if leads to an improvement

of the objective function, otherwise a swap is executed. Thus, the largest value of f(x) occurs

at the initial configuration and is equal to M = f(x(0)) = ‖Γ−1x(0)‖∞.

The minimum value of f(x) corresponds to the case of perfect task assignment, that in general

is not achievable in the discrete case. However, a lower estimate of it is given by its optimal
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value in the case of infinitely divisible tasks, namely by f(x∗) where x∗ = αγ and α =
1x(0)

1T Γ1
.

Thus, if we define m = f(x∗) = α, then for any task assignment x it holds m ≤ f(x).

We also observe that the minimum load exchange is equal to 1 since all tasks have an integer

weight.

Now, if we consider the generic edge {i, r}, we know that the minimum improvement of f that

we may obtain when balancing this edge is equal to 1/lcm{γi, γr}. As a consequence the mini-

mum improvement of f at a generic step of Algorithm 1 is equal to 1/% = 1/ max{i,r}∈E lcm{γi, γr},

where E is the set of edges.

Thus, we may conclude that the largest number of improvements of f before reaching the

convergence set Ỹ starting from x(0) is at most equal to % · (M −m).

Finally, in the worst case n−1 consecutive balancing may occur before having an improvement

of f , namely n−1 consecutive reductions of V2 may occur before having a reduction of V1 = f .

In particular, this case may happen if n− 1 nodes have the same execution time that is equal to

the maximum one. In this case, a first balancing may occur between the only “different” node

and any of the other ones. Then, a new balancing may occur between any of the remaining n−2

nodes with the maximum execution time and one with a smaller execution time, and so on. ¤

We now focus on Tmax. Evaluating Tmax, and hence the average convergence time (9), is in

general a difficult issue because it is strictly related to the particular topology of the net.

In the following we consider two cases: fully connected networks and generalized ring topology

nets. Similar approaches based on Markov chains can always be used to evaluate numerically

an upper bound on Tmax for a particular net example.

A. Fully connected networks

Proposition 4.2: Let us consider a fully connected network, and let n be the number of nodes.

It holds

Tmax =
n(n− 1)

2
. (12)

Proof: The maximum average time between two consecutive balancing occurs when only

one balancing is possible. Thus, if N is the number of arcs of the net, then the probability of

selecting the only arc whose incident nodes may balance their load is equal to p = 1/N , while
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the average time needed to select it is equal to N . Since the network is fully connected, if n is

the number of nodes, the number of arcs is N = n(n− 1)/2 and so Tmax = n(n− 1)/2. ¤

Proposition 4.3: If a net is fully connected, the average convergence time of Algorithm 1 is

E [Tconv(Y )] ≤ % · (M −m) · n(n− 1)2

2
= O(n3).

Proof: Follows from equation (9) and Propositions 4.1 and 4.2. ¤

B. Generalized ring topology

Definition 4.4 (Generalized ring topology): A graph G = (E, V ) has a generalized ring topol-

ogy if it satisfies the following assumptions.

• It is composed by s rings, each one with k nodes. The generic j-th ring Rj is a graph

Rj = (Vj, Ej) with Vj = {1, . . . , k} and Ej = {{i, r} ∈ E | r = i+1, ∀i = 1, . . . , k−1}∪{k, 1}.
• The same speed is associated to all nodes in the same ring, while nodes of different rings

have different speeds. Thus each ring defines a different swap domain.

• Let (i, j), with i = 1, . . . , k and j = 1, . . . , s, be the i-th node of ring Rj . Let Σi = {(i, j) ∈
V, j = 1, . . . , s} be the set of the nodes of index i in all rings. All nodes in Σi are fully

connected, i.e., for all i = 1, . . . , k, there exists an edge in E that connects each node in Σi with

any other node in Σi. ¥

An example of a net with a generalized ring topology is reported in Fig. 2.c: here s = 3,

k = 4.

Note that such a topology well fits with our problem for two main reasons. Firstly, it is scalable

both in the number of nodes in the rings and in the number of rings (namely in the number of

swap domains). Secondly, the diameter of the net, namely the maximum distance among nodes

that may balance, increases with the number of nodes in the ring.

Proposition 4.5: Let us consider a net with a generalized ring topology. Let s be the number

of rings and n = k · s be the total number of nodes in the net. It holds

Tmax ≤ n2(s + 1)

32 · s ·
(n

s
+ 16

)
=

k2s(s + 1)

32
· (k + 16) . (13)
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Proof: We first observe that, due to the gossip nature of Algorithm 1 and to the random rule

used to select the edges, the problem of evaluating an upper bound on Tmax can be formulated as

the problem of finding the average meeting time of two agents walking on a graph executing a

random walk. In fact, the average meeting time of the two agents may be thought as the average

time of selecting an edge whose incident nodes may balance their load. Note that in general

more than two edges may balance their load, thus assuming that only two agents are walking

on the graph provides us an upper bound on the value of Tmax. In particular, the worst case in

terms of meeting time occurs when the two agents are on different rings.

In the following we compute the average meeting time using discrete Markov chains assuming

that the two agents walk on different rings (worst case). For the sake of simplicity, we assume

that the number of nodes k in each ring is even2.

We call distance between two agents in nodes (i, j) and (i′, j′), with j 6= j′, di,i′ = 1 +

min{|i− i′|, k− |i− i′|}, namely the number of arcs in the shortest path connecting node i with

node i′. In simple words the above distance is equal to the distance between the two agents,

computed as if they were in the same ring, plus 1 due to the fact that they are on different

rings. This is consistent with the assumption that, in a generalized ring topology net, any node

with a given index in a certain ring is connected to all the other nodes having the same index

in different rings. Therefore nodes with a unitary distance are nodes within the same section Σ.

Under the assumption that k is even, the maximum distance between the two agents is equal to

D = k/2 + 1.

The Markov chain relative to a net with an even value of k is shown in Fig. 3, thus it is a

particular birth-death process. Each node (apart from the first one, named A) is characterized

by an integer number that denotes the distance between the two nodes. Let us now discuss the

weight of the arcs in the Markov chain.

— The weight of the arcs going from nodes i to i + 1, and viceversa, for i = 2, . . . , D − 1

is equal to 2/N where N = ks(s + 1)/2 is the number of arcs3. This follows from the fact that

if a net has N arcs the probability of selecting a generic edge is equal to 1/N ; moreover, if the

2The case of rings with an odd number of nodes k is upper bounded by the case of rings with k + 1 nodes.
3The number of arcs of a ring topology net is equal to k times the number of arcs of each section Σ, plus k times the number

of arcs of each ring. Being each Σ a fully connected graph with s nodes, its number of arcs is equal to s(s− 1)/2. Therefore,

N = ks(s + 1)/2 + ks = ks(s + 1)/2.
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distance between the two agents is i = 1, . . . , D − 1, two are the edges whose selection leads

to an increasing or decreasing of their distance. The same reasoning explains the weight of the

arc going from D − 1 to D and the weight of the arc going from 2 to 1.

— If the distance between the two agents is unitary (the state of the Markov chain is 1) being

by assumption the two agents on different rings, it means that they are on the same section.

Two different cases may occur: either we select an edge that leads to a distance equal to 2, or

the edge incident on the nodes containing the agents is selected. The first case occurs with a

probability equal to 4/N ; the second case occurs with a probability equal to 1/N and leads to

the absorbing state A.

— Now, assume that the distance between the agents is equal to D. Since by assumption the

two agents walk on different rings, in such a case the selection of 4 different arcs may lead to a

decreasing of their distance. Therefore the arc of the Markov chain going from node D to node

D − 1 has a weight equal to 4/N .

— Finally, the weights of all self-loops are due to the fact that the sum of the weights of arcs

exiting a node is equal to 1 in a discrete Markov chain.

Given the Markov chain in Fig. 3 it is easy to compute the average hitting time of the absorbing

state from any admissible distance. This can be done solving analytically the following linear

system of equations:

(I − P ′) τ = 1 (14)

where I is the D-dimensional identity matrix; P ′ has been obtained by the probability matrix P

of the Markov chain in Fig. 3 removing the row and the column relative to the absorbing state4;

τ is the D-dimensional vector of unknowns: its i-th component τ(i) is equal to the hitting time

of the absorbing state starting from an initial distance equal to i, for i = 1, . . . , D; finally, 1 is

the D-dimensional column vector of ones. We found out that the worst case in terms of hitting

time occurs when the two agents are at their maximum distance, i.e., for i = D. In particular it

is τ(D) = n2(s+1)
32·s · (n

s
+ 16

)
=

k2s(s + 1)

32
· (k + 16) where the last equality follows from the

fact that n = ks. This proves the statement being Tmax ≤ τ(D). ¤

4It obviously holds that the hitting time of the absorbing state is null from the absorbing state itself.
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 A 1 2 3 D 

1-4/N 1-4/N 1-4/N 1-5/N    1 

1/N 2/N 2/N 2/N 4/N 

2/N 2/N 2/N 4/N 

 

Fig. 3. The Markov chain associated to a generalized ring topology net with an even value of k.

Proposition 4.6: If a net has a generalized ring topology, then the average convergence time

of Algorithm 1 in terms of the number of nodes n is

E [Tconv(Y )] ≤
% · (M −m) · n2(s + 1)

32 · s ·
(n

s
+ 16

)
· (n− 1) = O(n4)

or, in terms of the net parameters k and s

E [Tconv(Y )] ≤
% · (M −m) · k2s(s + 1)

32
· (k + 16) · (k s− 1) = O(k4s3).

Proof: Follows from equation (9) and Propositions 4.1 and 4.5.

¤

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a framework denoted as discrete consensus, that is a generalization

of quantized consensus. We assumed that a set of tasks of different weight should be assigned to

nodes with different speeds with the aim of minimizing the maximum execution time. A solution

based on gossip has been proposed and convergence properties have been examined in detail.

Future research in this topic will focus on determining appropriate rules to execute swaps

to improve the convergence properties of Algorithm 1 and provide a stop criterion when the

optimality set is reached. Finally, we plan to study the effects of delays in communication that

often occurs in real applications.
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