
Identification of Petri nets from knowledge of their language

Maria Paola Cabasino, Alessandro Giua, Carla Seatzu∗

March 13, 2008

Abstract

In this paper we deal with the problem of identifying a Petri net system, given a finite
language generated by it. First we consider the problem of identifying a free labeled Petri net
system, i.e., all transition labels are distinct. The set of transitions and the number of places
is assumed to be known, while the net structure and the initial marking are computed solving
an integer programming problem. Then we extend this approach in several ways introducing
additional information about the model (structural constraints, conservative components,
stationary sequences) or about its initial marking. We also treat the problem of synthesizing
a bounded net system starting from an automaton that generates its language. Finally, we
show how the approach can also be generalized to the case of labeled Petri nets, where two
or more transitions may share the same label. In particular, in this case we impose that the
resulting net system is deterministic. In both cases the identification problem can still be
solved via an integer programming problem.

Published as:
M.P. Cabasino, A. Giua, C. Seatzu, "Identification of Petri nets from knowledge of their lan-
guage," Discrete Event Dynamic Systems, Vol. 17, No. 4, pp. 447–474, Dec 2007. The original
publication is available at www.springerlink.com.

1 Introduction

In this paper we present a linear algebraic approach for the identification of a Petri net system
from the knowledge of a finite set of strings that it generates.

Identification is a classical problem in system theory: given a pair of observed input-output
signals it consists in determining a system such that the input-output signals approximate the
observed ones [22].

∗M.P. Cabasino, A. Giua and C. Seatzu are with the Department of Electrical and
Electronic Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy.
E-mail:{cabasino,giua,seatzu}@diee.unica.it.

1

In the context of free labeled Petri nets1, it is common to consider as observed behavior the
language of the net, i.e., the set of transition sequences that can be fired starting from the initial
marking. Assume that a language L ⊂ T ∗ is given, where T is a given set of n transitions. Let
this language be finite, prefix-closed and let k be the length of the longest string it contains.
Given a number of places m, the identification problem we consider consists in determining the
structure of a net N , i.e., the matrices Pre, Post ∈ Nm×n, and its initial marking M0 ∈ Nm such
that the set of all firable transition sequences of length less than or equal to k is Lk(N, M0) = L.

Note that the set L explicitly lists positive examples, i.e., strings that are known to belong to the
language, but also, implicitly, defines several counterexamples, namely all those strings of length
less than or equal to k that do not belong to the language.

In a first part of the paper, Section 4, we consider the identification problem applied to free
labeled Petri nets. In this case we determine the structure of the net and its initial marking
solving an integer programming problem, assuming that the number of places and transitions
are known. In our procedure it is also possible to consider an objective function that allows us
to find an optimal net according to a given performance index.

We extend this basic approach for the identification of free labeled Petri nets in several ways.

• Assume that some additional information on the structure of the model is given. As
an example, one may know that the net admits conservative components or stationary
sequences, that it belongs to a particular class (ordinary, marked graph, etc.), that the
initial marking belongs to a given set. In Subsection 5.1 we show how to extend the basic
procedure to also take into account this additional information.

• Assume that a free labeled Petri net is known to generate a regular language L, and that
an automaton generating L is given. In this case the language may contain words of
unbounded length. We show in Subsection 5.2 how the basic procedure can be extended
to identify such a net.

• Assume that the number of places m of the net is not specified exactly, but an upper
bound m̄ on its value is known. In this case, we can solve in one shot a two-criteria
optimization problem that first requires identifying a net with the minimal number of
places; then, among all those that have a minimal number of places, allows one to optimize
for a secondary criterion, such as the number of arcs or of tokens in the initial marking.
This extension is presented in Subsection 5.3.

Finally, in Section 6, we generalize this approach to λ-free labeled nets, i.e., nets where two or
more transitions may share the same label. We assume that the total number of transitions Te

sharing the same label e ∈ E is known, and show how the constraint set determined for the case
of free labeled Petri nets can be modified to account for this more general case. The approach
we propose determines a net system that is deterministic, namely at each marking M reachable

1A free labeled Petri net is a net where the transitions are not labeled or equivalently the labeling function is
an isomorphism.

2

from the initial one, there cannot exist two or more transitions sharing the same label that are
simultaneously enabled at M .

The complexity of the constraint sets we use to characterize the set of admissible solutions is
analyzed in the Section 7.

The approach we present is extremely general and, unlike other Petri nets identification ap-
proaches, not only can it be applied to λ-free labeled nets, but can be used to determine an
optimal net according to a given measure as well. These cases have never been considered in
the literature to the best of our knowledge. The main drawback is its computational complexity,
in the sense that the number of unknowns grows exponentially with the length k of the longest
string.

A preliminary version of this work has been previously presented in [8, 11].

1.1 Related literature

The idea of learning the structure of an automaton from positive examples and from counterex-
amples has been explored since the early 80’s in the formal language domain. As an example,
we recall the early work of Gold [12] and Angluin [1].

One of the first original approaches to the identification of safe Petri nets was discussed by Hiraishi
[13], who presented an algorithm for the construction of a free labeled Petri net model from the
knowledge of a finite set of its firing sequences. In a first phase, a language is identified in the
form of a finite state automaton from given firing sequences. In a second phase, the dependency
relation is extracted from the language, and the structure of a Petri net is guessed. Provided
that the language is generated by a special class of nets, the algorithm uniquely identifies the
original net if a sufficiently large set of firing sequences is given.

A different approach is based on the theory of regions whose objective is that of deciding whether a
given graph is isomorphic to the reachability graph of some free labeled net and then constructing
it. An excellent survey of this approach, that also presents some efficient algorithms for net
synthesis based on linear algebra, can be found in the paper by Badouel and Darondeau [3].
The type of the net and the language considered in the theory of regions are different from
those considered in this paper. For example, in [2] explicit algorithms are given for solving in
polynomial time in the size of automata the synthesis problem for pure weighted Petri nets from
a restricted class of regular languages or from finite automata; in [9] a method is presented
which, given a finite state model, called transition system, synthesizes a safe, place-irredundant
Petri net with a reachability graph that is bisimilar to the original transition system. In [4] the
authors provide an adaptation of the synthesis algorithm that works in polynomial time with
respect to the number of states and to the cardinality of the alphabet for general Petri nets with
the sequential firing rule and for Petri nets with step firing rule. The general principle for the
synthesis is to inspect regions of the graph representing extensions of places of the candidate
nets.

3

Meda and Mellado [16, 17] have also presented an approach for the identification of free labeled
Interpreted Petri nets. Their approach consists in observing the marking of a subset of places
and, given some additional information on the dependency between transitions, allows one to
reconstruct the part of the net structure related to unobservable places.

Bourdeaud’huy and Yim [6] have presented an approach to reconstruct the incidence matrix and
the initial marking of a free labeled net given some structural information on the net, such as the
existence of P-invariants or T-invariants. This approach can also deal with positive examples of
firing sequences but not with counterexamples. Unlike the approach we present in the following
sections, that is based on linear algebraic formalism, the approach of the authors is based on
logic constraints.

Dotoli et al. in [10] have considered an optimization approach that combines some features of
[11, 16, 17]. Their procedure assumes that a production of the net is given, in the sense that it
requires not only the knowledge of the sequence of events but also of markings reached during
this evolution. Necessary and sufficient conditions for the correct identification of the net are
given.

Ru and Hadjicostis [20] have presented an approach for the state estimation of discrete event
systems modeled by labeled Petri nets. More specifically, given knowledge of the initial Petri net
state, they show that the number of consistent markings in a Petri net with nondeterministic
transitions is at most polynomial in the length of the observation sequence, even though the set
of possible firing sequences can be exponential in the length of the observation sequence. Li et
al. in [14] have developed a recursive algorithm for estimating the least-cost transition firing
sequence(s) based on the observation of a sequence of labels produced by transition activity in a
given labeled Petri net.

A recently published work that is quite similar in spirit and basic methodology to the approach
presented in this paper, can be found in [19]. The main difference is that our approach deals with
the identification of PN (Petri net) plants, while the approach in [19] deals with the synthesis of
PN supervisors.

Finally, in a recent paper Sreenivas [21] dealt with a related topic: the minimization of Petri net
models. Given a λ-free labeled Petri net generator and a measure function — that associates
to it, say, a non negative integer — the objective is that of finding a Petri net that generates
the same language as the original net while minimizing the given measure. In our approach
we are able to use as a performance index of the identification procedure some of the measures
considered by Sreenivas, thus we can identify a minimal solution among all the possible ones.
Note that the undecidability results proved by Sreenivas do not apply to our approach because
we only ensure the identity between a given finite language and the set of finite prefixes of the
synthesized net language. The example we use in Section 6 is taken from a net discussed in [21].

4

2 Background on Petri nets

In this section we recall the formalism used in the rest of the paper. For more details on Petri
nets we refer to [18].

2.1 Basic definitions

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre– and
post– incidence functions that specify the arcs; C = Post − Pre is the incidence matrix. The
preset and postset of a node X ∈ P ∪ T are denoted •X and X• while •X• =• X ∪X•.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative integer
number of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T

system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =
M + C(· , t). We write M [σ〉 to denote that the sequence of transitions σ is enabled at M , and
we write M [σ〉 M ′ to denote that the firing of σ yields M ′. Note that in this paper we always
assume that two or more transitions cannot simultaneously fire (non-concurrency hypothesis).

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .
The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted
R(N,M0).

Given a Petri net system 〈N, M0〉 we define its free-language as the set of its firing sequences

L(N, M0) = {σ ∈ T ∗ | M0[σ〉}.

We also define the set of firing sequences of length less than or equal to k ∈ N as:

Lk(N, M0) = {σ ∈ L(N,M0) | |σ| ≤ k}.

2.2 Structural properties

In this section we introduce some structural properties of Petri nets that will be used in Subsec-
tion 5.1.

Definition 2.1 Let us consider a Petri net with m places, n transitions and incidence matrix
C. A P-vector ~x : P → N, with ~x 6= ~0, is called:

• P-invariant: if ~xT · C = ~0T ;

5

• P-increasing: if ~xT · C ~0T ;

• P-decreasing: if ~xT · C � ~0T .

It can be shown that if ~x is a P-invariant (resp., P-increasing, P-decreasing) along any evolution
the sum of the markings weighted with vector ~x remains constant (resp., does not decrease, does
not increase).

A T-vector ~y : T → N, with ~y 6= ~0, is called:

• T-invariant: if C · ~y = ~0;

• T-increasing: if C · ~y ~0;

• T-decreasing: if C · ~y � ~0.

It can be shown that if ~y is a T-invariant the firing of a sequence of transitions whose firing vector
is ~y does not modify the number of tokens, i.e., it is a stationary sequence. If ~y is a T-increasing
the firing of a sequence of transitions whose firing vector is ~y increases the number of tokens, i.e.,
it is a repetitive non stationary sequence. Finally if ~y is a T-decreasing the firing of a sequence
of transitions whose firing vector is ~y decreases the number of tokens.

A Petri net is said ordinary if Pre, Post ∈ {0, 1}m×n, i.e., if each arc has weight equal to one.

A marked graph is an ordinary Petri net such that each place has exactly one input and one
output transition.

A state machine is an ordinary Petri net where each transition has exactly one input and one
output place.

2.3 Labeled Petri nets

When observing the evolution of a net, it is common to assume that each transition t is assigned
a label ϕ(t) and the occurrence of t generates an observable output ϕ(t). If ϕ(t) = ε, i.e., if
the transition is labeled with the empty string, its firing cannot be observed. This leads to the
definition of labeled nets.

Definition 2.2 Given a Petri net N with set of transitions T , a labeling function ϕ : T →
E ∪ {ε} assigns to each transition t ∈ T a symbol, from a given alphabet E, or assigns to it the
empty string ε.

A labeled Petri net system is a 3-tuple G = 〈N,M0, ϕ〉 where N = (P, T, Pre, Post), M0 is the
initial marking, and ϕ : T → E ∪ {ε} is the labeling function. ¥

Four classes of labeling functions may be defined.

6

Definition 2.3 The labeling function of a labeled Petri net system 〈N, M0, ϕ〉 can be classified
as follows.

• Free: if all transitions are labeled distinctly, namely a different label is associated to each
transition, and no transition is labeled with the empty string.

• Deterministic: if no transition is labeled with the empty string, and the following condi-
tion2 holds: for all t, t′ ∈ T , with t 6= t′, and for all M ∈ R(N, M0): M [t〉 ∧ M [t′〉
⇒ [ϕ(t) 6= ϕ(t′)] i.e., two transitions simultaneously enabled may not share the same la-
bel. This ensures that the knowledge of the firing label ϕ(t) is sufficient to reconstruct the
marking that the firing of t yields.

• λ-free: if no transition is labeled with the empty string3.

• Arbitrary: if no restriction is posed on the labeling function ϕ.

¥

Each of these types of labeling is a generalization of the previous one. Furthermore all types of
labeling only depend on the structure of the net, but for the deterministic labeling that depends
both on the structure and on the behavior of the net.

In the particular case in which the labeling function is free, being an isomorphism between the
alphabet E and the set of transitions T , it is usual to choose E = T , or equivalently to assume
that the transitions are not labeled and their firing can be directly observed.

3 Logical constraints transformation

In this section we provide an efficient technique to convert logical or constraints into linear
algebraic constraints, that is inspired by the work of Bemporad and Morari [5]. In particular,
we consider two different cases: inequality constraints and equality constraints.

2A looser condition is sometimes given: for all t, t′ ∈ T , with t 6= t′, and for all M ∈ R(N, M0): M [t〉 ∧ M [t′〉
⇒ [ϕ(t) 6= ϕ(t′)] ∨ [Post(·, t)− Pre(·, t) = Post(·, t′)− Pre(·, t′)]. Thus two transitions with the same label may
be simultaneously enabled at a marking M , if the two markings reached from M by firing t and t′ are the same.

3In the Petri net literature the empty string is denoted λ, while in the formal language literature it is denoted
ε. In this paper we denote the empty string ε but, for consistency with the Petri net literature, we still use the
term λ-free for a non erasing labeling function ϕ : T → E.

7

3.1 Inequality constraints

Let us consider the following constraint:
r∨

i=1

~ai ≤ ~0n (1)

where ~ai ∈ Rn, i = 1, . . . , r, and
∨

denotes the logical or operator.

Equation (1) can be rewritten in terms of linear algebraic constraints as:

~a1 ≤ z1 · ~K
...
~ar ≤ zr · ~K

z1 + . . . + zr = r − 1
z1, . . . , zr ∈ {0, 1}

(2)

where ~K is any constant vector in Rn that satisfies the following relation

Kj > max
i∈{1,...,r}

ai(j), j = 1, . . . , n.

In fact, if zi = 0 then the i-th constraint is active, while if zi = 1 it is trivially verified, thus
resulting in a redundant constraint. Moreover, the condition z1+ . . .+zr = r−1 implies that one
and only one zi is equal to zero, i.e., only one constraint is active. This means that ~ai ≤ ~0n for
one i, while no condition is imposed for the other i’s (in such cases the corresponding constraints
may either be violated or satisfied). Obviously, analogous considerations can be repeated if the
≤ constraints in (1) are replaced by ≥ constraints.

3.2 Equality constraints

Let us now consider the constraint
r∨

i=1

~ai = ~bi (3)

where ~ai,~bi ∈ Rn, i = 1, . . . , r.

Equation (3) can be rewritten in terms of linear algebraic constraints as:

~a1 −~b1 ≤ z1 · ~K

~a1 −~b1 ≥ −z1 · ~K
...
~ar −~br ≤ zr · ~K

~ar −~br ≥ −zr · ~K

z1 + . . . + zr = r − 1
z1, . . . , zr ∈ {0, 1}

(4)

8

where ~K is any constant vector in Rn such that

Kj > max
i∈{1,...,r}

|ai(j)− bi(j)|, j = 1, . . . , n.

Repeating a similar reasoning as in the previous case, we can immediately observe that, if zi = 0
then {

~ai −~bi ≤ ~0n

~ai −~bi ≥ ~0n

⇒ ~ai = ~bi.

On the contrary, if zi = 1 then {
~ai −~bi ≤ ~K

~ai −~bi ≥ − ~K

that are trivially verified, i.e., they are redundant constraints. Finally, the condition on the sum
of zi’s imposes that one constraint is active, i.e., ~ai = ~bi for at least one i ∈ {1, . . . , r}.

4 Basic identification procedure for free labeled Petri nets

In this section we describe the identification procedure for free labeled Petri nets. As mentioned
in Subsection 2.3 for this type of Petri nets we assume E = T without any loss of generality.

The problem we consider in this section can be formally stated as follows.

Problem 4.1 Let L ⊂ T ∗ be a finite prefix-closed language4, and

k = max
σ∈L

|σ|

be the length of the longest string in L. Chosen a set of places P of cardinality m we want to
identify the structure of a net N = (P, T, Pre, Post) and an initial marking M0 such that

Lk(N, M0) = L.

We also assume that a nonnegative integer K is given such that the following condition5 holds:

max
i

M0(pi) + k ·max
i,j

Post(i, j) ≤ K.

The unknowns we want to determine are the elements of the two matrices Pre, Post ∈ Nm×n

and the elements of the vector M0 ∈ Nm. ¥
4A language L is said to be prefix-closed if for any string σ ∈ L, all prefixes of σ are in L.
5This assumption is purely technical, as mentioned in Remark 4.3, and since K can be chosen arbitrarily large

does not pose any practical limitation.

9

A solution to the above identification problem can be computed thanks to the following theorem,
that provides a linear algebraic characterization of the place/transition nets with m places and
n transitions such that Lk(N, M0) = L.

Theorem 4.2 A net system 〈N,M0〉 is a solution of the identification problem (4.1) if and only
if it satisfies the following set of linear algebraic constraints

Gm(E ,D) ,

M0 + Post · ~σ − Pre · (~σ + ~tj) ≥ ~0 ∀(σ, tj) ∈ E (a)
−KSσ,j + M0 + Post · ~σ − Pre · (~σ + ~tj) ≤ −~1m ∀(σ, tj) ∈ D (b)
~1 T Sσ,j ≤ m− 1 ∀(σ, tj) ∈ D (c)
M0 ∈ Nm (d)
Pre, Post ∈ Nm×n (e)
Sσ,j ∈ {0, 1}m (f)

(5)

where
E = {(σ, tj) | σ ∈ L, |σ| < k, σtj ∈ L} (6)

and
D = {(σ, tj) | σ ∈ L, |σ| < k, σtj 6∈ L}. (7)

Proof.

• Assume that σtj ∈ L, where σ ∈ T ∗ and tj ∈ T . Then transition tj is enabled from the
marking Mσ = M0 + (Post− Pre) · ~σ and the following relation must hold

Mσ ≥ Pre(·, tj).

This relation can be rewritten as

M0 + Post · ~σ − Pre · (~σ + ~tj) ≥ ~0m. (8)

• Assume that σ ∈ L and σtj 6∈ L, where σ ∈ T ∗ and tj ∈ T . Then transition tj is not
enabled from the marking

Mσ = M0 + (Post− Pre) · ~σ,

that is for at least one place pi it must hold

Mσ(pi) < Pre(pi, tj).

We first observe that that each component of Mσ is less than or equal to K, as defined in
Problem 4.1. In fact it holds:

K ≥ max
i

M0(pi) + k ·max
i,j

Post(i, j)

≥ max
i

M0(pi) + |σ| ·max
i,j

Post(i, j)

≥ max
i

Mσ(pi).

(9)

10

We now define a vector

Sσ,j =

s1

...
sm

 ∈ {0, 1}m,

such that for all i = 1, . . . , m it holds

si = 0 =⇒ Mσ(pi) < Pre(pi, tj).

The i-th component of Sσ,j (for i = 1, . . . ,m) must satisfy the equation

−Ksi + Mσ(pi)− Pre(pi, tj) < 0, (10)

so that if si = 0 it must hold Mσ(pi) − Pre(pi, tj) < 0, while if si = 1 equation (10) is
trivially verified thanks to equation (9). In vector form (and taking into account that all
variables are integers) equation (10) rewrites:

−KSσ,j + M0 + Post · ~σ − Pre · (~σ + ~tj) ≤ −~1m. (11)

Finally, there exists at least a place that disables tj if

m∑

i=1

si ≤ m− 1, (12)

so that at least one si is null. In vector form this equation rewrites

~1 T Sσ,j ≤ m− 1. (13)

¤

Remark 4.3 Let us briefly comment about the constant K defined in Problem 4.1.

In Theorem 4.2, for any pair (σ, tj) ∈ D one has to look for at least one place that disables tj
after σ. This or condition, as discussed in Section 3, may be rewritten in a simpler form if an
upper bound on the absolute value of the variables involved in the constraints is given.

In practice, in Problem 4.1 it is sufficient to pick K very large. We also mention that many
software tools allow the definition of an arbitrary large constant.

In general the solution of the set (5) is not unique, thus there exists more than one Petri net
system 〈N, M0〉 such that Lk(N, theM0) = L. To select one among these Petri net systems
we choose a given performance index and solving an appropriate IPP (Integer Programming
Problem) we determine a Petri net system that minimizes the considered performance index6.
In particular, if f(M0, P re, Post) is the considered performance index, an identification problem
can be formally stated as follows.

6Clearly, also in this case the solution may be not unique.

11

Problem 4.4 Let us consider the identification problem (4.1) and let f(M0, P re, Post) be a
given performance index. The solution to the identification problem (4.1) that minimizes f(M0,

P re, Post) can be computed by solving the following IPP
{

min f(M0, P re, Post)
s.t. Gm(E ,D).

(14)

¥

Of particular interest are those objective functions that are linear in the unknowns, so that the
problem to solve is a linear integer programming problem. As example of a linear objective
function, assume we want to determine a Petri net system that minimizes the weighted sum of
the tokens in the initial marking and of the arc weights. The general case is:

f(M0, P re, Post) =
m∑

i=1

ai ·M0(pi) +

n∑

j=1

bi,j · Pre(pi, tj) + ci,j · Post(pi, tj)

 , (15)

where ai, bi,j and ci,j are given coefficients.

A typical choice, that we follow in the rest of the paper, is that of choosing all coefficients equal
to 1. In this case (15) can be rewritten:

f(M0, P re, Post) = ~1T
m ·M0 +~1T

m · (Pre + Post) ·~1n.

Example 4.5 Let L = {ε, t1, t1t1, t1t2, t1t1t2, t1t2t1} and m = 2, thus k = 3. Assume that we
want to determine the Petri net system that minimizes the sum of initial tokens and all arcs such
that L3(N, M0) = L. This requires the solution of an IPP of the form (14) where

E = {(ε, t1), (t1, t1), (t1, t2), (t1t2, t1), (t1t1, t2)}

and
D = {(ε, t2), (t1t2, t2), (t1t1, t1)}.

The procedure identifies a net system with

Pre =

[
1 0
0 1

]
, Post =

[
0 1
0 0

]
, M0 =

[
2
0

]

namely the net system in Fig. 1.a. ¥

5 Extended identification procedure for free labeled Petri nets

In many cases the available information on the net to identify is not limited to samples of its
language. As an example, it may be known that the net has a particular structure, or some
partial information on the initial marking (in terms of available resources) may be given.

12

t1

t2

p2p1

(a)

t1

t2

p2p1

(b)

Figure 1: (a) The Petri net system of Example 4.5; (b) the Petri net of the same example when
the additional constraint m1 + m2 = const is added.

In this section it is shown how this additional information can easily be incorporated in the
identification procedure previously described.

5.1 Structural constraints

P-vectors

Assume that some places of the net are known to belong to a conservative component, i.e., the
weighted sum of their tokens in the component remains constant during any evolution. This is
equivalent to say that some P-invariants for the net are known (see Definition 2.1).

More generally the knowledge of any P-vector may be taken into account adding to Problem 14
a suitable set of constraints.

• Assume ~x ∈ Rm is P-invariant. We need to add to Problem 14 the following constraint

~xT (Post− Pre) = ~0T
n

that imposes ~xT · C = ~0T
n .

• Assume ~x ∈ Rm is P-increasing. We need to add to Problem 14 the following constraints

{
~xT (Post− Pre) ≥ ~0T

n

~xT (Post− Pre)~1n ≥ 1

The first constraint imposes that ~xT ·C ≥ ~0T
n and the second one imposes that ~xT ·C 6= ~0T

n .

• Assume ~x ∈ Rm is P-decreasing. We need to add to Problem 14 the following constraints

{
~xT (Post− Pre) ≤ ~0T

n

~xT (Post− Pre)~1n ≤ −1

The first constraint imposes that ~xT ·C ≤ ~0T
n and the second one imposes that ~xT ·C 6= ~0T

n .

13

T-vectors

Assume that a given firing sequence is known to be stationary, i.e., the number of the tokens
of the net is not modified by the firing of this sequence. This is equivalent to say that some
T-invariants for this net are known (see Definition 2.1).

More generally the knowledge of any T-vector may be taken into account adding to Problem 14
a suitable set of constraints.

• Assume ~y ∈ Rn is T-invariant. We need to add to Problem 14 the following constraint

(Post− Pre)~y = ~0m

that imposes C · ~y = ~0m.

• Assume ~y ∈ Rn is T-increasing. We need to add to Problem 14 the following constraints

{
(Post− Pre) · ~y ≥ ~0m

~1T
m(Post− Pre)~y ≥ 1

The first constraint imposes that C · ~y ≥ ~0T
m and the second one imposes that C · ~y 6= ~0T

m.

• Assume ~x ∈ Rm is T-decreasing. We need to add to Problem 14 the following constraints

{
(Post− Pre) · ~y ≤ ~0m

~1T
m(Post− Pre)~y ≤ −1

The first constraint imposes that C · ~y ≤ ~0T
m and the second one imposes that C · ~y 6= ~0T

m.

Example 5.1 Let us consider again the case of Example 4.5 but assume the net is known to
be conservative. In particular, the sum of the tokens in places p1 and p2 remains constant. To
this aim we solve an IPP of the form (14) with the addition of a constraint of the form of (5.1),
where ~x = [1 1]T . We identify a net system with

Pre =

[
1 0
0 1

]
, Post =

[
0 1
1 0

]
, M0 =

[
2
0

]

namely the net in Fig. 1.b. ¥

Net subclasses

In this subsection we consider the constraints that we need to add to Problem 14 to ensure that
the identified net belongs to some particular subclasses of nets defined in Subsection 2.2.

14

• Ordinary:
Pre, Post ∈ {0, 1}m×n.

• Marked graph: {
Pre ·~1n = 1
Post ·~1n = 1.

• State machine: {
~1T

m · Pre = 1
~1T

m · Post = 1.

All these results follow immediately from the definitions in Subsection 2.2.

Constraints on the initial marking

A type of general constraints that can be imposed on the markings of a Petri net is called GMEC
(Generalized Mutual Exclusion Constraint) and can be represented by the couple (~w, k), where
~w ∈ Zm, k ∈ Z. This constraint defines a set of legal markings:

M(~w, k) = {M ∈ Nm | ~wT M ≤ k}.
If it is known that M0 ∈M(~w, k) then the constraint

~wT M0 ≤ k,

should be added to Problem 14.

For example consider a Petri net with an initial marking that can not contain a number of tokens
greater than 1 in places p1 and p2. In this case we need to impose as additional constraint

M(p1) + M(p2) ≤ 1.

Structural decomposition

We can impose a structural decomposition of the net in a given number r of subnets. Let

P = P1 ∪ P2 ∪ . . . ∪ Pr

be a given partition of P . Assume that for all t ∈ T we are given a set Π(t) ⊂ {1, . . . , r} such
that q ∈ Π(t) implies •t• ∩Pq = ∅. In plain words, Π(t) represents the set of indices of Pq’s such
that t has no input/output arc from/to a place in Pq.

This can be imposed adding to Problem (14) the following set of linear constraints for all t ∈ T :
∑

q∈Π(t)

∑

p∈Pq

(Pre(p, t) + Post(p, t)) = 0.

15

5.2 Synthesis of bounded Petri net systems from regular languages

In this section we assume that the net system we want to synthesize is bounded, and thus its
language is regular. The language is given in terms of a finite state automaton G = (Q,T, δ, q0)
where Q is the set of states, the alphabet T is the set of transitions of the net, δ : Q× T → Q is
the transition function, and q0 is the initial state.

We consider the following problem.

Problem 5.2 Let G = (Q,T, δ, q0) be a given finite state automaton. Chosen a set of places
P of cardinality m and a nonnegative integer K, we want to identify the structure of a net
N = (P, T, Pre, Post) and an initial marking M0 such that L(N,M0) = L(G), and

max
i

M0(pi) + k ·max
i,j

Post(i, j) ≤ K.

The unknowns we want to determine are the elements of the two matrices Pre, Post ∈ Nm×n

and the elements of the vector M0 ∈ Nm. ¥

The identification procedure previously defined considers sequences of bounded length. An au-
tomaton is able to generate sequences of unbounded length every time that there is a cycle.
Thus we have to distinguish between sequences that pass through cycles (that can be extended
indefinitely) and sequences that do not pass through cycles (whose length is finite).

We say that a firing sequence σ
′ ≺ σ if σ

′ is a strict prefix of σ, i.e., if σ = tα1tα2 . . . tαk
and

σ
′
= tα1tα2 . . . tαr with r < k. In following we denote as

Γ(G) = {σ ∈ T ∗ | δ(q, σ) = q ∧ ∀σ′ , σ′′ ≺ σ δ(q, σ′) 6= δ(q, σ
′′
)} (16)

the set of elementary cycles of the automaton. We define the set of the firing vectors associated
to the firing sequences in Γ(G) as

Y (G) = {~y ∈ Nn | ∃ σ ∈ Γ(G) : ~y = ~σ}}. (17)

Finally, we define the set of sequences that are generated by the automaton without passing
through a cycle as

Lst(G) = {σ ∈ T ∗ | ∀ u, v ¹ σ, u 6= v ⇒ δ(q0, u) 6= δ(q0, v)} ⊆ L(G), (18)

where L(G) denotes the language generated by the automaton, and the subscript st denotes the
words generated by its spanning tree with root q0.

Theorem 5.3 A net system 〈N,M0〉 is a solution of the identification problem (5.2) if and only
if it satisfies the following set of linear algebraic constraints

{
Gm(E ,D) (a)
(Post− Pre) · ~y = ~0 ∀ ~y ∈ Y (G) (b)

(19)

16

t1 t1

t2t2

(a)

t1 t1

t2t2

(b)2 0 1 1 0 2

q0 q1 q2

Figure 2: (a) The finite state automaton G of Example 5.4; (b) the reachability graph of the
identified net system.

where E = {(σ, t) | σ ∈ Lst(G), σt ∈ L(G)}
and D = {(σ, t) | σ ∈ Lst(G), σt 6∈ L}.

Proof.

We just give a sketch of the proof. First consider a word σ′ = σt where σ ∈ Lst(G). Then
Gm(E ,D) contains enough constraints to ensure that σ and σ′, or σ and not σ′ are generated by
any net solution of (18) according to the case σ′ ∈ L(G) or σ′ /∈ L(G).

Consider next a word σ′ = σt where σ ∈ L(G) \ Lst(G). Then σ = σ1 uσ2 where u 6= ε and
δ(q0, σ1) = δ(q0, σ1 u), hence σ1σ2 ∈ L(G) , and the firing count vector of u is a T-invariant
of any net solution of (18). In other words, such a net generates σ t if and only if it generates
σ1 σ2 t, and since σ1 σ2 is strictly shorter than σ, the theorem follows by induction on words. ¤

Example 5.4 Let us consider the finite state automaton G in Fig. 2.a. It holds Y (G) = {[1 1]T }
and Lst(G) = {ε, t1, t1t1} thus E = {(ε, t1), (t1, t1), (t1, t2), (t1t1, t2)} and D = {(ε, t2), (t1t1, t1)}.
Now, assume that we want to determine the Petri net system that minimizes the sum of initial
tokens and all arcs.

For m = 1 we get no feasible solution, while for m = 2 we find the net system in Fig. 1.b whose
reachability graph is shown in Fig. 2.b. Note that in this particular case the reachability graph
of the net is isomorphic to the given automaton G, but this is not necessarily guaranteed by our
procedure. The problem of finding a net whose reachability graph is isomorphic to that of an
automaton is addressed in the theory of regions [3]. ¥

5.3 Optimizing the number of places

In the previous formulation we assumed that the number m of places is given. In this subsection
we remove this assumption and consider the following identification problem.

Problem 5.5 Let us consider an identification problem in the form (4.1) where m is only known

17

to be less than or equal to a given value m̄, and let f(m,M0, P re, Post) be a given performance
index. The solution of the identification problem that minimizes f(m,M0, P re, Post) with the
smallest number of places can be computed solving the following nonlinear IPP

min
m≤m̄

min f(m, M0, P re, Post)

s.t. Gm(E ,D).
(20)

A trivial solution to the identification problem 5.5 consists in solving IPP of the form (14) for
increasing values of m, until a feasible solution is obtained.

The following theorem provides an alternative approach to do this, that simply requires the
solution of one IPP, while guaranteeing the optimality of the solution both in terms of minimum
number of places and in terms of the chosen performance index.

Theorem 5.6 Solving the identification problem 5.5 is equivalent to solving the following IPP:

min K ·~1T
m̄~z + f(m̄,M0, P re, Post)

s.t. Gm̄(E ,D)
K · ~z − Pre ·~1n − Post ·~1n ≥ ~0m̄

zi+1 ≤ zi, i = 1, . . . , m̄− 1
~z ∈ {0, 1}m̄

(21)

for a sufficiently large constant K (K must be such that the minimization of the first term of the
objective function has priority over the minimization of its second term).

In particular, let us denote as ~z∗, M̄∗
0 , Pre

∗ and Post
∗ the solution of (21), and let m∗ be the

number of nonzero components of ~z∗.

Let M∗
0 be the vector obtained from M̄∗

0 by only keeping its first m∗ components. Analogously,
let Pre∗ and Post∗ be the matrices obtained from Pre

∗ and Post
∗, respectively, by only keeping

their first m∗ rows.

Then, m∗, M∗
0 , Pre∗, Post∗ is a solution of the identification problem 5.5.

Proof.

Let us first observe that if zi = 1, then the corresponding constraint

K − Pre(pi, ·) ·~1n − Post(pi, ·) ·~1n ≥ 0

is trivially verified being K a very large constant.

On the contrary, if zi = 0, the new constraint becomes

−Pre(pi, ·) ·~1n − Post(pi, ·) ·~1n ≥ 0

whose only admissible solution is Pre(pi, ·) = Post(pi, ·) = ~0T
n . Place pi is in this case redundant

and can be removed without affecting the language of the net.

18

Since our main goal in (21) is that of minimizing ~1T
m~z, the optimal solution ~z∗ will have as

many zeros as possible, compatibly with the other constraints. Moreover, being zi+1 ≤ zi, i =
1, . . . , m̄− 1, zero is assumed by the last components of ~z∗. ¤

In the previous theorem the chosen performance index allows one to solve in one shot a two-
criteria optimization problem using a procedure based on global priorities [7]. In this case we
have a multi–objective performance in which the goals have different priorities. We first look for
all solutions that optimize the first goal, i.e., the number of places, and then among them we
look for those that optimize the second goal.

Example 5.7 Let
L = {ε, t1, t1t2, t1t3, t1t2t1, t1t2t3, t1t3t1, t1t3t2}

thus k = 3. Assume that we want to determine the Petri net system that minimizes the sum of
initial tokens and all arcs such that L3(N, M0) = L. This requires the solution of an IPP of the
form (14) where

E = {(ε, t1), (t1, t2), (t1, t3), (t1t2, t1), (t1t2, t3), (t1t3, t1), (t1t3, t2)}

and
D = {(ε, t2), (ε, t3), (t1, t1), (t1t2, t2), (t1t3, t3)}.

We assume that the total number of places is bounded by m̄ = 5 and we choose the constant
K = m̄ · n · 104 = 15 · 104.

The procedure identifies a net system with m = 3 and

Pre =

1 0 0
0 1 0
0 0 1

 , Post =

0 1 1
1 0 0
1 0 0

 ,

M0 =

1
0
0

 ,

namely the net system in Figure 3. ¥

6 λ-free labeled Petri nets

In this section we show how the above results can be extended to the case of λ-free labeled Petri
nets.

19

p1

p2

p3

t2

t3

t1

Figure 3: The Petri net system of Example 5.7.

We consider ϕ : T → E a labeling function over E and we denote the set of transitions that are
labeled by symbol e as:

Te = {t ∈ T | ϕ(t) = e} = {te1, . . . , tene
}, e ∈ E

where ne = |Te|. Obviously it holds
T =

⋃

e∈E

Te,

i.e., the the labeling equivalence induces a partition of T .

We say that an event e is ambiguous if ne > 1, i.e., there exists more than one transition t such
that ϕ(t) = e, otherwise we say that the event e is not-ambiguous. Analogously, we say that a
transition t is ambiguous if its label is also associated to other transitions, otherwise a transition
t is said to be not-ambiguous.

We denote w = ϕ(σ) the word of events associated to sequence σ.

Given a labeled Petri net system 〈N,M0〉 we define its λ-free labeled language as the set of words
in E∗ generated from the initial marking M0, namely,

LE(N, M0) = {w ∈ E∗ | ∃σ ∈ T ∗ : M0[σ〉, ϕ(σ) = w}.

We also denote LE
k (N,M0) the set of words in LE(N,M0) of length less than or equal to k ∈ N,

i.e.,
LE

k (N, M0) = {w ∈ LE(N,M0) | |w| ≤ k}.

Problem 6.1 Assume we are given a set of places P = {p1, . . . , pm} and a set of transitions
T = {t1, . . . , tn}. Let ϕ : T → E be a given labeling function over E whose equivalence classes
Te are known. Let L ⊂ E∗ be a given finite prefix-closed language over E∗, and

k = max
w∈L

|w|

be the length of the longest word in L.

We want to identify the structure of a deterministic7 net N = (P, T, Pre, Post) labeled by ϕ and
7Determinism is a desirable property and we assume the net enjoys it. However, it may also be possible to

solve this problem without assuming that the net be deterministic.

20

an initial marking M0 such that
LE

k (N,M0) = L.

We also assume that a nonnegative integer K is given such that the following condition holds:

max
i

M0(pi) + k ·max
i,j

Post(i, j) ≤ K.

The unknowns we want to determine are the elements of the two matrices

Pre = {ei,j} ∈ Nm×n and Post = {oi,j} ∈ Nm×n

and the elements of the vector

M0 =
[

m0,1 m0,2 · · · m0,m

]T
∈ Nm.

¥

The following theorem provides a linear algebraic characterization of the deterministic labeled
Petri net systems with m places, n transitions and labeling function ϕ such that LE

k (N, M0) = L.

Theorem 6.2 A solution to the identification problem (6.1) satisfies the following set of linear

21

algebraic constraints

Gm(E ,D, ϕ) ,

Mw − Pre(·, te1) ≥ −ze,w
1 · ~K

...
Mw − Pre(·, tene

) ≥ −ze,w
ne · ~K

Mwe −Mw − Post(·, te1) + Pre(·, te1) ≤ ze,w
1 · ~K

Mwe −Mw − Post(·, te1) + Pre(·, te1) ≥ −ze,w
1 · ~K

...
Mwe −Mw − Post(·, tene

) + Pre(·, tene
) ≤ ze,w

ne · ~K

Mwe −Mw − Post(·, tene
) + Pre(·, tene

) ≥ −ze,w
ne · ~K

ze,w
1 + . . . + ze,w

ne = ne − 1
ze,w
1 , . . . , ze,w

ne ∈ {0, 1}
∀(w, e) ∈ E (a)

−KS̄(w, tej) + Mw − Pre(·, tej) ≤ −~1 ∀(w, e) ∈ E : |Te| > 1, ∀tej ∈ Te (b)

~1T S̄(w, tej) ≤ m− ze,w
j ∀(w, e) ∈ E : |Te| > 1, ∀tej ∈ Te (c)

−KS(w, tej) + Mw − Pre(·, tej) ≤ −~1 ∀(w, e) ∈ D, ∀tej ∈ Te (d)

~1 T S(w, tej) ≤ m− 1 ∀(w, e) ∈ D, ∀tej ∈ Te (e)

Mw ∈ Nm, ∀w ∈ L (f)

Pre, Post ∈ Nm×n (g)

S(w, tej) ∈ {0, 1}m (h)

S̄(w, tej) ∈ {0, 1}m (i)

(22)

where
E = {(w, e) | w ∈ L, |w| < k, we ∈ L},
D = {(w, e) | w ∈ L, |w| < k, we 6∈ L},

and Mε = M0.

Proof.

• Assume that we ∈ L, where w ∈ E∗ and e ∈ E. Then at least one transition tej ∈ Te should
be enabled at Mw, or equivalently, for at least one tej ∈ Te it should hold:

Mw ≥ Pre(·, tej).

Thus, following again the procedure in Section 3 to convert the logical or operator in terms

22

of linear constraints, we can write:

Mw − Pre(·, te1) ≥ −ze,w
1 · ~K

...
Mw − Pre(·, tene

) ≥ −ze,w
ne · ~K

ze,w
1 + . . . + ze,w

ne = ne − 1
ze,w
1 , . . . , ze,w

ne ∈ {0, 1}

If ze,w
j = 0 it means that tej ∈ Te may fire at Mw, and the marking Mwe reached after its

firing is
Mwe = Mw + Post(·, tej)− Pre(·, tej).

that satisfies the following set of linear inequalities:

Mwe −Mw − Post(·, te1) + Pre(·, te1) ≤ ze,w
1 · ~K

Mwe −Mw − Post(·, te1) + Pre(·, te1) ≥ −ze,w
1 · ~K

...
Mwe −Mw − Post(·, tene

) + Pre(·, tene
) ≤ ze,w

ne · ~K

Mwe −Mw − Post(·, tene
) + Pre(·, tene

) ≥ −ze,w
ne · ~K

Now, if we want the net to be deterministic, we must impose that, whenever |Te| > 1, only
one transition tej ∈ Te is enabled at Mw.

From the above constraints we know that transition tek ∈ Te such that ze,w
k = 0 is enabled

at Mw. Thus, we need to impose additional constraints in order to be sure that, for all the
other transitions tej , j 6= k, for which ze,w

j = 1, it holds that

Mw − Pre(·, tej) � ~0.

In order to do this, for all tej ∈ Te we introduce a vector of binary variables S̄(w, tej) that
satisfies the following set of linear inequalities:

{
−KS̄(w, tej) + Mw − Pre(·, tej) ≤ −~1
~1T S̄(w, tej) ≤ m− ze,w

j

If ze,w
j = 0, then all entries of S̄(w, tej) may be unitary, thus adding no additional constraint

(the corresponding inequality is trivially verified). On the contrary, if ze,w
j = 1, then at least

one entry of S̄(w, tej) is null, thus making tej not enabled at Mw. Being ze,w
1 + . . . + ze,w

ne =
ne − 1, we can be sure that only one transition labeled e is enabled at Mw.

• Assume w ∈ L and we /∈ L. Then for all tej ∈ Te the following set of linear constraints
should be satisfied:

−K · S(w, tej) + Mw − Pre(·, tej) ≤ −~1m

~1 · S(w, tej) ≤ m− 1
S(w, tej) ∈ {0, 1}m.

23

¤

As in the free labeled case, it may be possible to associate to our constraints a performance index
to solve an integer programming problem and find, if there exists, the optimal solution.

Example 6.3 Let us now consider a numerical example taken from [21] where m = n = 3,
L(t1) = a, L(t2) = L(t3) = b and the net language is L′ = {arbq, r ≥ q ≥ 0}.

Assume we want to minimize the sum of initial tokens and the sum of all arcs.

Let us first assume that k = 3, thus

L = {ε, a, aa, ab, aaa, aab}.
This implies that

E = {(ε, a), (a, a), (a, b), (aa, a), (aa, b)}
and

D = {(ε, b), (ab, a), (ab, b)}.

The resulting net system is such that

M0 =
[

0 1 0
]T

,

P re =

0 0 1
1 2 0
0 0 0

 , Post =

0 0 0
2 0 0
0 0 0

 ,

namely that represented in Figure 4.a.

Note that another optimal solution is given by the net in figure (b) if we remove the arc from t2
to p1 and the arc from p3 to t3.

Then, assume k = 4, thus

L = {ε, a, aa, ab, aaa, aab, aaaa, aaab, aabb}.
This implies that

E = {(ε, a), (a, a), (a, b), (aa, a), (aa, b), (aaa, a), (aaa, b), (aab, b)}
and

D = {(ε, b), (ab, a), (ab, b), (aab, a)}.

The resulting net system is such that

M0 =
[

0 1 0
]T

,

P re =

0 0 1
1 1 0
0 1 1

 , Post =

0 1 0
1 0 0
1 0 0

 ,

24

p1 t3

b

t1 t2p2

(a)
ba

p3

k = 3

k = 4,5

2 2

p2

t1 a

p3

t3 b

p1

t2 b

(b)

k ≥ 6

p2

t1 a

p3

t3 b

p1

t2 b

(c)

Figure 4: The results of Example 6.3.

namely that represented in Figure 4.b.

The same net system is also obtained if k = 5, while the net system in figure (c) is obtained if
k ≥ 6 (that coincides with the net in [21]). ¥

Finally, we note that with the technique presented in the previous section we can also lift the
requirement that the number of places is known.

It is also possible to deal with the case in which the cardinality of the set Te for all e ∈ E is not
known a priori but only an upper bound on its value is known. This extension however is not
straightforward and it will be left for future research.

7 Complexity of the identification procedure

In this section we discuss the complexity of the IPPs we must solve to identify a net. This
complexity is given in terms of number of constraints and number of unknowns. Note however
that it is well known that an IPP is an NP-hard problem itself.

7.1 Free labeled nets

Let n be the cardinality of T , k the length of the longest string in L, and νr (for r = 0, . . . , k)
the number of strings in L of length r.

Then the constraint set (5) contains
∑k

r=1 νr constraints of type (a) and
∑k−1

r=0(nνr − νr+1)

25

constraints of type (b) and of type (c). The total number of scalar constraints is thus:

cfree = m

(
k∑

r=1

νr

)
+ (m + 1)

(
k−1∑

r=0

(nνr − νr+1)

)
.

The total number of unknowns is

ufree = m + 2(m× n) + m

(
k−1∑

r=0

(nνr − νr+1)

)
.

Note that given a value of k and of n, it is possible to find a worst case bound for ρ =
∑k−1

r=0(nνr−
νr+1). In fact, it holds:

ρ =
∑k−1

r=0(nνr − νr+1) = nν0 + (n− 1)
(∑k−1

r=1 νr

)
− νk = n + (n− 1)

(∑k−1
r=1 νr

)
− νk.

This expression is maximized if we assume νk = 0 while all other νr must take the largest value,
i.e., νr = nr. Hence we have

ρ ≤ n + (n− 1)(n + · · ·+ nk−1) = nk,

and the total number of unknowns in the worst case is

ufree = m + 2(m× n) + m nk = m(1 + 2n + nk) = O(m nk),

i.e., it has exponential complexity with respect to k.

7.2 λ-free labeled Petri nets

Let τ = maxe∈E |Te|, and as we have considered in the previous subsection, k be the length of
the longest string in L, and νr (for r = 0, . . . , k) be the number of strings in L of length r.

In the worst case the set (22) has

cλ-free = [(4m + 1)τ + 1]

(
k∑

r=1

νr

)
+ (m + 1)τ

(
k−1∑

r=0

(nνr − νr+1)

)

constraints. Indeed, in such a case, we have (3mτ + 1)
(∑k

r=1 νr

)
constraints of type (a),

(m+1)τ
(∑k

r=1 νr

)
constraints of type (b) plus (c), and (m+1)τ

(∑k−1
r=0(nνr − νr+1)

)
constraints

of type (d) and (e).

Moreover, we have that the number of unknowns is

uλ-free = m + 2mn + m

(
k∑

r=1

νr

)
+ τ

(
k∑

r=1

νr

)
+ mτ

(
k∑

r=1

νr

)
+ mτ

(
k−1∑

r=0

(nνr − νr+1)

)

26

where each term corresponds, respectively, to: M0; Pre and Post; Mw; the binary variables ze,w
j ;

the binary vectors S̄(w, tej); the binary vectors S(w, tej).

As shown in the previous subsection we can take:

ρ ≤ n + (n− 1)(n + · · ·+ nk−1) = nk,

and then the total number of unknowns in the worst case is

uλ-free = O(mτnk),

and keeping in mind that τ ≤ n we can also write

uλ-free = O(mnk+1).

Also in this case we have an exponential complexity with respect to k.

8 Conclusions and future work

In this paper we have provided a solution to the problem of identifying a Petri net system that
generates a given language, that is based on the solution of IPPs. Both the case of free labeled
Petri net systems and the case of λ-free labeled Petri nets are considered. Furthermore we
have also considered the problem of synthesizing a net when additional information about the
model (structural constraints, conservative components, stationary sequences) or about its initial
marking is given. We also treated the problem of synthesizing a bounded net starting from an
automaton that generates its language.

Our approach is based on integer programming that is a well accepted methodology for opti-
mization of discrete systems. However we have shown that the computational complexity of the
IPPs that describe the problem highly increases with the number of places m, with the number
of transitions sharing the same label, and with the length k. This problem may be partially
overcome using appropriate heuristics, that compute solutions recursively, with increasing values
of k, but that may only provide suboptimal solutions with respect to the chosen performance
index. This problem will be the object of our future work in this topic. Another extension of
our procedure will be the identification of Petri nets from samples of partially ordered languages
[15]. Our main efforts are now devoted to extend the proposed identification procedure to the
case of unbounded net systems whose language in completely known.

Acknowledgements

The authors would to thank the anonymous referee that suggested a simple proof for Theorem 5.3.

27

References

[1] D. Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741–765, 1982.

[2] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms for the synthesis of
bounded nets. Proceedings of CAAP’95, Lecture Notes in Computer Science, 915:647–679,
1995.

[3] E. Badouel and P. Darondeau. Theory of regions. Lecture Notes in Computer Science:
Lectures on Petri Nets I: Basic Models, 1491:529–586, 1998.

[4] Eric Badouel and Philippe Darondeau. On the synthesis of general petri nets. Technical
Report 3025, 1996.

[5] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics and constraints.
Automatica, 35(3):407–429, 1999.

[6] T. Bourdeaud’huy and P. Yim. Synthèse de réseaux de Petri à partir d’exigences. In Actes
de la 5me conf. francophone de Modélisation et Simulation, pages 413–420, Nantes, France,
September 2004.

[7] R.E. Burkard and F. Rendl. Lexicographic bottleneck problems. Operations Research Let-
ters, 10:303–308, 1991.

[8] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of deterministic Petri nets. In Proc.
IFAC WODES’06: 8th Work. on Discrete Event Systems, Ann-Arbor, MI, USA, July 2006.

[9] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre Yakovlev. Deriving
Petri nets from finite transition systems. IEEE Transactions on Computers, 47(8):859–882,
1998.

[10] M. Dotoli, M.P. Fanti, and A.M. Mangini. An optimization approach for identification of
Petri nets. In Proc. IFAC WODES’06: 8th Work. on Discrete Event Systems, Ann-Arbor,
MI, USA, July 2006.

[11] A. Giua and C. Seatzu. Identification of free-labeled Petri nets via integer programming.
In Proc. 44th IEEE Conf. on Decision and Control, Seville, Spain, December 2005.

[12] E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978.

[13] K. Hiraishi. Construction of a class of safe Petri nets by presenting firing sequences. In
Jensen, K., editor, Lecture Notes in Computer Science; 13th International Conference on
Application and Theory of Petri Nets 1992, Sheffield, UK, volume 616, pages 244–262.
Springer-Verlag, June 1992.

[14] Lingxi Li, Yu Ru, and C. N. Hadjicostis. Least-cost firing sequence estimation in labeled
Petri nets. In Proc. 45th IEEE Conf. on Decision and Control, San Diego, California USA,
December 2006.

28

[15] R. Lorenz and G. Juhás. Towards synthesis of Petri nets from scenarios. In Proc. of 27th
International Conference on Applications and Theory of Petri Nets and Other Models of
Concurrency, pages 302–321, Turku, Finland, 2006.

[16] M.E. Meda-Campaña and E. López-Mellado. Incremental synthesis of Petri net models for
identification of discrete event systems. In Proc. 41th IEEE Conf. on Decision and Control,
pages 805–810, Las Vegas, Nevada USA, December 2002.

[17] M.E. Meda-Campaña and E. López-Mellado. Required event sequences for identification of
discrete event systems. In Proc. 42th IEEE Conf. on Decision and Control, pages 3778–3783,
Maui, Hawaii, USA, December 2003.

[18] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[19] S. A. Reveliotis and J. Y. Choi. Designing reversibility-enforcing supervisors of polyno-
mial complexity for bounded Petri nets through the theory of regions. In Proc. of 27th
International Conference on Applications and Theory of Petri Nets and Other Models of
Concurrency, pages 322–341, Turku, Finland, 2006.

[20] Y. Ru and C. N. Hadjicostis. State estimation in discrete event systems modeled by labeled
Petri nets. In Proc. 45th IEEE Conf. on Decision and Control, San Diego, California USA,
December 2006.

[21] R.S. Sreenivas. On minimal representations of Petri net languages. In Proc. WODES’02:
6th Work. on Discrete Event Systems, pages 237–242, Zaragoza, Spain, October 2002.

[22] J.H. van Schuppen. System theory for system identification. Journal of Econometrics,
118(1-2):313–339, January-February 2004.

29

