
1

HYPENS: a Matlab tool for timed discrete,

continuous and hybrid Petri nets
Fausto Sessego, Alessandro Giua, Carla Seatzu

Dip. Ingegneria Elettrica ed Elettronica, Università di Cagliari, Italy

{fausto.sessego,giua,seatzu}@diee.unica.it

Abstract

HYPENS is an open source tool to simulate timed discrete, continuous and hybrid Petri nets. It

has been developed in Matlab to allow designer and user to take advantage of several functions and

structures already defined in Matlab, such as optimization routines, stochastic functions, matrices and

arrays, etc. The tool can also be easily interfaced with other Matlab programs and be used for analysis

and optimization via simulation. The large set of plot functions available in Matlab allow one to represent

the results of the simulation in a clear and intuitive way.

Published as:

F. Sessego, A. Giua, C. Seatzu, ”HYPENS: a Matlab tool for timed discrete, continuous and

hybrid Petri nets,” Applications and Theory of Petri Nets: Proc. 29th Int. Conf. on Applications

and Theory of Petri nets 2008 (Xi’an, China), June 23-27, 2008. Lecture Notes in Computer

Science No. 5062, pp. 419-428, Springer-Verlag, 2008.

DRAFT



2

I. INTRODUCTION

In this paper we present a Matlab tool for the simulation of timed Petri nets (PN), called

HYPENS (HYbrid PEtri Nets Simulator) to emphasize that it deals not only with discrete nets,

but with continuous and hybrid nets as well.

In many applications dealing with complex systems, a plant has a discrete event dynamics

whose number of reachable states is typically very large, and problems of realistic scale quickly

become analytically and computationally untractable. To cope with this problem it is possible to

give a continuous approximation of the ”fast” discrete event dynamics by means of continuous

Petri nets, i.e., nets obtained from discrete nets by ”fluidification” [4], [10].

In general, different fluid approximations are necessary to describe the same system, depending

on its discrete state. Thus, the resulting models can be better described as hybrid Petri nets (HPN)

that combine discrete and continuous dynamics [4], [5]. Several HPN models have been defined

(see [5]). The model considered in HYPENS is called First–Order Hybrid Petri nets (FOHPN)

because its continuous dynamics are piece-wise constant. FOHPN were originally presented

in [3] and have been successfully used to model and analyze manufacturing systems [2].

In the last years several tools for the simulation of timed discrete PN have been proposed. Very

few tools on the contrary, also deal with hybrid PN: we are aware of HISim [7] and SIRPHYCO

[9].

SIRPHYCO is the most complete in terms of modeling power and performance analysis, but

still it presents the following limitations. (a) It has a limited number of modeling primitive. As

an example: only stochastic discrete transitions with exponential firing delays are considered; it

only assumes infinite-server semantics, thus if we want to consider a finite server semantics we

have to add dummy places that complicate the model. (b) It uses a ”reserved marking policy”

([4]), i.e., as soon as a discrete transition is enabled, the tokens necessary for its firing are

reserved and cannot be used to enable other transitions. In other words, conflicts are solved

at the enabling time not at the firing time. (c) Conflict resolution, both between discrete and

continuous transitions, are only solved by priorities. (d) The input graphical interface is not

practical for large nets, and only a few statistics can be be computed from the simulation run.

(e) It is not an open source software and cannot be easily interfaced with other programs.

HYPENS overcomes the above limitations, and presents several other advantages. (a) It has

DRAFT



3

many useful modeling primitives such as: finite/infinite server semantics, general stochastic firing

delays for discrete transitions. (b) It does not use reserved marking but the tokens in a place

can concurrently enable several transitions. In other words, conflicts are solved at the firing

time: this policy can be shown to be more general that based on reserved marking. (c) It offers

several conflict resolution policies as we will discuss later. (d) It uses a textual input interface

but provides several statistical data both numerically and graphically. (e) It is an open source

software written in Matlab, to allow designer and user to take advantage of several functions

and structures already defined in Matlab and to easily interface it with other programs.

A final remark concerns the issue of conflict resolution that is fundamental in any PN simulator

[1]. For discrete transitions we use a general approach that combines both priorities and random

weighted choices as in [1]: this is coded in the structure of the net. In the case of continuous

transitions, on the contrary, we assume that the choice of the firing speed vector v is made at

run-time and represents a control input. Thus, for solving conflicts among continuous transitions

we use a more general optimization rule: at each step the net evolves so as to (myopically)

optimize a linear performance index J(v).

The software, manual and demos of HYPENS can be downloaded from [8].

II. HYBRID PETRI NETS

We recall the FOHPN formalism used by HYPENS, following [3].

Net structure: A FOHPN is a structure N = (P, T, Pre, Post,D, C).

The set of places P = Pd ∪ Pc is partitioned into a set of discrete places Pd (represented as

circles) and a set of continuous places Pc (represented as double circles). The cardinality of P ,

Pd and Pc is denoted n, nd and nc.

The set of transitions T = Td ∪ Tc is partitioned into a set of discrete transitions Td and a set

of continuous transitions Tc (represented as double boxes). The cardinality of T , Td and Tc is

denoted q, qd and qc.

The pre- and post-incidence functions that specify the arcs are (here R+
0 = R+∪{0}): Pre, Post :

Pc × T → R+
0 , Pd × T → N. We require that ∀t ∈ Tc and ∀p ∈ Pd, Pre(p, t) = Post(p, t), so

that the firing of continuous transitions does not change the marking of discrete places.

Transitions in Td may either be deterministic or stochastic. In the case of deterministic

transitions the function D : Td → R+
0 specifies the timing associated to timed discrete transitions.

DRAFT



4

In the case of stochastic transitions D defines the parameter(s) of the distribution function

corresponding to the timing delay. The function C : Tc → R+
0 × R+

∞ specifies the firing speeds

associated to continuous transitions (here R+
∞ = R+ ∪ {∞}). For any continuous transition

tj ∈ Tc we let C(tj) = [V ′
j , Vj], with V ′

j ≤ Vj: V ′
j represents the minimum firing speed (mfs), Vj

represents the maximum firing speed (MFS).

The incidence matrix of the net is defined as C(p, t) = Post(p, t)−Pre(p, t). The restriction

of C (Pre, Post, resp.) to Px and Ty, with x, y ∈ {c, d}, is denoted Cxy (Prexy, Postxy, resp.).

A marking is a function that assigns to each discrete place a non-negative number of tokens,

and to each continuous place a fluid volume. Therefore, M : Pc → R+
0 , Pd → N. The marking

of place pi is denoted Mi, while the value of the marking at time τ is denoted M(τ). The

restriction of M to Pd and Pc are denoted with Md and M c, resp.

A system 〈N, M(τ0)〉 is an FOHPN N with an initial marking M(τ0).

Net dynamics: The enabling of a discrete transition depends on the marking of all its input

places, both discrete and continuous. More precisely, a discrete transition t is enabled at M if

for all pi ∈ •t, Mi ≥ Pre(pi, t), where •t denotes the preset of transition t. The enabling degree

of t at M is equal to enab(M, t) = max{k ∈ N | M ≥ k · Pre(·, )}.

If t is infinite-server semantics, we associate to it a number of clocks that is equal to

enab(M, t). Each clock is initialized to a value that is equal to the time delay of t, if t is

deterministic, or to a random value depending on the distribution function of t, if t is stochastic.

If a discrete transition is k-server semantics, then the number of clocks that are associated to

t is equal to min{k, enab(M, t)}. The values of clocks associated to t decrease linearly with

time, and t fires when the value of one of its clocks is null (if k̄ clocks reach simultaneously a

null value, then t fires k̄ times). Note that here we are considering enabling memory policy, not

total memory policy. This means that if a transition enabling degree is reduced by the firing of a

different transition, then the disabled clocks have no memory of this in future enabling [1], [4].

If a discrete transition tj fires k times at time τ , then its firing at M(τ−) yields a new marking

M(τ) such that M c(τ) = M c(τ−) + Ccdσ, and Md(τ) = Md(τ−) + Cddσ, where σ = k · ej

is the firing count vector associated to the firing of transition tj k times.

Every continuous transition tj is associated with an instantaneous firing speed (IFS) vj(τ).

For all τ it should be V ′
j ≤ vj(τ) ≤ Vj , and the IFS of each continuous transition is piecewise

constant between events.

DRAFT



5

A continuous transition is enabled only by the marking of its input discrete places. The marking

of its input continuous places, however, is used to distinguish between strong and weakly enabled:

if all input continuous places of tj have a not null marking, then tj is called strongly enabled,

else tj is called weakly enabled 1.

We can write the equation which governs the evolution in time of the marking of a place

pi ∈ Pc as ṁi(τ) =
∑

tj∈Tc
C(pi, tj)vj(τ) where v(τ) = [v1(τ), . . . , vnc(τ)]T is the IFS vector

at time τ .

The enabling state of a continuous transition tj defines its admissible IFS vj . If tj is not enabled

then vj = 0. If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V ′
j , Vj]. If tj

is weakly enabled, then it may fire with any firing speed vj ∈ [V ′
j , V j], where V j ≤ Vj since tj

cannot remove more fluid from any empty input continuous place p than the quantity entered in

p by other transitions. Linear inequalities can be used to characterize the set of all admissible

firing speed vectors S. Each vector v ∈ S represents a particular mode of operation of the

system described by the net, and among all possible modes of operation, the system operator

may choose the best, i.e., the one that maximize a given performance index J(v) [2].

We say that a macro–event (ME) occurs when: (a) a discrete transition fires, thus changing the

discrete marking and enabling/disabling a continuous transition; (b) a continuous place becomes

empty, thus changing the enabling state of a continuous transition from strong to weak; (c) a

continuous place, whose marking is increasing (decreasing), reaches a flow level that increases

(decreases) the enabling degree of discrete transitions.

Let τk and τk+1 be the occurrence times of two consecutive ME as defined above; we assume

that within the interval of time [τk, τk+1), denoted as a macro–period (MP), the IFS vector is

constant and we denote it v(τk). Then, the continuous behavior of an FOHPN for τ ∈ [τk, τk+1)

is described by M c(τ) = M c(τk) + Cccv(τk)(τ − τk), Md(τ) = Md(τk).

Example 2.1: Consider the net system in Fig. 1(a). Place p1 is a continuous place, while all

other places are discrete. Continuous transitions t1, t2 have MFS V1 = 1, V2 = 2 and null mfs.

Deterministic timed discrete transitions t3, t5 have timing delays 2 and 1.5, resp. Exponential

stochastic discrete transitions t4, t6 have average firing rates are λ4 = 2 and λ6 = 1.5.

1We are using an enabling policy for continuous transitions slightly different from the one proposed by David and Alla [4].

See [2] for a detailed discussion.

DRAFT



6

p2 p3 t3 

t4 

2 

t1 [0,1] 

1.5 
p1 1 

p4 p5 t5 

t6 

t2 [0,2] 

 
 
 

             [ ]TdM 10100 =        [ ]T
cM

21

1)0(

0 =

=

v
 

 
 
 
 
 

            [ ]TdM 10101 =       [ ]T
cM

11

0)1(

1 =

=

v
 

 
 
 
 
 
 

            [ ]TdM 01102 =      [ ]T

cM

01

0)5.1(

1 =

=

v
 

Discrete part Continuous part �
0 �
1 �

2 

p1 

t5 

       

 
 
 
                                 
 
 
 
 
                                 
 

v1 �
 

0 
0 
M1 �

 
0 

v2 �
 

0 

1 1.5 

1 

1 

2 
1 �

0 
�

1 
�

2  
               

     (a)                          (b)                      (c) 

Fig. 1. (a) An FOHPN, (b) its evolution graph, and (c) its evolution in time.

The continuous transitions represent two unreliable machines; parts produced by the first

machine (t1) are put in a buffer (p1) before being processed by the second machine (t2). The

discrete subnet represents the failure model of the machines. When p3 is marked, t1 is enabled,

i.e. the first machine is operational; when p2 is marked, transition t1 is not enabled, i.e. the first

machine is down. A similar interpretation applies to the second machine.

Assume that we want to maximize the production rates of machines. In such a case, during

any MP continuous transitions fire at their highest speed. This means that we want to maximize

J(v) = v1 + v2 under the constraints v1 ≤ V1, v2 ≤ V2, and — when p1 is empty — v2 ≤ v1.

The resulting evolution graph and the time evolution of M1, v1 and v2 are shown in Fig. 1(b)

and (c). During the first MP (of length 1) both continuous transitions are strongly enabled and

fire at their MFS. After one time unit, p1 gets empty, thus t2 becomes weakly enabled fires at

the same speed of t1. At time τ = 1.5, transition t5 fires, disabling t2. ¥

III. THE HYPENS TOOL

HYPENS has been developed in Matlab (Version 7.1). It is composed of 4 main files. The first

two files, make HPN.m and enter HPN.m create the net to be simulated: the former requires

input data from the workspace while the latter is a guided procedure.

DRAFT



7

The file simulator HPN.m computes the timing evolution of the net that is summarized in an

array of cells called Evol. Based on this array, the file analysis HPN.m computes useful statistics

and plots the simulation results.

Function make HPN [Pre, Post, M0, vel, v, D, s, alpha] = make HPN (Precc, Precd, Predc,

Predd, Postcc, Postcd, Postdd, M0c, M0d, vel, v, D, s, alpha).

Input arguments.

– Matrices Precc, Precd, Predc, Predd, Postcc, Postcd, Postdd;

– The initial marking M0c and M0d of continuous/discrete places.

– Matrix vel ∈ (R+
0 )qc×2 specifies, for each continuous transition, the mfs and the MFS.

– Vector v ∈ N1×qd specifies the timing structure of each discrete transition. The entries of

this vector may take the following values: 1 - deterministic; 2 - exponential distribution; 3 -

uniform distribution; 4 - Poisson distribution; 5 - Rayleigh distribution; 6 - Weibull distribution;

etc.

– Matrix D ∈ (R+
0 )qd×3 associates to each discrete transition a row vector of length 3. If the

transition is deterministic, the first element of the row is equal to the time delay of transition. If

the transition is stochastic, the elements of the row specify the parameters of the corresponding

distribution function (up to three, given the available distribution functions).

– Vector s ∈ N1×qd keeps track of the number of servers associated to discrete transitions.

The entries take any value in N: 0 if the corresponding transition has infinite servers; k > 0 if

the corresponding transition has k servers.

– Vector alpha specifies the conflict resolution policy among discrete transitions.

• If alpha ∈ N1×qd two cases are possible. If all its entries are zero, conflict resolution is

solved by priorities that depend on the indices of transitions (the smallest the index, the

highest the priority). Otherwise, all its entries are greater than zero and specify the weight

of the corresponding transition, i.e., if Te is the set of enabled transitions, the probability

of firing transition t ∈ Te is π(t) = alpha(t)/
(∑

t′∈Te
alpha(t′)

)
.

• If alpha ∈ N2×qd the first row specifies the weights associated to transitions (as in the

previous case) while the second row specifies the priorities associated to transitions. During

simulation, when a conflict arises, priority are first considered; in the case of equal priority,

weights are used to solve the conflict. See [4] for details.

DRAFT



8

Output arguments. (They are nothing else than input data, appropriately rewritten to be

passed to function simulator HPN).

– Matrices Pre and Post are defined as:

Pre =




Precc NaN Precd

NaN NaN NaN

Predc NaN Predd


 , Post =




Postcc NaN Postcd

NaN NaN NaN

Postdc NaN Postdd




where a row and a column of NaN (not a number) have been introduced to better visualize the

continuous and/or discrete sub-matrices.

– The initial marking is denoted as M0 and is defined as a column vector.

– All other output data are identical to the input data.

Function enter HPN: [Pre, Post, M0, vel, v, D, s, alpha] = enter HPN.

This function creates the net following a guided procedure. The parameters are identical to

those defined for the previous function make HPN.m.

Function simulator HPN: Evol = simulator HPN(Pre, Post, M, vel, v, D, s, alpha, time stop,

simulation type, J).

Input arguments. They coincide with the output argument of the previous interface functions,

plus three additional parameters.

– time stop is equal to the time length of simulation.

– simulation type ∈ {2, 1, 0} specifies the simulation mode. Mode 0: no intermediate result is

shown but only array Evol is created to be later analyzed analysis HPN. Modes 1 and 2 generate

on screen the evolution graph: in the fist case the simulation proceeds without interruptions until

time stop is reached; in the second case the simulation is carried out step-by-step.

– J ∈ R1×qc is a row vector that associates to each continuous transition a weight: J ·v is the

linear cost function that should be maximized at each MP to compute the IFS vector v. This

optimization problem is solved using the subroutine glpkmex.m of Matlab.

Output arguments. The output is an array of cells called Evol, with the following entries

(here K is the number of ME that occur during the simulation run).

– Type ∈ {1, 2, 3}: 1 (2, 3) if the net is continuous (discrete, hybrid).

– M Evol ∈ (R+
0 )n×(K+1) keeps track of the marking of the net during all the evolution: an

n–dimensional column vector is associated to the initial time instant and to all the time instants

DRAFT



9

in which a different ME occurs, each one representing the corresponding value of the marking

at that time instant.

– IFS Evol ∈ (R+
0 )qc×(K+1) keeps track of the IFS vectors during all the evolution. In

particular, a qc–dimensional column vector is associated to the initial configuration and to the

end of each ME.

– P macro and Event macro Evol are (K +1)-dimensional row vectors and keep track of the

ME caused by continuous places. If the generic r-th ME is due to continuous place pj , then the

(r+1)–th entry of P macro is equal to j; if it is due to the firing of a discrete transition, then the

(r+1)–th entry of P macro is equal to NaN . The entries of Event macro Evol may take values

in {0, 1,−1, NaN}: 0 means that the corresponding continuous place gets empty; 1 means that

the the continuous place enables a new discrete transition; −1 means that the continuous place

disables a discrete transition. If the generic r-th ME is due to the firing of a discrete transition,

then the (r+1)-th entry of Event macro Evol is equal to NaN as well. The first entries of both

P macro and Event macro Evol are always equal to NaN .

– firing transition is a (K + 1)–dimensional row vector that keeps track of the discrete

transitions that have fired during all the evolution. If the r-th ME is caused by the firing of

discrete transition tk, then the (r + 1)–th entry of firing transition is equal to k; if it is caused

by a continuous place, then the (r + 1)–th entry of firing transition is equal to 0. Note that the

first entry of firing transition is always equal to NaN .

– timer macro event is a (K +1)–dimensional row vector that keeps into memory the length

of ME. The first entry is always equal to NaN .

– τ is equal to the total time of simulation.

– Q Evol is a ((K + 1) × qd)–dimension array of cells, whose generic (r + 1, j)-th entry

specifies the clocks of transition tj at the end of the r-th MP.

– Pc Pd Tc Td ∈ N4 is a 4-dimensional row vector equal to [nc nd qc qd].

Function analysis HPN: [ P ave, P max, Pd ave t, IFS ave, Td ave,

Pd freq, Md freq ] = analysis HPN (Evol, static plot, graph, marking plot, Td firing plot,

up marking plot, Pd prob plot, Pd ave t plot, IFS plot,

up IFS plot, IFS ave plot, Td freq plot).

This function computes useful statistics and plots the results of the simulation run contained

DRAFT



10

in Evol.

Input arguments. – statistic plot ∈ {0, 1}: if 1 two histograms are created showing for each

place, the maximum and the average marking during the simulation.

– graph ∈ {0, 1}: when set to 1 the evolution graph is printed on screen.

– marking plot: is a vector used to plot the marking evolution of selected places in separate

figures. As an example, if we set marking plot= [x y z], the marking evolution of places px, py

and pz is plotted. If marking plot= [−1], then the marking evolution of all places is plotted.

– Td firing plot ∈ {0, 1}: when set to 1 a graph is created showing the time instants at which

discrete transitions have fired.

– up marking plot is a vector used to plot the marking evolution of selected places in a single

figure. The syntax is the same as that of marking plot.

– Pd prob plot ∈ {0, 1}: 1 means that as many plots as the number of discrete places will

be visualized, each one representing the frequency of having a given number of tokens during

the simulation run.

– Pd ave t plot is a vector used to plot the average marking in discrete places with respect

to time. A different figure is associated to each place, and the syntax to select places is the same

as that of marking plot.

– IFS plot (resp., up IFS plot): is a vector used to plot the IFS of selected transitions in

separate figures (resp., in a single figure). The syntax is the same as that of marking plot and

up marking plot.

– IFS ave plot ∈ {0, 1}: if 1 an histogram is created showing the average firing speed of

continuous transitions.

– Td freq plot ∈ {0, 1}: if 1 an histogram is created showing the firing frequency of discrete

transitions during the simulation run.

Output arguments.

– P ave (P max) ∈ R1×n: each entry is equal to the average (maximum) marking of the

corresponding place during the simulation run.

– Pd ave t ∈ Rnd×K : column k specifies the average marking of discrete places from time

τ0 = 0 to time τk when the k-th ME occurs.

– IFS ave ∈ R1×qc: each entry is equal to the average IFS of the corresponding continuous

transition.

DRAFT



11

– Td ave ∈ R1×qd: each entry is equal to the average enabling time of the corresponding

discrete transition.

– Pd freq ∈ Rnd×(z+1) specifies for each discrete place the frequency of a given number of

tokens during the simulation run. Here z is the maximum number of tokens in any discrete place

during the simulation run.

– Md freq ∈ R(nd+1)×K̃ where K̃ denotes the number of different discrete markings that are

reached during the simulation run. Each column of Md freq contains one of such markings and

its corresponding frequency as a last entry.

IV. A NUMERICAL EXAMPLE

Let us consider again the FOHPN system in Fig. 1(a) with performance index to be maximized

J = v1 +v2 and a simulation time of 20 time units. The most significant results of the simulation

run are shown in Fig. 2: the marking evolution of continuous place p1, of discrete places p3 and

p5, the IFS v1 and v2, and the occurrence of ME. In particular, the bottom right figure specifies

if the ME is due to a discrete transition (the index i of transition is shown in the y axis) or to

a continuous place (the value of the y axis is equal to zero).
The main results of function analysis HPN.m are:

p1 p2 p3 p4 p5

P ave = [ 0.127 0.600 0.400 0.475 0.525 ] ,

p1 p2 p3 p4 p5

P max = [ 1.321 1 1 1 1 ] ,

0 1

Pd freq =

p2

p3

p4

p5




0.400

0.600

0.525

0.475

0.600

0.400

0.475

0.525




,

t1 t2

IFS ave = [ 0.400 0.450 ] ,

t3 t4 t5 t6

Td ave = [ 0.200 0.150 0.350 0.300 ] .

The evolution graph created by simulator HPN, and matrices Md ave t, Md freq are not

reported here, but can be downloaded from the web site [8].

In this paper we only present a very simple numerical example but we proved the efficiency

of HYPENS via real dimensional cases examples in [6]. Here we considered both timed nets,

modeling a family of queueing networks, and a hybrid net modeling a job shop system with

finite capacity buffers and unreliable multi-class machines.

DRAFT



12

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

Evolution of M(p
1
) wrt time

M
1

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

Evolution of M(p
3
) wrt time

M
3

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

Evolution of M(p
5
) wrt time

M
5

0 2 4 6

0

0.2

0.4

0.6

0.8

1

time

IFS of t
 1

 wrt time

v 1

0 2 4 6
0

0.5

1

1.5

2

time

IFS of t
 2

 wrt time
v 2

0 1 2 3 4 5 6 7
0

3

4

5

6

time

ME: disc. trans. t
 i
 (i) or cont. place (0)

Fig. 2. Simulations carried out on the FOHPN system in Fig. 1(a) using HYPENS.

V. CONCLUSIONS

We presented a Matlab tool for the simulation and analysis of timed discrete, continuous and

hybrid PNs. Very general distribution functions can be considered, and the analysis of simulation

may be efficiently carried out both graphically and numerically. The optimization of the net with

respect to a given performance index may be easily carried out, and different conflict resolution

policies may be considered. We plan to extend the tool adding the primitive ”total memory

policy”.

REFERENCES

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Generalized Stochastic Petri

Nets. Wiley, 1995.

[2] F. Balduzzi, A. Giua, and C. Seatzu. Modelling and simulation of manufacturing systems with first-order hybrid Petri nets.

Int. J. of Production Research, 39(2):255–282, 2001.

DRAFT



13

[3] F. Balduzzi, G. Menga, and A. Giua. First-order hybrid Petri nets: a model for optimization and control. IEEE Trans. on

Robotics and Automation, 16(4):382–399, 2000.

[4] R. David and H. Alla. Discrete, Continuous and Hybrid Petri Nets. Springer, 2004.

[5] A. Di Febbraro, A. Giua, G. Menga, and (Eds.). Special issue on Hybrid Petri nets. Discrete Event Dynamic Systems,

2001.

[6] A. Giua, C. Seatzu, and F. Sessego. Simulation and analysis of hybrid Petri nets using the Matlab tool HYPENS. In Proc.

2008 IEEE Int. Conf. on Systems, Man and Cybernetics, Singapore, 2008, submitted.

[7] http://sourceforge.net/projects/hisim.

[8] http://www.diee.unica.it/automatica/hypens.

[9] http://www.lag.ensieg.inpg.fr/sirphyco.

[10] M. Silva and L. Recalde. On fluidification of Petri net models: from discrete to hybrid and continuous models. Annual

Reviews in Control, 28(2):253–266, 2004.

DRAFT


