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Piazza D’Armi, 09123 Cagliari, Italy

e-mail: {giua,seatzu}@diee.unica.it

Daniele Corona
Delft Center for System and Control, Delft University of Technology

Mekelweg 2, 2628 CD Delft, The Netherland

e-mail: d.corona@dcsc.tudelft.nl

Abstract

In this paper we deal with the problem of estimating the marking of a labeled Petri net system based

on the observation of transitions labels. In particular, we assume that a certain number of transitions are

labeled with the empty string ε, while unique labels taken from a given alphabet are assigned to each

of the other transitions. Transitions labeled with the empty string are called silent because their firing

cannot be observed. Under some technical assumptions on the structure of the unobservable subnet we

formally prove that the set of markings consistent with the observed word can be represented by a linear

system with a fixed structure that does not depend on the length of the observed word.

I. INTRODUCTION

In this paper we address the problem of estimating the marking of a Petri net (PN) whose set

of transitions is partitioned in two sets: observable transitions whose firing can be detected by

an external observer, and unobservable transitions, i.e., transitions labeled with the empty string

ε whose firing cannot be detected [2].
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This is a fundamental issue in theoretical computer science within the framework of nonde-

terministic language generators. In fact, in this context, the behaviour of a discrete event system

(DES) is modeled by a language: the event set E is viewed as an alphabet, and a sequence

of events from this alphabet forms a word (or a string) of events, that describes a particular

evolution of the system. The state observer of a DES aims at providing an estimate of the

system state based on the observation of the word of events. The initial state is usually assumed

to be known but, on the contrary, it may be the case that the system dynamics is not perfectly

known in the sense that it may be nondeterministic.

More precisely, the nondeterminism may be due to two different facts.

— Silent events. There may be events that cause a change in the state of the DES but that are

not observable by an outside observer. Events of this kind are labeled with the empty string ε.

— Indistinguishable events. There may be events whose occurrence from a given state yields

two or more new states. Such is the case if two or more transitions labeled with the same symbol

in E are enabled at a given state.

For DES modeled as finite automata, the most common way of solving the problem of partial

observation is that of converting, using a standard determinization procedure, the nondeterministic

finite automaton (NFA) into an equivalent deterministic finite automon (DFA) where: (i) each

state of the DFA corresponds to a set of states of the NFA; (ii) the state reached on the DFA

after the word w is observed, gives the set C(w) of states consistent with the observed word w.

However, there are some drawbacks in the above procedure. Firstly, each set C(w) must be

exhaustively enumerated. Then, to compute C(w) we first need to compute C(w′) for all prefixes

w′ ¹ w. Finally, if the NFA has n states, the DFA can have up to 2n states.

In this paper we explore the possibility of using PN as discrete event models and address the

observer design under the assumption that some transitions are labeled with the empty string ε,

i.e., they are silent, while a different label is assigned to all the other transitions. Thus, if T is the

set of transitions and Tε is the set of silent transitions, all transitions in T \Tε are deterministic.

We first observe that an analogous determinization procedure as that used in the case of

automata, cannot be used in the PN framework. In fact, a nondeterministic PN cannot be

converted into an equivalent deterministic PN, because of the strict inclusions [3]:

Ldet ( L ( Lλ
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where

• Ldet is the set of deterministic PN languages;

• L is the set of λ-free PN languages, namely, languages accepted by nets where no transition

is labeled with the empty string: the nondeterminism here is associated to indistinguishable

events because two transitions may share the same label;

• Lλ is the set of arbitrary PN languages where a transition may also be labeled with the empty

string: the nondeterminism here is associated both to silent events and to indistinguishable

events.

If one considers the restricted class of bounded PN (i.e., nets with a finite state space), it is

possible to use the above results on automata theory to compute a state observer based on partial

event observation. More precisely, we can first construct the reachability graph of the Petri net

system, that under the assumption of arbitrary labeling is a NFA G. Then we construct the DFA

G′ equivalent to the NFA G. Note however that the resulting observer G′ is an automaton, not a

Petri net, thus all advantages that may derive from initially modeling the DES with a Petri net

vanish.

The main contribution of this paper is that of providing an original approach to build a state

observer that does not require the construction of the reachability graph, and thus works for both

bounded and unbounded PN. More precisely, we derive an efficient technique for characterizing

the set of markings that are consistent with the actual observation w, namely C(w).

In particular, we make the following five assumptions:

(A1) the net structure is known;

(A2) the initial marking is known;

(A3) the labels associated to the firing of transitions in T \ Tε can be observed, and a different

label is associated to each transition;

(A4) the Tε−induced subnet of N is acyclic;

(A5) the Tε−induced subnet is backward conflict free, i.e., any two distinct silent transitions have

no common output place.

Note that such assumptions, and in particular (A5), reduce the generality of the proposed

results. However, we believe that significant problems within the framework of discrete event

systems may be modeled under these assumptions. Moreover, this paper is also a first step
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towards more general formulations.

Under these assumptions, we show that the set of consistent markings can be written as the

solution of a linear system with a fixed structure that depends on the value of a vector Mb ∈ Nm,

called the basis marking, that can be recursively computed. In particular, the set of consistent

markings can be formulated as the sum of the basis marking and arbitrary effects of silent

transitions, provided this sum is non-negative. The main advantage of the proposed approach is

that we need not exhaustively enumerate all consistent markings.

We addressed a similar problem in [5], [6]. Note however that in [5], [6] we dealt with λ-free

labeled PN, i.e., with PN where no transition is labeled with the empty string, and the nonde-

terminism was due to indistinguishable events. Under the assumption that the nondeterministic

transitions are contact-free1, we gave a linear algebraic characterization of the set of consistent

markings that depends on some parameters that can be recursively computed.

Let us finally observe that a similar approach that uses a logical formalism rather than linear

programming was also presented by Benasser [1]. This author has studied the possibility of

defining the set of markings reached firing a “partially specified” set of transitions using logical

formulas, without having to enumerate this set. Other authors [10] have also discussed the

problem of estimating the marking of a Petri net using a mix of transition firings and place

observations. Zhang and Holloway [12] used a Controlled Petri Net model for forbidden state

avoidance under partial event observation with the assumption that the initial marking be known.

Finally, a notion similar to that of basis marking we introduce in this paper, has already been

used by Heymann and Lin in [7]. Here the authors deal with the problem of designing an on-line

controller for partially observed DES, that is based on the definition of the unobserved reach

set of a subset xπ ⊆ X that is similar to the definition of the set of consistent markings we use

in this paper. In fact, the unobserved reach set of xπ is defined as the set of all states that can

be reached from any state x′ ∈ xπ by firing sequences of unobserved events.

II. BACKGROUND ON PETRI NETS

In this section we recall the formalism used in the paper. For more details on Petri nets we

address to [11].

1Nondeterministic transitions are contact-free if for any two nondeterministic transitions t and t′ the set of input and output

places of t cannot intersect the set of input and output places of t′.
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A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P ×T → N and Post : P ×T → N are the pre– and

post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative

integer number of tokens, represented by black dots. We denote M(p) the marking of place p.

A P/T system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =

M+C(· , t). We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk
is enabled at

M , and we write M [σ〉 M ′ to denote that the firing of σ yields M ′. We also denote ~σ : T → N

the firing vector associated to a sequence σ, i.e., σ(t) = k if the transition t is contained k times

in σ.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .

The set of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is

denoted R(N,M0). Finally, we denote PR(N,M0) the potentially reachable set, i.e., the set

of all markings M ∈ Nm for which there exists a vector ~y ∈ Nn that satisfies the state equation

M = M0 + C · ~y, i.e., PR(N,M0) = {M ∈ Nm | ∃ ~y ∈ Nn : M = M0 + C · ~y}. It holds that

R(N, M0) ⊆ PR(N, M0).

A Petri net having no directed circuits is called acyclic. For this subclass, the following result

holds.

Theorem 1. Let N be an acyclic Petri net.

(i) If the vector ~y ∈ Nn satisfies the equation M0 + C · ~y ≥ ~0 there exists a firing sequence σ

firable from marking M0 and such that ~σ = ~y.

(ii) A marking M is reachable from M0 if and only if there exists a non negative integer

solution ~σ satisfying the state equation M = M0 + C · ~σ, i.e., R(N,M0) = PR(N, M0).

Proof: Note that, obviously, (i) implies (ii). These results follow from Theorem 16 of [11].

In effect, the statement of the theorem in [11] is equivalent to (ii) but the result is proved with

an argument that also shows that (i) holds.

A labeling function L : T → E ∪ {ε} assigns to each transition t ∈ T either a symbol from

a given alphabet E or the empty string ε. We extend L to L : T ∗ → E∗ in the natural way.

We denote as Tε the set of transitions whose label is ε, i.e., Tε = {t ∈ T | L(t) = ε}.
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In this paper we assume that the same label e ∈ E cannot be associated to more than one

transition. Thus, the labeling function restricted to T \ Tε is an isomorphism, and with no loss

of generality we assume E = T \ Tε.

We denote as w the word of events associated to the sequence σ, i.e., w = L(σ). Note

that the length of a sequence σ (denoted |σ|) is always greater than or equal to the length of

the corresponding word w (denoted |w|). In fact, if σ contains k′ transitions labeled ε then

|σ| = k′ + |w|.
Moreover, we denote as σ0 the sequence of null length and ε the empty word. We use the

notation wi 4 w to denote the generic prefix of w of length i ≤ k, where k is the length of w.

Definition 2. Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we

define the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′

are the restriction of Pre, Post to T ′. The net N ′ is obtained from N removing all transitions

in T \ T ′. We also write N ′ ≺T ′ N . ¥

III. PRELIMINARY RESULTS

Let 〈N, M0〉 be a net system with incidence matrix C ∈ Zm×n and let M̃ ∈ Nm. We define

Σ(N,M0, M̃) =
{
~y ∈ Nn | M0 + C~y ≥ M̃

}

as the set of firing vectors that potentially correspond to sequences that lead from M0 to a

marking greater than or equal to M̃ . To simplify the notation, when no ambiguity may result

we write Σ to denote this set.

The set (Σ,≤) is a poset (partially ordered set) where ≤ is the usual relation on Nn defined

as:

~y ≤ ~y ′ ⇐⇒ (∀j = 1, . . . , n) yj ≤ y′j.

Given two elements ~y ′, ~y ′′ ∈ Σ we denote by ⊕ the componentwise min operator, i.e.,

~y = ~y ′ ⊕ ~y ′′ ⇐⇒ (∀j = 1, . . . , n) yj = min{y′j, y′′j }.

Definition 3. A net N = (P, T, Pre, Post) is said Backward Conflict Free (BCF) if any two

distinct transitions have no common output place. ¥

Thus, if N is BFC, each place pi has at most one input transition tji
as shown in Figure 1.
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Theorem 4. If N = (P, T, Pre, Post) is a backward conflict free net and if Σ 6= ∅, then (Σ,≤)

has infimal 2 element

~y inf =
⊕

~y∈Σ

~y.

Proof: It is sufficient to show that the set Σ is closed under the ⊕ operator. To show this,

assume ~y ′, ~y ′′ ∈ Σ. Then for all pi ∈ P the two vectors satisfy



M0(pi) + C(pi, ·)~y ′ ≥ M̃(pi)

M0(pi) + C(pi, ·)~y ′′ ≥ M̃(pi).
(1)

Since N is BCF, then the row C(pi, ·) of the incidence matrix associated to place pi contains

at most one positive element C(pi, tji
) = αi,ji

> 0, while for all j 6= ji it holds C(pi, tj) =

−αi,j ≤ 0. If no elements of C(pi, ·) is positive, then we define ji = n + 1 and αi,ji
= 0.

Thus for all pi ∈ P we can rewrite inequalities (1) as follows:



αi,ji
y′ji
≥ M̃(pi)−M0(pi) +

n∑

j=1,j 6=ji

αi,jy
′
j

αi,ji
y′′ji
≥ M̃(pi)−M0(pi) +

n∑

j=1,j 6=ji

αi,jy
′′
j .

(2)

Let us now consider a vector ~y = ~y ′ ⊕ ~y ′′. For all pi ∈ P it holds:

αi,ji
yji

= min{αi,ji
y′ji

, αi,ji
y′′ji
}

≥ M̃(pi)−M0(pi)+

+ min
{∑n

j=1,j 6=ji
αi,jy

′
j,

∑n
j=1,j 6=ji

αi,jy
′′
j

}

≥ M̃(pi)−M0(pi) +
n∑

j=1,j 6=ji

αi,jyj,

(3)

i.e., ~y ∈ Σ.

Remark 5. We want to point out where the assumption that N be backward conflict free is

essential in the previous proof. Assume that a place pi has two input transitions tji
and tki

. Then

as we write equation (2) in terms of positive elements we need to write expressions of the form:

αi,ji
y′ji

+ αi,ki
y′ki

≥ M̃(pi)−M0(pi) +
n∑

j=1,j 6∈{ji,ki}
αi,jy

′
j

2The infimal element of a poset (A, 4) is an element ainf ∈ A such that for any another a′ ∈ A it holds ainf 4 a′. If the

infimal element exists it is unique.
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Fig. 1. A place of a BCF net.

 

t4 t1 

t2 
a  ε 

ε 

 p1  p2  p3 t5 
 p4 

b 

t3 

 ε 

 

Fig. 2. The Petri net system considered in Example 7.

and now when we consider vector ~y it holds

αi,ji
yji

+ αi,ki
yki

≤
min{αi,ji

y′ji
+ αi,ki

y′ki
, αi,ji

y′′ji
+ αi,ki

y′′ki
} ≥

M̃(pi)−M0(pi) +
∑n

j=1,j 6∈{ji,ki} αi,jyj

i.e., we cannot conclude that ~y ∈ Σ. ¥

IV. AN ALGEBRAIC CHARACTERIZATION OF THE SET OF CONSISTENT MARKINGS

Let us consider a Petri net system 〈N,M0〉 with labeling function L : T → E ∪ {ε}.

Assume that conditions (A1) to (A5) in the Introduction hold.

After the word w of symbols in E has been observed, we define the set C(w) of w-consistent

markings as the set of all markings in which the system may be, given the observed behaviour.

Definition 6. Given an observed word w, the set of w-consistent markings is

C(w) = {M ∈ Nm | ∃ a sequence of transitions σ :

M0[σ〉M and L(σ) = w}.
(4)

¥
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Example 7. Let us consider the Petri net system in Figure 2 whose initial marking is equal to

M0 = [1 1 0 0]T and whose alphabet is E = {a, b}.

Assume that no event is initially observed, i.e., σ = σ0 and w = ε. By definition, the set of

markings that are consistent with the empty word is C(ε) = {[1 1 0 0]T , [1 0 1 0]T}. In fact

two different cases may have occurred: either no transition has fired or the silent transition t1

has fired.

Now, assume that transition t4 fires. Its firing can be observed being L(t4) = a ∈ E. In such

a case the set of markings that is consistent with the observed event a is C(a) = {[0 2 0 0]T ,

[0 1 1 0]T , [0 0 2 0]T}. In fact, five different sequences of transitions σi, i = 1, · · · , 5, may

have fired, namely, σ1 = t4, σ2 = t4t1, σ3 = t1t4, σ4 = t4t1t1, σ5 = t1t4t1, and for all of them

L(σi) = a. Moreover, M0[σ1〉 [0 2 0 0]T , M0[σ2〉 [0 1 1 0]T , M0[σ3〉 [0 1 1 0]T , M0[σ4〉 [0 0 2 0]T

and M0[σ5〉 [0 0 2 0]T . ¥

A. Main result

We formally prove that under assumptions (A1) to (A5), a fixed number of constraints, not

depending on the length of the observed word w, may be used to describe the set of w consistent

markings. In particular, we formally prove that:

M(Mb,w) , {M ∈ Nm | M = Mb,w + Cε ~y, ~y ∈ Nnε} (5)

is the set of w consistent markings, i.e., M(Mb,w) = C(w), where Mb,w is appropriately computed

using the following recursive algorithm, Cε is the restriction of the incidence matrix to silent

transitions, and nε is the number of silent transitions.

Algorithm 8 (Mb,w computation).

1. Let w = ε and Mb,w = M0.

2. Wait until an event e is observed, and let t be the

transition such that L(t) = e.

3. Set ~y inf = ~0 ∈ Nnε , and M = Mb,w − Pre(·, t)
While there exists a pi such that M(pi) < 0 do

(a) Look for the (unique) silent transition tε,i ∈• pi

(b) Let % =

⌈ −M(pi)

Post(pi, tε,i)

⌉
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(c) Update ~y inf = ~y inf + %~eε,i

where ~eε,i is the normal basis

i− th element of Nnε .

(d) Update M = M + % C(·, tε,i).
endwhile

Let Mb,we = Mb,w + Cε ~y inf + C(·, t) and w = we.

4. Goto 2. ¥

Note that the main idea behind the proposed characterization originates from the consideration

that, given the above assumptions (A4) and (A5), we can always describe the set of markings

that are consistent with an observed word w as the set of markings that can be reached from a

basis marking Mb,w, depending on w, by simply firing silent transitions. Using Algorithm 8 the

basis marking Mb,w is computed as the marking that is reached from the initial one by firing

all the observed deterministic transitions and all those silent transitions whose firing is strictly

necessary to enable the observed sequence. Thus, when no transition firing is observed, we take

Mb,ε = M0.

As formally proved in the following, the existence and unicity of the basis marking Mb,w

follows from Theorem 4. In fact, since the Tε−induced subnet is acyclic, if we consider Σ =

Σ(N,Mb,v, P re(·, t)), where Mb,v is the basis marking before the last observed transition t, Σ

represents the set of firing vectors that correspond to sequences of silent transitions that lead

from Mb,v to a marking greater than or equal to Pre(·, t), i.e., to a marking that enables t. By

Theorem 4 we know for sure that the infimal element ~y inf of Σ exists and is unique. Therefore

we update the basis marking taking into account that, before the firing of t, a certain number of

silent transitions, corresponding to the firing vector ~y inf , have fired to enable t.

We finally remark that the number of executions of while at step 3 of Algorithm 8 is less than

or equal to the number of transition firings that are necessary to enable the observed transition

t.

Example 9. Let us consider again the Petri net system in Figure 2.a. By definition the basis

marking when no event is observed is Mb,ε = M0.

Let us first assume that the event a is observed, i.e., transition t4 has fired. The infimal

vector ~y inf is null, and according to Algorithm 8, the basis marking is updated to Mb,a =
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Mb,ε + C(·, t4) = [0 2 0 0]T .

Now, assume that the event b is observed, i.e., transition t5 has fired. In this case ~y inf =

[1 0 0]T because we know for sure that the silent transition t1 has fired at least once to enable

t5, and the basis marking is updated to Mb,ab = Mb,a + Cε · ~y inf + C(·, t5) = [0 1 0 1]T . ¥

Now, let us prove an important property of acyclic Petri nets that will be useful in the following.

Lemma 10. Let us consider an acyclic Petri net system 〈N,M0〉. Assume that two firing

sequences σ′ and σ′′ are enabled at M0 and assume that σ′′ is still enabled after the firing

of σ′. Then M0[σ
′σ′′〉M̄ and M0[σ

′′〉M ′′ =⇒ (∃σ′eq : ~σ′eq = ~σ′) M ′′[σ′eq〉M̄ .

Proof: The first assumption M0[σ
′σ′′〉M̄ implies that M̄ = M0 + C · ~σ′ + C · ~σ′′ ≥ ~0, with

~σ′, ~σ′′ ≥ ~0, while the second assumption M0[σ
′′〉M ′′ implies that M ′′ = M0 + C · ~σ′′. Thus,

M ′′ + C · ~σ′ = M̄ ≥ 0.

By Theorem 1, item (i), the above equation implies that there exists a firing sequence σ′eq

with ~σ′ = ~σ′eq such that M ′′[σ′eq〉M̄ , thus proving the statement.

The above lemma ensures that if σ′′ is enabled after the firing of σ′, a sequence σ′eq that is

equivalent to σ′ — in the sense that it is just a permutation of σ′ — is enabled after the firing

of σ′′.

Theorem 11. Let us consider a Petri net system 〈N,M0〉 and let L : T → E∪{ε} be its labeling

function. Assume that assumptions (A4) and (A5) are satisfied. Then, for all words w ∈ (T \Tε)
∗

the equality C(w) = M(Mb,w) holds, where Mb,w is computed using Algorithm 8.

Proof: We prove this by induction on the length of the observed word.

(Basis Step.) If w = ε then Mb,w = M0 and

M(Mb,ε) = M(M0)

= {M ∈ Nm | M = M0 + Cε ~y, ~y ∈ Nnε}
⊇ {M ∈ Nm | M0[σε〉M, σε ∈ T ∗

ε }
= C(ε).

If Nε is acyclic we can replace ⊇ by = according to Theorem 1, item (ii).

(Inductive Step.) Assume that C(v) = M(Mb,v) for a generic word v ∈ E∗.

We prove that C(ve) = M(Mb,ve) with e ∈ E.
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We first observe that, if t = L−1(e) then

C(ve) = {M ′′ ∈ Nm | M ∈ C(v), M ≥ Pre(·, t),
M [t〉M ′[σ′ε〉M ′′, σ′ε ∈ T ∗

ε }
= {M ′′ ∈ Nm | M ∈M(Mb,v), M ≥ Pre(·, t),

M [t〉M ′[σ′ε〉M ′′, σ′ε ∈ T ∗
ε }

= {M ′′ ∈ Nm | M = Mb,v + Cε ~y, ~y ∈ Nε,

M ≥ Pre(·, t), M [t〉M ′[σ′ε〉M ′′,

σ′ε ∈ T ∗
ε }

⊇ {M ′′ ∈ Nm | Mb,v[σε〉M [t〉M ′[σ′ε〉M ′′,

σε, σ
′
ε ∈ T ∗

ε }.
If Nε is acyclic we can replace ⊇ by = according to Theorem 1, item (ii).

Now, let us notice that when a new transition t is observed, using Algorithm 8, we first

update the basis marking Mb,v to M ′
b,v = Mb,v + Cε ~y inf where ~y inf is the infimal vector of

Σ(N,Mb,v, P re(·, t)). Moreover, since by assumption the Tε−induced net is BCF, so by virtue

of Theorem 4, ~y inf is unique for all t ∈ T \ Tε and for all Mb,v ∈ Nm. Thus by definition M ′
b,v

is the marking that can be obtained from Mb,v by simply firing those transitions that are strictly

necessary to enable t. Clearly, if Mb,v already enables t, then ~y inf = ~0.

Furthermore, since Nε is acyclic,

M = M ′
b,v + Cε ~y ≥ Pre(·, t)

implies that

∃ σε ∈ T ∗
ε : ~σε = ~y and M ′

b,v[σε〉M [t〉M ′.

Now, we first prove that C(ve) ⊆ M(Mb,ve). In fact, given any firing sequence σ inf
ε that
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corresponds to the firing vector ~y inf , i.e., ~σ inf
ε = ~y inf , it holds that

M ′′ ∈ C(ve)

⇔ Mb,v[σ
inf

ε 〉M ′
b,v[σε〉M [t〉M ′[σ′ε〉M ′′

⇒ by lemma 10, (∃σε,eq with ~σε,eq = ~σε)

Mb,v[σ
inf

ε 〉M ′
b,v[t〉Mb,ve[σε,eq〉M ′[σ′ε〉M ′′

⇒ Mb,ve[σε,eq〉M ′[σ′ε〉M ′′

⇔ Mb,ve[σ
′′
ε 〉M ′′, σ′′ε = σε,eq σ′ε

⇔ M ′′ = Mb,ve + Cε ~σ′′ε

⇔ M ′′ ∈M(Mb,ve).

We finally prove that M(Mb,ve) ⊆ C(ve). In fact,

M ′′ ∈M(Mb,ve) ⇔ M ′′ = Mb,ve + Cε~y
′

⇔ (by assumption (A4))

∃σ′ε ∈ T ∗
ε : Mb,ve[σ

′
ε〉M ′′

⇔ Mb,v[σ
inf

ε 〉M ′
b,v[t〉Mb,ve[σ

′
ε〉M ′′,

Mb,v ∈ C(v)

where σ inf
ε is any firing sequence such that ~σ inf

ε = ~y inf . Therefore by definition M ′′ ∈ C(ve),

thus proving the statement.

Example 12. Let us consider again the Petri net system in Figure 2.a. In the previous Example 9

we computed that Mb,a = [0 2 0 0]T . This means that M(Mb,a) = {M ∈ Nm | M = Mb,a +

Cε ~y, ~y ∈ N3} is the set of consistent markings. The above set can be also be rewritten as

M(Mb,a) = {M ∈ Nm | M = [y2 2 − y1 + y2 y1 − y2 − y3]
T , [y1 y2 y3]

T ∈ N3}, thus

y1 ∈ {0, 1, 2}, y2 = y3 = 0, and M(Mb,a) = {[0 2 0 0]T , [0 1 1]T , [0 0 2 0]T} that coincides with

the set of consistent markings computed via the DFA in Figure 2.c. The same reasoning can be

repeated for any other word of events. ¥

Remark 13. Given the characterization of the set of markings consistent with an observation

w in equation (5) and a marking M̄ , it is easy to establish if M̄ is reachable or not after

the observation w. To this aim we need to check if the following constraint set of nε integer
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unknowns (the vector ~y) is feasible:




M̄ = Mb,w + C~y

~y ∈ Nnε

(6)

This can be easily done by simply solving a linear integer programming problem with unknowns

M and ~y, constraint set (6) and any linear performance index involving M . ¥

V. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is that of providing a marking estimation procedure

for nondeterministic labeled Petri nets, where the nondeterminism is due to the presence of

transitions labeled with the empty sting ε. Under some technical assumptions on the structure

of the Tε−induced net (i.e., it is acyclic and backward conflict free), we formally proved that

the set of markings consistent with an observed word can be described by a constraint set of

linear inequalities that has a fixed structure that does not change as the length of the observed

sequence increases.

We plan to extend our results in several ways. Firstly, we plan to modify the structure of

the constraint set to also take into account the case that the initial marking is not known.

Then we want to extend this approach taking simultaneously into account the case in which the

nondeterminism is due to silent transitions and the case of nondeterministic transitions that share

the same label.
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