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Abstract

This paper addresses the problem of enforcing generalized mutual exclusion constraints on
a Petri net plant. Firstly, we replace the classical partition of the event set into controllable
and uncontrollable events from supervisory control theory, by associating a control and
observation cost to each event. This leads naturally to formulate the supervisory control
problem as an optimal control problem. Monitor places which enforce the constraint are
devised as a solution of an integer linear programming problem whose objective function is
expressed in terms of the introduced costs. Secondly, we consider timed models for which the
monitor choice may lead to performance optimization. If the plant net belongs to the class
of mono-T-semiflow nets, we present an integer linear fractional programming approach to
synthesize the optimal monitor so as to minimize the cycle time lower bound of the closed
loop net. For strongly connected marked graphs the cycle time of the closed loop net can be
minimized.

Index Terms: Discrete Event Systems, Supervisory Control, Petri Nets, Monitor Places.

1 Introduction

In this paper we consider discrete event systems modeled by Petri nets (PN) and address the
problem of enforcing forbidden state specifications represented by generalized mutual exclusion
constraints (GMEC) [5, 6, 8]. A GMEC (l, k) limits the weighted sum of tokens in a subset
of places and defines a set of legal markings M(l, k) = {m ∈ Nm | l · m ≤ k}. It was
shown [5, 8] that it is possible to impose a GMEC by adding to a net a controller that takes
the form of a single place pc called monitor. Following the classical paradigm of supervisory
control theory [14], the transitions of a PN may be labeled as uncontrollable or unobservable.
When the monitor has arcs going to uncontrollable (going to and coming from unobservable)
transitions we say that the monitor, and its corresponding GMEC, is not admissible. Moody
and Antsaklis [9] propose an elegant approach to solve a GMEC problem when uncontrollable
and/or unobservable transitions are present. Firstly, given a GMEC (l, k) to be enforced, they
propose a parameterization that gives a family of safe constraints and monitors. A constraint
(l′, k′) and its corresponding monitor p′c is called safe if M(l′, k′) ⊆ M(l, k): this means that
(l′, k′) is at least as restrictive as the original constraint and thus p′c prevents the net from
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reaching any forbidden marking. Secondly in [9] a procedure is given to determine an admissible
GMEC belonging to this family. This procedure may typically yield several admissible solutions;
if the merit function to choose among them is ”maximally permissiveness” (as is usually done
in supervisory control) these solutions are often incomparable between them [1]. In this paper
we propose a similar approach to enforce a GMEC framing it as an optimization problem.

In the first part of the paper, we associate a control and observation cost to each transition.
We believe, in fact, that in many cases saying that a transition is not controllable is an over-
simplification. It is more correct to say that to make a transition controllable some effort is
required (modifying the software of low-level controllers, introduction of new actuators, estab-
lishing a network connection between different devices, etc.) and this effort can be quantified.
Analogously, the effort to make a transition observable (introduction of sensors, connection of
sensors to controllers, software modifications, ecc.) can be evaluated. The introduction of con-
trol and observation cost in discrete event systems leads to a new important class of problems.
The motivation for this work can be found in related works recently appeared in the litera-
ture [11, 13] in the context of automata based supervisors. Here this problem is considered in
the context of PN based supervisors.

Thus we consider two functions that associate to each transition t its control and observation
costs. If the cost functions only take value in the binary set {ε,K}, where ε ¿ 1 and K À 1 we
go back to the controllable/uncontrollable and observable/unobservable case. We show how it
is possible to compute, among the safe monitors given by the parameterization of Moody and
Antsaklis the one that has minimal cost. We consider two cases.

In the first case, the monitor cost associated to the control and observation of a transition t

depends on the number of arcs going to and coming from t. We show that the corresponding
optimization problem takes the form of an integer linear programming problem with a linear
objective function.

In a second case the cost does not depend on the number or arcs but only on the fact that
there exists at least one arc between the monitor place and the transition t. In this case
the optimization problem has a non linear objective function; we show, however, that this
optimization problem can be re-formulated as a linear one.

The second case has a clear and intuitive interpretation: the cost of detecting or enabling an
event is essentially the installation cost of a sensor or an actuator [11, 13]. It may be assumed
that there is no extra cost associated with the use of that sensor or actuator. Furthermore, a
monitor is usually software-implemented and the tokens in a monitor places represent values of
an integer variable in a computer program. Then, if there are more than one arc from a monitor
to a transition, the cost of enabling such a transition does not depend on the number of arcs,
but only on the cost of installing a connection link between the actuator and the controller.

The first case has a less intuitive motivation. We present it for sake of completeness and also
because it helps the formal presentation of the second case. It may have sense if the control and
observation actions are associated with physical actions like a material flow or a signal carrying
energy. In such a situation, tokens in the control places have a physical meaning and thus if
more than one token in a control place is required to enable some transitions, the enabling action
of these transitions has a cost proportional to the required number of tokens.
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In the second part of the paper we consider another optimization criterion for monitor design.
We add a deterministic firing delay to each transition, and assume that the best, among all safe
monitors, is the one that minimizes an objective function that depends on the cycle time of the
net, assuming a periodic execution of the net exists.

To set up this new optimization criterion, we assume that the plant net belongs to the special
class of mono T-semiflow nets: this is a restricted but non trivial class of nets, that includes
strongly connected marked graphs and that can be used to model meaningful systems (e.g.,
kanban manufacturing systems). We show how, using the structural results of [3], it is possible
to compute — by solving a integer linear fractional programming problem — the monitor that
minimizes a lower bound on the cycle time (if the closed loop net is a marked graph the actual
cycle time is minimized). The presented results can be applied to the stochastic case yielding
the monitor that minimizes a lower bound on the mean cycle time.

2 Background

2.1 Place/transitions nets

A place/transition (P/T) net is a structure N = 〈P, T,Pre,Post〉 where: P is a set of m places
represented by circles; T is a set of n transitions represented by bars; P ∩ T = ∅, P ∪ T 6= ∅;
Pre (Post) is the | P | × | T | sized, natural valued, pre-(post-)incidence matrix. For instance,
Pre(p, t) = w (Post(p, t) = w) means that there is an arc from p to t (from t to p) with weight
w. The incidence matrix C of the net is defined as C = Post − Pre. A net having all arc
weights equal to one is called ordinary. A marking is a m× 1 vector m : P → N that assigns to
each place of a P/T net a non-negative integer number of tokens. A P/T system or net system
〈N,m0〉 is a P/T net N with an initial marking m0. A transition t ∈ T is enabled at a marking
m iff m ≥ Pre(·, t). If t is enabled, then it may fire yielding a new marking m′ = m + C(·, t).
The notation m[t > m′ will mean that an enabled transition t may fire at m yielding m′.
A firing sequence from m0 is a (possibly empty) sequence of transitions σ = t1, . . . , tk such
that m0[t1 > m1[t2 > m2 . . . [tk > mk, and we denote it as m0[σ > mk. A marking m is
reachable in 〈N,m0〉 iff there exists a firing sequence σ such that m0[σ > m. Given a net
system 〈N,m0〉 the set of reachable markings is denoted R(N,m0). The function σ : T → N,
where σ(t) represents the number of occurrences of t in σ, is called firing count vector of the
fireable sequence σ. A net system 〈N,m0〉 is said to be bounded if there exists a nonnegative
integer K such that m(p) ≤ K for all m ∈ R(N, m0) and for all places p ∈ P . Right (left)
annuller integer vectors of C are called T-semiflows (P-semiflows), i.e. x : T → N, x 6= 0 (i.e.
y : P → N,y 6= 0) such that Cx = 0 (yT C = 0). The support of a T-semiflow x is defined as
‖ x ‖= {t ∈ T | x(t) > 0}. A T-semiflow is said to be minimal iff the greatest common divisor
of its components is 1 and there exists no other semiflow x′ such that ‖ x′ ‖⊂‖ x ‖.
Definition 1 A place/transition net is strongly connected if there exists a directed path from
any node (place or transition) to any other node (place or transition). ¥

Definition 2 A marked graph (MG) is an ordinary P/T net such that each place has a single
input arc and a single output arc. ¥
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The following property is classical.

Property 1 If the net N is a MG then the following statements are equivalent:
(a) it is strongly connected; (b) it is structurally bounded, i.e., 〈N,m0〉 is bounded for any initial
marking M0 and its unique minimal T-semiflow is the vector 1. ¥
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Figure 1: (a) Net system used in Examples 1 and 4; (b) net system used in Example 2; (c) net
system used in Example 3. Monitor places and arcs are dashed.

2.2 Monitor approach

Assume we are given a set of legal markings L ⊆ Nm, and consider the basic control problem
of designing a supervisor that restricts the reachability set of the plant in closed loop to L ∩
R(N,m0). Of particular interest are those PN state-based control problems where the set of legal
markings L is expressed by a set of nc linear inequality constraints called Generalized Mutual
Exclusion Constraints. A single GMEC is a couple (l, k) where l : P → Z is a 1×m weight vector
and k ∈ Z. Given the net system 〈N,m0〉, a GMEC defines a set of markings that will be called
legal markings: M(l, k) = {m ∈ Nm | lm ≤ k}. The markings that are not legal are called
forbidden markings. A controlling agent, called supervisor, must ensure the forbidden markings
will not be reached. So the set of legal markings under control isMc(l, k) = M(l, k)∩R(N, m0).

It has been shown [8] that the Petri net controller that enforces (l, k) is a place pc called monitor
with incidence matrix cc ∈ Z1×n given by

cc = −lCp (1)

where Cp is the incidence matrix of the plant. The initial marking of the monitor, denoted as
mc0 ∈ N, is given by

mc0 = k − lmp0 (2)
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where mp0 ∈ Nm×1 is the initial marking of the plant. The controller exists iff the initial marking
is a legal marking, i.e. k − lmp0 ≥ 0. By definition a monitor is loop-free1, thus its post- and
pre- incidence matrix c+

c and c−c such that cc = c+
c − c−c can be uniquely defined as:

c+
c = max{cc,0} and c−c = max{−cc,0} (3)

The monitor so constructed is maximally permissive, i.e. it prevents only transitions firings that
yield forbidden markings. It has been shown that it is possible to transform a GMEC (l, k) into
a more restrictive GMEC (l′, k′) as shown in the following proposition.

Proposition 1 (Moody and Antsaklis [9]) Given a plant 〈N,mp0〉 with incidence matrice
Cp and a GMEC (l, k), let r1 ∈ N1×m and r2 ∈ N be such that r1mp0+r2lmp0−r2(k+1) ≤ −1.

Consider the transformed GMEC (l′, k′) with l′ = r1 + r2l, k′ = r2(k + 1)− 1. Then, it holds
M(l′, k′) ⊆M(l, k). The corresponding monitor has incidence matrix and initial marking given
by cc = −l′Cp, mc0 = k′ − l′mp0, and the initial marking of the plant is legal with respect to
(w.r.t.) to the transformed constraint. This parameterization in terms of r1 and r2 is called
Moody & Antsaklis’ parameterization and the corresponding monitors are called safe w.r.t. (l, k).
¥

3 Monitor design with control and observation cost

Assume we are given a function2 zc : T → R+ which associates a nonnegative control cost to
each transition and a function zo : T → R+ which associates a nonnegative observation cost to
each transition. Our problem consists in choosing, among the set of all monitors that are safe
w.r.t. to a given GMEC (l, k), the one that minimizes an objective function representing the
cost of the monitor based control net structure.

Proposition 2 Consider a plant 〈N, mp0〉 with incidence matrice Cp. Given a GMEC (l, k),
the set of monitors that are safe w.r.t. it has, respectively, incidence matrix and initial marking
cc = c−c − c+

c , mc0 = r2(k + 1)− 1− (r1 + r2l) mp0 obtained by solving the set of equations




(a) r1Cp + r2lCp = c−c − c+
c

(b) r1mp0 + r2(lmp0 − (k + 1)) ≤ −1
(c) c−c ≥ 01×n

(d) c+
c ≥ 01×n

(e) r1 ≥ 01×m

(f) r2 ≥ 1

(4)

with variables r1 ∈ N1×m, r2 ∈ N, c−c ∈ N1×n, c+
c ∈ N1×n.

Proof: Equations (4-a,c,d,e,f) impose that the incidence matrix of the controller is obtained
from Moody & Antsaklis’ parameterization: l′Cp = cc = c−c −c+

c , with l′ = r1+r2l. Equation (4-
b) imposes that the initial marking condition is verified (l′mp0 ≤ k′). ¤

Note that the solution of the previous system does not necessarily satisfies the condition c−c (p)c+
c (p) =

0. However a (loop-free) monitor with incidence matrix cc = c−c − c+
c can always be obtained

redefining its pre- and post- matrices as in eq. (3).
1A transition t cannot be at same time input and output transition of a monitor.
2Here R+ denotes the set of nonnegative real numbers.
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It is useful to represent the system of equations (4) in the form




(a) [CT
p CT

p lT −In In ] y = 0n×1

(b) [mT
p0 (mT

p0l
T − (k + 1)) 01×2n ]y ≤ −1

(c) Im+1+2n y ≥ [0m×1 1 02n×1 ]T
(5)

where y = [ r1 r2 c−c c+
c ]T , In denotes the identity matrix of dimension n and 0m×n denotes

the zero matrix of dimension m× n.

Definition 3 Let us denote by F(y) the set of the natural valued vectors that are solutions of
the system of equations (5) with variables y = [ r1 r2 c−c c+

c ]T .

3.1 First case: a linear controller cost

In this first case, we assume that the cost associated to the control and observation of a transition
t depends on the number of arcs going to and coming from t.

In this case if a monitor place pc has an arc outgoing to a plant transition t with weight c−c (pc, t),
we define c−c (pc, t)zc(t) the cost of disabling a firing of the transition; so, if a monitor has an input
arc from a plant transition with weight c+

c (pc, t), we define c+
c (pc, t)zo(t) the cost of detecting a

firing of this transition. Thus the optimal monitor can be found by solving the following integer
linear programming (ILP) problem:

min∆ = c−c zc + c+
c zo = zT y (6)

s.t. y ∈ F(y)

where z = [0m×1 0 zc zo ]T .

Example 1 Let us consider the GMEC (l, k) with l = [ 1 0 0 0 0 0 0 ] , k = 1 and the
net system in fig. 1-a. If we assume all transitions are observable and controllable, this GMEC
can be enforced by the monitor pc1, determined applying (1) and (2). Let us introduce the control
and observation costs: zc = [ 1 6 5 3 2 3 ]T , zo = [ 1 3 4 4 3 2 ]T . If we adopt pc1

we have ∆ = 7. The optimal monitor can be computed solving ILP (6). It results to be pc2 with
a control cost ∆∗ = 3. ¥
We have noted that from a solution of ILP (4) a monitor (i.e., a loop-free controller) can always
be obtained redefining its pre- and post- matrices as in eq. (3). However, this may change the
objective function of ILP (6) that depends on the value of c−c and c+

c . The following property
shows that an optimal solution of ILP (6) can always be implemented by a monitor.

Property 2 If ILP (6) admits a solution, then it also admits an optimal solution that verifies
the condition c−∗c (p)c+ ∗

c (p) = 0, ∀p ∈ P , i.e., there exists an optimal controller that is loop-free.
Proof: Suppose that ∃p ∈ P, c−∗c (p)c+ ∗

c (p) 6= 0 and without loss of generality that c−∗c (p) ≥
c+ ∗

c (p). Now let us build a new solution c− ′c (p) = c−∗c (p)− c+ ∗
c (p), c+ ′

c (p) = 0. It is immediate
to verify that the (4-a,b,c,d,e,f) are verified and that ∆′ = ∆∗−zc(p)c−∗o (p)−zo(p)c−∗o (p) ≤ ∆∗

hence the new solution is optimal. ¤
With a similar reasoning, it is easy to show that such a property also holds for all other opti-
mizations problems presented in the rest of this note.

We remark that the monitor synthesis proposed in this paper is based on Moody and Antsaklis
parameterization which has been devised on the basis of structural PN theory in order to avoid
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the computation of reachability set. It may well happen that a transition is never plant enabled
when disabled by a monitor and this may lead to a different notion of cost as shown in Example
2.

Example 2 Let us consider the GMEC (l, k) with l = [−1 −1 0 −1 −1 0 ] , k = −1
and the net system in fig. 1-b without dashed places and arcs. Let us introduce the control
and observation costs: zc = [ 50 1 1 1 1 ]T , zo = [ 1 10 1 1 1 ]T . The monitor pc1 in
fig. 1-b is obtained from a Moody parameterization with r1 = [ 1 1 0 1 0 0 ] and r2 = 1,
and its control cost is equal to 11. The monitor pc2 in fig. 1-b is obtained from (1) and (2) and
has a control cost ∆ = 53. However, since pc2 never disables t1 whose control cost is equal to
50, one may argue that the control cost of t1 should not be considered and thus the effective cost
of pc2 is equal to 3 that is smaller than the cost of pc1. ¥

3.2 Second case: a nonlinear controller cost

In many cases the control and observation cost of a transition is just the cost of the device and
its installation in order to perform these actions (sensor, network connection, etc.). In this case
when adding a monitor pc, the cost of controlling (resp., observing) a given transition t does
not depend on the number of arcs from pc to t (resp., from t to pc). In this case the optimal
monitor can be found by solving the following integer programming (IP) problem with non linear
objective function3:

min∆nl = sign(c−c )zc + sign(c+
c )zo (7)

s.t. y ∈ F(y).

The sign function allows one to consider only the control or the observation cost without taking
into account the weights of arcs from or to control places. The integer non linear programming
problem (7) can be transformed into a integer linear programming problem (ILP) by introducing
two auxiliary vectors qc ∈ {0, 1}1×n and qo ∈ {0, 1}1×n associated respectively to c−c and c+

c .

Definition 4 Let us denote by F ′(y′) the set of vectors that are solutions of the system of
equations obtained by adding to Equations (5a,b,c) the following ones

{
(d) c−c + W (1− qc) ≤ W 1
(e) c+

c + W (1− qo) ≤ W 1
(8)

with variables y′ = [ r1 r2 c−c c+
c qc qo ]T and where W is a positive integer that should

be chosen greater than the expected values of all elements of c−c and c+
c .

Property 3 Let us consider the ILP

min∆ = qczc + qozo = z′T y′ (9)

s.t. y′ ∈ F ′(y′)

with z′ = [0m×1 0 0n×1 0n×1 zc zo ]T , it gives the same optimal monitor of the IP (7).

Proof: Equations (8d-e) impose that an element of the auxiliary vector qc(p) (qo(p)) has to
be equal to one if c−c (p) > 0 (c+

c (p) > 0), while qc(p) (qo(p)) may be equal to zero or one if
3Given a A m × n matrix of positive integers, we assume that sign(A(i, j)) = 0 if A(i, j) is 0, else

sign(A(i, j)) = 1.
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c−c (p) = 0 (c+
c (p) = 0). Since the cost of the objective function has to be minimized qc(p) (qo(p))

is selected equal to zero when c−c (p) = 0 (c+
c (p) = 0). It follows the proof. ¤

Example 3 Let us consider the GMEC (l, k) with l = [ 0 0 0 0 1 ] , k = 2 and the net
system in fig. 1-c. Let zc = [ 1 2 4 5 1 ]T , zo = [ 3 2 2 2 1 ]T be the control and
observation costs of the transitions. Applying the ILP (4) to this system, the optimal monitor
results pc1 with a control cost ∆∗ = 6. While, if we solve (7), we obtain that the optimal monitor
in this case is the one labeled pc2 in the figure, and ∆∗

nl = 4. Note that pc3, simply obtained from
(1) and (2), has a cost ∆nl = 6. ¥

4 Optimal monitor design for timed Petri nets

Adding time to transitions a further criterion to select the suboptimal monitor could be the
optimization of the cycle time lower bound of the closed loop net.

4.1 Deterministic Timed nets

In deterministic timed PN [10] we suppose that there is a delay of at least di units of time
associated with the firing of transition ti, i = 1, . . . , n; the delay may be greater than di units of
time depending on the firing policy. This means that when ti is enabled, a number of Pre(pj , ti)
tokens will be reserved in the place pj for at least di units of time before their removal by firing
ti. We are interested in finding how fast each transition can initiate firing in a periodically
operated timed Petri net, where a period Γ is defined as the time to complete a stationary firing
sequence (i.e., a sequence that leads back to the initial marking) after firing each transition at
least once. Γ is called cycle time (CT) of the net system. It is well know that a firing sequence
is stationary if and only if its firing count vector is a T-semiflow. Thus, it only makes sense to
speak of CT for a consistent net - a net that admits a T-semiflow containing all the transitions,
i.e. ∃x ∈ Nn such that x > 0 and Cx = 0. We denote σ[τ ] the firing sequence at time τ and
we define the limit firing count vector per time unit σ = limτ→∞ σ[τ ]/τ . We say that the firing
process of a net system is weakly ergodic, if such limit exists. In this paper we consider any
firing policy provided that the firing process is weakly ergodic and in this case the average time
between two consecutive firings of a selected transition ti, (CT of ti) is defined as Γi = 1/σ(ti).

Proposition 3 ([3]) Given a deterministic timed strongly connected MG we have that

1. Γi = Γ, ∀ti ∈ T ;

2. the lower bound of the CT, denoted Γmin, can be computed by the following fractional
programming problem

Γmin = max
y

yT ·Pre · d
yT ·m0

(10)

where y is a P-semiflow, that can be reduced to the following linear programming problem:

Γmin = max
y

yT ·Pre · d
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s.t.





yT ·C = 0
yT ·m0 = 1

y ≥ 0

(11)

where d(ti) is the time delay of transition ti;

3. Γ = Γmin if each transition fires as soon as it is enabled – earliest firing policy (e.f.p). ¥

We recall that in the case of MGs each minimal P-semiflow corresponds to an elementary circuit.
In the system (10) y is a P-semiflow, thus PreT y is the characteristic vector (but for a scalar
factor) of the transitions along the circuit and, finally, yT ·Pre · d is the sum of the time delay
of all transitions along the circuit. Thus, an interpretation of the system (10) is that the CT
can be computed looking at the slowest subsystem generated by the P-semiflows [4], considered
in isolation w.r.t. delay nodes, where the CT of each subsystem can be computed making the
summation of the time delays of all the transitions involved in it, and dividing by the tokens
present in it (i.e. the division by yT ·m0). This important result allows one to compute the CT
of deterministic strongly connected MGs.

It is also possible to generalize this result: let us first introduce a class of nets with a unique
consistent firing vector.

Definition 5 A structurally bounded net N is called a mono-T-semiflow net if it admits a
unique minimal T-semiflow, and this semiflow contains all transitions. ¥
Obviously, a mono-T-semiflow net is a generalization of a strongly connected MG. For the class
of mono-T-semiflow nets, we speak of CT of a certain transition since in order to complete a net
system cycle each transition has to fire a different number of times. Note that, if we optimize
the CT of a transition ti, the CT of other transitions is optimized since it is scaled by a constant
factor.

Proposition 4 ([3]) Given a mono-T-semiflow net let x be its unique minimal T-semiflow.
Consider a solution of the LPP (11) changing the objective function to

Γmin = max
y

yT ·Pre ·D,

where for all j = 1, . . . , n: D(tj) = d(tj)x(tj). It holds that Γi ≥ Γmin/x(ti). ¥

Note that for mono T-semiflow nets the lower bound may not be attainable under any firing
policy. Moreover, if a mono T-semiflow net is not persistent 4, the lower bound may be finite
even if the net system is not live, thus it may not be a good approximation of the transitions
CT for some mono-T-semiflow nets.

4.2 Optimal monitor design for deterministic timed nets

Let us first recall two classical results of monitor controlled net.

Proposition 5 Consider a PN where a monitor corresponding to the GMEC (l, k) has been
added:

4A net system is said to be persistent if it never occurs that, if two transitions are both enabled, the firing of

a transition disables the other one.
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a) x is a T-semiflow of the plant net iff it is a T-semiflow of the closed loop net;

b) the closed loop net has all the P-semiflows of the plant plus the vectors that are multiple of
the P-semiflow [ l 1 ].

Proposition 5a) is classical and Proposition 5b) has been proved in [8]. By Proposition 5a) it
follows that, if the plant net is mono T-semiflow, the closed loop one is also mono-T-semiflow.
In this section we only consider the case of open loop nets that are mono-T-semiflow.

Proposition 6 Let consider the problem of imposing a GMEC (l, k) on a timed mono-T-
semiflow system with CT of a transition Γi ≥ Γp/x(ti) where x is the unique minimal T-
semiflow. A necessary condition to find a safe monitor that does not increase the CT of a
transition is that the following system of equations has a solution:





(a) y ∈ F(y)
(b) [ DTPreT DTPreT lT

−Γp(k + 1) DT O1×n ]y ≤ −Γp

(12)

If the closed loop net is a strongly connected MG5 under e.f.p., the condition is sufficient.

Proof: Constraints (a) impose that the incidence matrix of the controller is obtained from
Moody & Antsaklis’ parameterization. Constraint (b) is equivalent to

[ r1 + r2l 1 ]
[
Pre
c−c

]
D

[ r1 + r2l 1 ]
[

mp0

mc0

] =
[ r1 + r2l 1 ]

[
Pre
c−c

]
D

r2(k + 1)− 1
≤ Γp

where [ r1 + r2l 1 ] is the new P-semiflow added by the monitor,
[
Pre
c−c

]
is the pre-incidence

matrix of the closed loop net and r2(k + 1)− 1 represents the weighted sum of tokens contained
in the new P-semiflow. Thus, this constraint imposes that the P-semiflow subnet introduced
by the monitor has a CT lower bound less or equal than the plant net CT; this is a necessary
condition to make the closed loop net not slower than the plant net because of Proposition 4.

If the closed loop net is a strongly connected MG under e.f.p., Equation (12-b) guarantees that
the actual CT is not increased because of Proposition 3. ¤
If the set of constraints (12) has a solution, one may also use an objective function as in ILP (6)
or (7) to find, among all monitors whose CT lower bound does not exceed the plant CT, one
that is optimal w.r.t. the control and observation cost. On the other hand, if the system of
equations (12) does not have a solution, it is necessary to make the closed loop net slower in
order to impose the GMEC (l, k). To find a monitor with minimal CT lower bound one could
solve the system of equations (12) by replacing Γp with a value Γ′p > Γp and keep increasing the
value of Γ′p until a solution is found. If a monitor based solution w.r.t. Moody and Antsaklis
parameterization exists, i.e. system (5) admits a solution, its associated P-semiflow subnet has
a finite CT lower bound and, thus, it is possible to conclude that a finite value Γ′p also exists
such that system (12) admits a solution.

A more direct approach can be taken, by using a fractional objective function. This complicates
the optimization problem but there exist tools and techniques to solve such a problem [7].

5The addition of a monitor to a strongly connected MG, that is a special mono-T-semiflow net subclass, leads

to a closed loop net that is a strongly connected MG if the monitor has only one input and output arc.

10



Proposition 7 Let us consider the problem to impose a GMEC (l, k) on the timed mono-T-
semiflow system 〈N,m0〉. A safe monitor with minimal CT lower bound can be obtained by
solving the following integer linear fractional programming (ILFP) problem

min ∆t =
[ DTPreT DTPreT lT DT O1×n ] y

[ O1×m k + 1 O1×n O1×n ] y − 1
s.t. y ∈ F(y). (13)

with D(t) = d(t)x(t) and d(t) is the delay associated to transition t and x is the unique minimal
T-semiflow of the net. If the closed loop net is a strongly connected MG under e.f.p. the safe
monitor obtained from the ILFP problem (13) has a minimal actual CT.

Proof: The constraint y ∈ F(y) imposes that the incidence matrix of the controller is obtained
from Moody & Antsaklis’ parameterization. The objective function

∆t =
[ DTPreT DTPreT lT DT O1×n ]y

[ O1×m k + 1 O1×n O1×n ]y − 1
=

=
[ r1 + r2l 1 ]

[
Pre
c−c

]
d

[ r1 + r2l 1 ]
[

mp0

mc0

]

represents the CT lower bound of the subnet introduced by a monitor. If the closed loop net
is a strongly connected MG under e.f.p., the safe monitor has a minimal actual CT because of
Proposition 3. ¤
The closed loop net, once that the monitor has been added, may be not live, since the existence
of a finite CT lower bound does not imply liveness in a mono-T-semiflow net. This is true only if
the closed loop net is a persistent mono-T-semiflow (e.g. strongly connected MGs) as recalled in
Subsection 4a. Some conditions presented in [2] can be used to check liveness of a net controlled
by a monitor if the plant net is a MG, otherwise liveness of the closed loop net has to be checked
with classical techniques [12].

We also remark that the integrality constraint on the decision variables does not allow one to
rewrite ILFP problem (13) in a ILP form, using the same technique used to rewrite (10) as (11).

Example 4 Let us consider again the MG net system in fig. 1-a, the GMEC (l, k) with l =
[ 1 0 0 0 0 0 0 ] , k = 1 and the following control (observation) costs, CT unit cost and
the time delays for the transitions: zc = [ 1 10 7 8 2 8 ]T , zo = [ 1 3 4 4 3 2 ]T ,
zΓ = 1, d = [ 1 1 3 1 3 1 ]T . By solving (11) it results Γp = 4. If we adopt pc1, simply
obtained from (1) and (2), we have ∆ = 11; notice that the CT of the closed loop net remains
equal to 4. By optimizing ∆ w.r.t. the set of constraints (12) the optimal monitor place, that
does not increase the closed loop net CT, results pc3 with a cost ∆∗ = 9. We remark that, since
by adding pc1 or pc3 the closed loop net is still a MG, we have referred to CT and not to CT
lower bound in this example.

4.3 Generalization of the approach

The approach presented in this section can be generalized to include stochastic transition timing
and to extend these results to more general net subclasses.
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In stochastic PN we suppose that a random process is associated to each transition. Such random
variable, called service time, represents the delay associated with the firing of the transition.
As it has been shown in [3], if we denote d(ti) the mean value of service time associated to
the transition ti the bound obtained from Proposition 4 can be interpreted as a bound of the
mean CT. For stochastic strongly connected MGs it cannot be improved only on the basis of
the mean and variance of transition service times, but moments of order greater than two of
the service time random variables are needed. Hence, it is a good approximation of the CT also
for stochastic strongly connected MGs. For mono-T-semiflow nets the lower bound may not be
attainable under any probability distribution function of service times [3]. Thus, in presence of
stochastic PN the results presented in Section IVb, that have been derived from Proposition 4,
can be interpreted in terms of mean CT lower bound optimization.

It is possible to extend the results presented in this section to more general net system when a
not unique minimal T-semiflow exists. In the programming problem (13) the unique minimal
T-semiflow is replaced with a T-semiflow obtained by imposing that its elements satisfy the
routing rates of the conflicting transitions [4]. The computation of such a T-semiflow requires, if
the net is a live and bounded free choice net, the resolution of a linear system of equations that
depends only on the net structure and routing rates and so it is not computation demanding.
On the contrary, for general net system a major computational effort is required.

5 Conclusions

In this paper we have dealt with the control of Petri Nets and we have shown how it is possible to
generalize the classical notion of uncontrollable/unobservable transition introducing the notion
of control and observation costs. We have shown how the problem of enforcing a GMEC so as
to minimize the control and observation cost can be framed as an integer linear programming
problem. For plant modelled by timed Petri net it is also possible to use a similar approach to
optimize the cycle time of the closed loop net (or at least a lowed bound on it). The results are
valid for plants modelled by mono T-semiflow nets. This approach can be generalized to include
stochastic transition timing and to extend these results to more general net subclasses.
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