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Abstract. Petri nets are a family of powerful discrete event models whose interest has grown,
within the automatic control community, in parallel with the development of the theory of
discrete event systems. In this tutorial paper our goal is that of giving a flavor, by means of
simple examples, of the features that make Petri nets a good model for systems theory and of
pointing out at a few open areas for research. We focus on Place/Transitions nets, the simplest
Petri net model. In particular we compare Petri nets with automata, and show that the former
model has several advantages over the latter, not only because it is more general but also
because it offers a better structure that has been used for developing computationally efficient
algorithms for analysis and synthesis.

1 Introduction

The object of the study of traditional control theory have been time-driven systems,
i.e., systems of continuous and synchronous discrete variables, modeled by differ-
ential or difference equations. However, as the scope of control theory is being ex-
tended into the domains of manufacturing, robotics, computer and communication
networks, and so on, there is an increasing need for different models, capable of
describing systems that evolve in accordance with the abrupt occurrence, at possi-
bly unknown irregular intervals, of physical events. Such systems, whose states have
logical or symbolic, rather than numerical, values that change in response to events
which may also be described in nonnumerical terms, are called discrete event systems
and the corresponding models are called discrete event models [5].

These systems require control and coordination to ensure the orderly flow of
events. As controlled (or potentially controllable) dynamic systems, discrete event
systems qualify as a proper subject for control theory. Hence a fundamental issue
arises: we need classes of formal models that are capable of capturing the essential
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features of discrete, asynchronous and possibly nondeterministic systems and that
are endowed with efficient mathematical tools for analysis and control.

Petri nets are a family of models developed from the original model presented
in 1962 by Carl Adam Petri in his doctoral dissertation: “Kommunikation mit Auto-
maten” (Communication with Automata). The theory of Petri nets is now well estab-
lished and many different Petri net models have been defined, capable of describing:
logical (i.e., untimed) systems; timed systems, both deterministic and stochastic; hy-
brid systems.

We claim that Petri nets are a powerful discrete event model and, in fact, the
interest for this model has grown, within the automatic control community, in parallel
with the development of the theory of discrete event systems. In this tutorial paper
the goal is not that of providing a comprehensive survey of the research in this area,
but rather that of giving a flavor, by means of simple examples, of the features that
make Petri nets a good model for systems theory and of pointing out at a few open
areas for research.

We compare Petri nets with automata, and show that the former model has several
advantages over the latter, not only because it is more general but also because it
offers a better structure that has been used for developing computationally efficient
algorithms for analysis and synthesis. This gives credit to our belief that the study
of automata — that is an integral part of the introductory courses on discrete event
systems — should always be complemented with the presentation of Petri nets.

The paper is structured as follows. In Section 2 the definition of Place/Transition
net (the most well-known Petri net model) is given and its dynamic behavior is de-
scribed. Section 3 deals with the modeling of physical systems with Petri nets, with
an example taken from the manufacturing domain. In Section 4 the main analysis
techniques pertaining to this model are discussed, with a particular focus on the
techniques based on the state equation and on the reachability graph. In Section 5 we
look at Petri nets as language generators and characterize the classes of languages
accepted and generated by this model. In Section 6 we show that Petri nets are a
generalization of automata and point out some of advantages the first model has with
respect to the latter. In Section 7 we discuss how many classical control properties
may be extended to the context of discrete event systems and, as an example, discuss
controllability in the framework of Petri nets. Finally, in Section 8 a few areas of
research that are still opened in the Petri net domain are presented.

2 Petri nets: main definitions

In this paper we consider the basic Petri net model called Place/Transition net (P/T
net for short). It is a purely logic model that takes into account the order of occurrence
of events, without associating time to them. For a comprehensive introduction to Petri
nets see also the paper by Murata [27], and the books by Peterson [32] and by David
and Alla [9].
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2.1 Net structure

Definition 1. A Place/Transition net is a structure N = (P, T, Pre, Post) where:

• P = {p1, p2, . . . , pm} is a set of places represented by circles;
• T = {t1, t2, . . . , tn} is a set of transitions represented by bars;
• Pre : P × T → N is the pre-incidence function that specifies the weight of the

arcs directed from places to transitions;
• Post : P × T → N is the post-incidence function that specifies the weight of the

arcs directed from transitions to places.

N
Example 1. Fig. 1 shows a net N = (P, T, Pre, Post) with set of places P =
{p1, p2, p3}, and set of transitions T = {t1, t2, t3, t4}. Here

Pre =




1 0 0 0
0 1 1 0
0 0 0 1




p1

p2

p3

t1 t2 t3 t4

Post =




0 1 0 0
1 0 0 0
0 0 2 1




p1

p2

p3

t1 t2 t3 t4

¥
The information contained in the two matrices Pre and Post is often summa-

rized in a single matrix, defined as

C = Post− Pre : P × T → Z (1)

and called incidence matrix. Note however that the incidence matrix does not contain
the same information of Pre and Post, namely the structure of the net cannot be
univocally determined starting from C. This is clearly illustrated in the following
example.

Example 2. The incidence matrix of the net in Fig. 1 is

C =



−1 1 0 0

1 −1 −1 0
0 0 2 0




p1

p2

p3

t1 t2 t3 t4

In this matrix a negative element corresponds to a pre arc, and a positive element to a
post arc. Note, however, that when a transition and a place form a loop, the weight of
the pre and post arc may cancel out. In this net such is the case for the loop formed
by p3 and t4: since C(p3, t4) = 0 no information on this loop is contained in C. ¥

In the following we denote as •t the set of input places of transition t, namely the
set of places p ∈ P that have an arc going from p to t, and t• the set of output places
of transition t, namely the set of places p ∈ P that have an arc going from t to p.

Analogously, •p and p• denote respectively, the set of input and output transitions
of place p, namely the set of transitions t ∈ T that have an arc going from t to p, and
from p to t, respectively.
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t4 

2 

 

Fig. 1. A Place/Transition net.

Example 3. Let consider the net in Fig. 1. It holds •t1 = {p1}, t•1 = {p2}, •p3 =
{t3, t4} and p•3 = {t4}. ¥

2.2 Dynamic behavior

Definition 1 only refers to the structure of the net. To associate a dynamic behavior
to it, we need to introduce the notion of state and to definite the rules that govern
the occurrence of the discrete events. In particular, in the P/T framework, the state
corresponds to the marking of the net, and the evolution corresponds to the firing of
transitions that may occur provided that appropriate enabling conditions are verified.

Definition 2. A marking is a function M : P → N that associates to each place a
non negative number of tokens. The initial marking is denoted M0. N

Definition 3. A net N with initial marking M0 is a dynamical system. It is called net
system and is denoted as 〈N,M0〉. N

Graphically, tokens are represented as black dots within places.

Example 4. Let us consider the net in Fig. 1. A possible initial marking is

M0 = [M0(p1) M0(p2) M0(p3)]T = [1 0 0]T

that is shown in Fig. 2.(a). Here the only marked place is p1, that contains one token.
Another possible initial marking is M0 = [0 1 0]T that is shown in Fig. 2.(b). Here
the only marked place is p2 that contains one token. ¥

Definition 4. A transition t is enabled at marking M if

M ≥ Pre(·, t)
where Pre(·, t) denotes the column of matrix Pre relative to transition t. We write
M [t〉 to denote this condition . N

In simple words, the enabling condition of a transition only depends on the mark-
ing of its input places. In particular, t is enabled at M if each place p ∈ •t contains
at least Pre(p, t) tokens, i.e., place p contains a number of tokens greater or equal to
the weight of the arc going from p to t.
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Fig. 2. Place/Transition net systems.

Example 5. Let us consider the net system in Fig. 2.(a). The only enabled transition
is t1. ¥

Definition 5. A transition t that is enabled at M may fire. The firing of t removes
Pre(p, t) tokens from each place p ∈ P and adds Post(p, t) tokens to each place
p ∈ P . Thus the firing of t at M determines a new marking

M ′ = M − Pre(·, t) + Post(·, t) = M + C(·, t). (2)

To denote this we write M [t〉M ′. N

Note that, since Pre(p, t) 6= 0 only if p ∈• t, and Post(p, t) 6= 0 only if p ∈ t•,
then the firing of t at M removes Pre(p, t) tokens from each input place p to t, and
adds Post(p, t) tokens to each output place p to t.

Moreover, by looking at Definition 5 it is immediate to observe that the enabling
condition given by Definition 4 guarantees the non-negativity of the marking.

Example 6. Let us consider the net system 〈N, M0〉 in Fig. 2.(a). If transition t1 fires
the net reaches the new marking in Fig. 2.(b) because one token is removed from p1

and added to p2.
Now, both transitions t2 and t3 are enabled. If t3 fires, the net reaches the new

marking in Fig. 2.(c) because one token is removed from p2 and two tokens are added
to p3, being 2 the weight of the arc going from t3 to p3.

Now, the only enabled transition is t4, but its firing does not change the marking
being C(p3, t4) = 0. ¥
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Definition 6. A sequence σ = tj1tj2 . . . tjk
∈ T ∗ is enabled at M if: tj1 is enabled

at M and its firing brings to a new marking M1 that enables tj2 ; the firing of tj2 at
M1 brings to a new marking M2 that enables tj3 , and so on.

In such a case we write

M [tj1〉M1[tj2〉 . . .Mk−1[tjk
〉Mk

or simply M [σ〉Mk. An enabled sequence σ is called a firing sequence. N

Definition 7. A marking M is reachable in 〈N, M0〉 if there exists a firing sequence
σ such that M0[σ〉M .

The reachability set of 〈N,M0〉, denoted as R(N, M0), is the set of markings
that are reachable from M0, i.e.,

R(N, M0) = {M ∈ Nm | ∃σ ∈ T ∗ : M0[σ〉M}.

N

The reachability set may never be an empty set because it always includes at least
the initial marking. Moreover, it may either be finite or infinite.

Example 7. In the case of the P/T net system in Fig. 2.(a) it is easy to verify that

R(N,M0) = {[1 0 0]T , [0 1 0]T , [0 0 2]T }.

Consider now the P/T net system in Fig. 3. In this case the initial marking is
M0 = [0] but transition t1 has no input arcs (it is a source transition) hence it is
always enabled and can fire as many times as desired, adding each time a token to
place p. On the contrary transition t2 is only enabled if place p is marked: its firing
removes one token from p. This simple net thus describes an unbounded queueing
system: the initial marking in the figure corresponds to a queue initially empty. The
reachability set is thus R(N, M0) = N. ¥

 
t1 p 

t2 

 

Fig. 3. The P/T net of an unbounded queueing system.

The fact that the reachability set of a P/T system may be infinite is one of the
main advantages of Petri nets with respect to other discrete event models, such as
automata. In fact, using Petri nets we are able to represent with a finite structure a
discrete event system with an infinite number of states.
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3 Modeling with Petri nets

Petri nets have been applied in a large variety of application domains, such as oper-
ational research, manufacturing systems, flexible production systems, transportation
systems, and so on. The book by DiCesare et al. [10] provides a nice survey of Petri
net approaches for the modeling and control of manufacturing systems.

In this section we first discuss the main primitives of concurrent systems that can
be modeled using Petri nets. If one is interested in the order of event occurrences,
the basic structures are sequency, choice, and concurrency. On the contrary, if one
is interested in describing the use of available resources, the three most common
structures are disassembly, assembly, mutual exclusion. Finally, we present in detail
an example taken from the manufacturing domain, representing an assembly system.

3.1 Main structures

Let us consider the Petri net systems in Fig. 4. Figure 4.(a) models sequency. Given
the initial marking, only event e1 may occur. Then, event e2 may only occur after the
occurrence of event e1, and event e3 may only occur after the firing of e2. Note that
here we are talking indifferently of events and transition firings. 

 

e1 e2 e3 

 
(a)

 
 
 
 

e1 

e2 

e3 

e1 

e2 

e3 

 
 (b) 

e1 

e2 

e3 

e1 

e2 

e3 

(c)

Fig. 4. Three main Petri net structures: (a) sequency, (b) choice, (c) concurrency.
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Fig. 4.(b) models the choice among events. Given the actual marking, all the
events e1, e2, and e3 are enabled. However, if any of such events occurs, then the
others are disabled. We also say that these events are in conflict among them.

Finally, Fig. 4.(c) models concurrency. After the firing of the only enabled tran-
sition at the initial marking, all the events e1, e2 and e3 are independently enabled
and may occur in any order, even simultaneously.

If tokens represent available resources, three other main structures can be defined,
as summarized in Fig. 5.

Fig. 5.(a) provides an example of a disassembly operation. If a vehicle is disas-
sembled, then we get 4 wheels and one chassis.

Fig. 5.(b) provides an example of an assembly operation. If milk, espresso and
cocoa are appropriately combined, then a cappuccino is obtained.

Fig. 5.(c) models mutual exclusion. Assume that two machines, M1 and M2,
share a resource, namely a robot, whose task is that of loading them. At the initial
marking the robot may either load M1 or M2. However, if it starts loading M1, then
it is not available for M2. It is ready to load M2 only after it has finished to process
M1. Analogously, if it is working on M2, it cannot load M1 until the loading of M2

is finished.
 

4 

milk 

meal 

butter cake vehicle 

chassis 

wheels 

load 
M1 

load 
M2 

robot 

t1 

t4 t2 

t3 

 

 

milk 
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(a) (b)
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load 
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t1 

t4 t2 

t3 

 

(c)

Fig. 5. Three main Petri net structures: (a) disassembly, (b) assembly, (c) mutual exclusion.

3.2 An assembly system

Let us consider the Petri net model in Figure 6, that models an assembly system
[15, 10].

It consists of five machines, M1, M2, M3, M4 and M5 whose operational
process is modeled by the firing of transitions t1, t2, t3, t4 and t5, respectively. Two
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Fig. 6. The Petri net model of the assembly system in Subsection 3.2.

principal types of operations are involved in this manufacturing system: regular op-
erations and assembly operations. Regular operations (modeled by transitions t1, t2
and t5) just transform a component of the intermediate product. Assembly opera-
tions (modeled by transitions t3 and t4) put components together to obtain a more
complex component of a final product or the final product itself.

Note that this model uses transitions (t6 and t7) which do not represent opera-
tions but the beginning of the manufacturing of components which are required to
assemble a more complex component or the final product.

In this example there are two manufacturing levels, the primary one, performed
byM3, leads to finite product, the secondary one, performed byM4, leads to semi–
finished (in–working) product.

The markings of places p1 and p2 represent the number of assembly servers for
t4 and t3 respectively. The marking of places p3, p5, and p9 represent the availability
of parts to be processed (raw materials), while the marking of places p4, p6, p7 and
p8 represent the availability of semi–finished products. Places p11 and p12 ensure
that machines M1 and M2 work alternatively.

4 Analysis techniques

As discussed in the previous section, P/T nets are a formal model that allows one
to describe many interesting features of concurrent systems. Once a physical system
has been modeled by a P/T net, the properties of interest of the system map fairly
well into properties of the corresponding model. The formal definition of these prop-
erties, such as reachability, boundedness, reversibility, liveness, deadlock-freeness,
fairness, etc., goes beyond the scope of this paper, but we address to [5] for a com-
prehensive discussion of this topic.

Many algorithms, with a well developed mathematical and practical foundation,
have been developed to study these properties. The analysis techniques for Petri nets
may be divided into the following groups.
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• Structural analysis. It permits the demonstration of several properties almost in-
dependently of the initial marking. Structural analysis may be based on the study
of the state equation of the net or on the study of the net graph.

• Analysis by enumeration. It requires the construction of the reachability graph
representing the set of reachable markings and transition firings. If this set is not
finite, a finite coverability graph may be constructed.

• Analysis by transformation. A net N1 is transformed, according to particular
rules, into a net N2 while maintaining the properties of interest. The analysis
of the net N2 is assumed to be simpler than the analysis of the net N1. Examples
of this analysis technique are reduction methods, that permit the simplification of
the structure of a net.

• Simulation analysis. It is useful to study the behavior of nets that interact with an
external environment.

An extensive literature on these topics has appeared in last decades. In particular,
we address to [9, 32, 34, 36] for more details. In the rest of this section, only the first
two techniques will be partially described. Furthermore, we will limit our analysis
to the basic reachability problem, that consists in establishing if a given marking is
reachable starting from the initial marking.

4.1 State equation

A linear algebraic equation can be written to describe the evolution of the net system
after the firing of a sequence σ ∈ T ∗. Such equation is based on Definition 5 and on
the definition of firing vector.

Definition 8. Given a net N with set of transitions T = {t1, t2, . . . , tn} and a firing
sequence σ ∈ T ∗, we call firing vector relative to σ, the vector σ ∈ Nn whose i-th
component is equal to the number of times ti appears in σ. N

Next result follows immediately from Definition 5.

Proposition 1. Let us consider a net system 〈N,M0〉 with incidence matrix C. If M
is reachable from M0 firing σ, then

M = M0 + C · σ. (3)

N

Eq. (2), or sometimes its transitive closure given by Eq. (3), is called the state
equation of 〈N,M0〉.
Example 8. Let us consider the net system in Fig. 2.(a) and the firing sequence σ =
t1t2t1t2t1t3. The firing vector associated to σ is σ = [3 2 1 0]T and we can easily
verify that the marking M = [0 2 0]T obtained from M0 firing σ satisfies eq. (3)
where C is given in Example 2. ¥
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It is important to stress that the state equation only provides a necessary (but not
sufficient) condition for reachability. Indeed, the existence of a vector σ ∈ Nn such
that M = M0 + C · σ ∈ Nm does not imply the existence of a firing sequence σ
whose firing vector is σ, and that is enabled at M0.

Example 9. Let us consider the net system in Fig. 7 where M0 = [1 0 0 0]T , and
σ = [1 1]T . The marking M = M0 + C · σ = [0 0 0 1]T is a non-negative marking
however it is not reachable from M0. In fact, no transition is enabled at the initial
marking. Hence neither σ′ = t1t2 nor σ′′ = t2t1, i.e., no sequence whose firing
sequence is σ, may fire from M0. ¥

 

p4 

p2 

p3 

t1 t2 

p1 

 

Fig. 7. The P/T system in Example 9.

4.2 Reachability graph

In this section we focus on a particular class of P/T nets, namely bounded Petri
nets, for which the reachability problem can be solved constructing the so-called
reachability graph.

Definition 9. A Petri net system 〈N, M0〉 is bounded if and only if there exists a finite
constant K such that ∀p ∈ P and ∀M ∈ R(N, M0), M(p) ≤ K. N

Thus a Petri net system is bounded if and only if the marking of each place is
bounded for any reachable marking. An obvious result is the following.

Proposition 2. A Petri net system is bounded if and only if its reachability set is
finite. N

For bounded Petri net systems, it is possible to enumerate in a systematic way the
reachability set by means of the reachability graph. Here each node corresponds to a
reachable marking, and each arc corresponds to a transition. The reachability graph
may be constructed using the following algorithm that terminates in a finite number
of steps if the reachability set is finite.

Algorithm 1 (Reachability graph) Let 〈N, M0〉 be a marked net with incidence
matrix C.

1. The root node is M0. This node has initially no label.
2. Let us consider a node M with no label.
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(a) For each transition t enabled at M :
i. Let M ′ = M + C(·, t).
ii. If there does not exists a node M ′ in the graph, add it.
iii. Add an arc t from M to M ′.

(b) Label the node M "old".
3. It there are nodes with no label, goto step 2.
4. Remove all labels from nodes.

N

Example 10. Let us consider the P/T system in Fig. 2.(a). Using Algorithm 1 we
obtain the reachability graph in Fig. 8. ¥

 

[1 0 0] [0 1 0] 
t1 

t2 

[0 0 2] 

t3 t4 

 
Fig. 8. The reachability graph of the P/T net system in Fig. 2.(a).

Looking at the reachability graph of a P/T system 〈N, M0〉, one can immediately
determine which markings are reachable, because a node M is reachable from M0 if
and only if it belongs to the graph. Furthermore:

(1) a marking M ′ is reachable from a reachable marking M iff there exist two nodes
M and M ′ in the graph and there exists an oriented path that goes from M to
M ′;

(2) a sequence σ is firable from a reachable marking M iff there exists an oriented
path that starts from M whose sequence of arc labels is σ.

If the reachability set is infinite, then obviously the reachability graph is infinite
as well. In such a case a different algorithm can be used to compute a finite graph,
called the coverability graph, where each arc still corresponds to a transition, while
each node either corresponds to a single reachable marking, or it represents an infi-
nite set of reachable markings. Note, however, that in such a case there is a price to
pay for representing with a finite graph an infinite set: the coverability graph usually
provides only necessary (but not sufficient) conditions for determining if a marking
is reachable or if a sequence is firable. See [9, 32] for details.

5 Petri net languages

In the previous section we introduced the notion of reachability and highlighted the
importance of characterizing the reachability set of a net system. However, the mod-
eling power of a discrete event system is also strictly related to the sequences of
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events it can generate, i.e., in the Petri net framework, to the sequences of transitions
that can fire. A sequence of transitions is a string, and a set of strings is a language.
In this section we focus on the classes of languages defined by Petri nets. In par-
ticular, we first recall the notion of generated and accepted languages, and define
labeled Petri nets. Then, we provide the definition of L-type, G-type and P -type
Petri net languages. Finally, we provide some important relationships among these
classes and the class of regular languages.

A good introduction to Petri net languages can be found in the classic book of
Peterson [32], while some generalizations and more recent results can be found in
the paper by Gaubert and Giua [12]. All the material presented in this section is taken
from these two references.

5.1 Generated and accepted languages

Definition 10. The language generated by 〈N, M0〉 is the set of sequences that are
enabled at the initial marking M0, i.e.,

L(N, M0) = {σ ∈ T ∗ | M0[σ〉}.

N

The language generated by a P/T net system is thus a prefix-closed language.
Note that it always includes the empty word (usually denoted as ε) because for any
M ∈ Nm, it holds M [ε〉M .

Example 11. Let us consider the net system in Fig. 2.(a). The language of this net
can be easily described with a regular expression as

L(N, M0) = (t1t2)∗[ε + t1 + t1t3t
∗
4].

This means that the sequence t1t2 may fire indefinitely from the initial marking.
Then, either no other sequence fires, or it fires t1, or it fires the sequence t1t3: at this
point the only enabled transition is t4 that can fire indefinitely. ¥

Definition 11. Let us consider a P/T system 〈N, M0〉. Let F be a set of final (or
accepting) markings. The language accepted by 〈N,M0〉 is the set of sequences that
are enabled at the initial marking M0 and that lead to a marking M ∈ F , i.e.,

LF (N,M0) = {σ ∈ T ∗ | (∃M ∈ F ) M0[σ〉M}.

N

Depending on the final set F , the language accepted by a P/T net system may not
be prefix-closed. Moreover, it includes the empty word if and only if M0 ∈ F .

Example 12. Let us consider the net system in Fig. 2.(a). Assume F = {[0 1 0]T }.
The language accepted by 〈N, M0〉 is LF (N, M0) = (t1t2)∗t1. ¥
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5.2 Labeled P/T nets

When observing the evolution of a net, it is common to assume that each transition
t is assigned a label `(t) and that the occurrence of t generates an observable output
`(t). This leads to the definition of labeled nets.

Definition 12. Given a Petri net N with set of transitions T , a labeling function
` : T → Σ assigns to each transition t ∈ T a symbol from a given set of labels Σ,
that may also include the empty string ε.

A Σ-labeled Petri net system is a 3-tuple G = 〈N, M0, `〉where N = (P, T, Pre,
Post), M0 is the initial marking, and ` : T → Σ is the labeling function. N

Also in the case of labeled P/T nets we can distinguish among generated and
accepted language. In particular, the following definitions hold.

Definition 13. The language generated by a Σ-labeled P/T net system 〈N, M0, `〉 is
the `-image of the set of firing sequences that are enabled at M0, i.e.,

L(N, M0, `) = {`(σ) | σ ∈ T ∗, M0[σ〉}.

N

Definition 14. Let us consider a Σ-labeled P/T net system 〈N, M0, `〉. Let F be a
set of final markings. The language accepted by 〈N, M0, `〉 is the `-image of the set
of firing sequences leading to a final marking, i.e.,

LF (N, M0, `) = {`(σ) | σ ∈ T ∗, (∃M ∈ F ) M0[σ〉M}.

N

Example 13. Let us consider again the net system in Fig. 2.(a). Assume `(t1) =
`(t4) = a, `(t2) = `(t3) = b. Then L(N, M0, `) = (ab)∗[ε + a + aba∗]. Moreover,
if F = {[0 1 0]T , the accepted language is LF (N,M0, `) = (ab)∗a. ¥

5.3 Classes of languages

Different classes of accepted Petri net languages may be defined depending on the
set of final markings F and on the labeling function ` [32].

Definition 15. The accepted language of a Petri net system 〈N, M0〉 with set of ac-
cepting markings F , can be classified as follows.

• L-type: LF (N,M0) is an L-type Petri net language if the set of final markings
F is finite.

• G-type: LF (N,M0) is a G-type Petri net language if the set of final markings F
is the covering set of a given finite set F̄ . This means that a marking M is final
if and only if M ≥ M̄ for a given M̄ ∈ F̄ . Languages in this class are usually
called weak languages.
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• P -type: LF (N,M0) is a P -type Petri net language if the set of final markings
F coincides with the reachability set R(N,M0). In such a case the accepted
language is equal to the generated language and it is obviously prefix-closed. N

Moreover, four classes of labeling functions may be defined.

Definition 16. The labeling function of a labeled Petri net system 〈N, M0, `〉 can be
classified as follows.

• free: if all transitions are labeled distinctly, namely a different label is associated
to each transition, and no transition is labeled with the empty string.

• deterministic: if no transition is labeled with the empty string, and the following
condition2 holds: for all t, t′ ∈ T , with t 6= t′, and for all M ∈ R(N, M0): M [t〉
∧ M [t′〉 ⇒ [`(t) 6= `(t′)] i.e., two transitions simultaneously enabled may not
share the same label. This ensures that the knowledge of the firing labels `(σ) is
sufficient to reconstruct the marking M that the firing of σ yields.

• λ-free: if no transition is labeled with the empty string3.
• arbitrary: if no restriction is posed on the labeling function `. N

Each of these type of labeling is a generalization of the previous one. Furthermore
all types of labeling only depend on the structure of the net, but for the deterministic
labeling, that depends both on the structure and on the behavior of the net.

Example 14. Let us consider the nets in Fig. 9. If we only look at the net structure
— that is the same in both nets — we can say that the labeling is λ-free. However,
in the first net the labeling is also deterministic because the two transitions labeled
a can never be simultaneously enabled from any reachable marking. The second
net is nondeterministic, because the two transitions labeled a can be simultaneously
enabled.

Assume that the string aa is observed in the second net. The first a is certainly due
to the occurrence of transition t1, the only one enabled at M0, whose firing yields the
new marking M = [1 1 0]T . From this marking, however, both t1 and t2 are enabled
and one cannot determine if the second a yield M = [0 2 0]T or M = [1 0 1]T . ¥

Twelve different classes of Petri net languages result from the cross product of
the three types of final marking sets in Definition 15 and the four types of labeling in
Definition 16, as summarized in Table 1.

Here the classes of L-type, G-type, and P -type λ-free languages are denoted,
respectively, L, G, and P . An additional superscript f , det or λ denotes, respectively,
the corresponding classes of free, deterministic, and arbitrary languages.
2 A looser condition is sometimes given: for all t, t′ ∈ T , with t 6= t′, and for all M ∈

R(N, M0): M [t〉 ∧ M [t′〉 ⇒ [`(t) 6= `(t′)] ∨ [Post(·, t) − Pre(·, t) = Post(·, t′) −
Pre(·, t′)]. Thus two transitions with the same label may be simultaneously enabled at a
marking M , if the two markings reached from M by firing t and t′ are the same.

3 In the Petri net literature the empty string is denoted λ, while in the formal language lit-
erature it is denoted ε. In this paper we denote the empty string ε but, for consistency
with the Petri net literature, we still use the term λ-free for a non erasing labeling function
` : T → Σ.
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Fig. 9. A deterministic labeled net (a) and a nondeterministic one.

free deterministic λ-free arbitrary

L-type Lf Ldet L Lλ

G-type Gf Gdet G Gλ

P-type Pf Pdet P Pλ

Table 1. The 12 classes of Petri net languages.

5.4 Relationships among classes of Petri net languages

The above classes of Petri net languages are closely related. In particular, some intu-
itive relationships hold:

Lf ( Ldet ( L ( Lλ,
Gf ( Gdet ( G ( Gλ,
Pf ( Pdet ( P ( Pλ,

(4)

where the symbol ( denotes strict inclusion.
Note that as a consequence of the strict inclusions (4), it is not possible to provide

determinization procedures to convert a nondeterministic Petri net (namely a Petri net
with an arbitrary labeling function) into an equivalent deterministic Petri net. On the
contrary, this is possible with finite state automata where a systematic approach exists
to convert a nondeterministic finite state automaton into an equivalent deterministic
one [5].

Another quite intuitive relationship is the following

Pf ( Gf , Pdet ( Gdet, P ( G, Pλ ( Gλ. (5)

In fact, every P -type language is a G-type language if F is a singleton containing
the null marking.

Other less intuitive relationships have also been proved and can be summarized
graphically as in Fig. 10. Here for sake of simplicity we use → to denote (, i.e.,
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Lf → Ldet → L → Lλ

↑
Gf → Gdet → G → Gλ

↑ ↑ ↑ ↑
Pf → Pdet → P → Pλ

Fig. 10. Relationships among classes of Petri net languages.

A → B is equivalent to A ( B. Note that classes that are unrelated in the table
(such as Ldet and Gdet, or such as Ldet and Pdet) are not comparable.

This plethora of Petri net languages may generate some confusion, even more
considering the fact that additional classes can be defined as mentioned in [12]. Note,
however, that not all these classes are useful in practice. In fact, the classes of free
languages are very restricted, in the sense they do not contain all regular languages.
On the contrary, for the largest classes of λ-free or arbitrary languages the problems
of language equivalence or inclusion is not decidable. Thus we may conclude that
the only interesting classes of Petri net languages are the deterministic ones [12], and
we will consider them as representative of Petri net languages.

5.5 Relationships among Petri net languages and regular languages

One of the classes of formal languages that has received most attention in the litera-
ture, is the class of regular languages [23] that we denote as R. Regular languages
are characterized by regular expressions and are generated by regular grammars.
Moreover, it has been proved that the class of regular languages is coincident with
the class of languages accepted by finite state automata.

The following important result expresses the most important relationship among
Petri net languages and regular languages.

Theorem 2. [12] The intersection of the classes of L-type and G-type regular Petri
net is the class of regular languages, i.e., R = Gdet ∩ Ldet. N

Therefore,Ldet and Gdet provide proper and distinct extensions of regular languages.
Other interesting relationships among Petri net languages and other classes of

languages, such as contex-free languages, bounded contex-free languages, context-
sensitive languages, have been proved and are reported in Fig. 11. Here we can see
that Petri net languages are a subclass of context-sensitive languages, and a super-
class of regular languages. Petri net languages are not comparable with context-free
languages.

6 Comparison with automata

The language analysis in the previous session shows that Petri nets are a generaliza-
tion of automata. In this section we want to focus on the relationship between P/T



18 Alessandro Giua and Carla Seatzu
 

 

Recursively enumerable

Context-sensitive

Context-free

Regular Ldet
 

Gdet
 

 

Fig. 11. Relationships among classes of formal languages.

nets and automata and show what are the main advantages the former model offers
with respect to the latter. Five different aspects will be considered: the state repre-
sentation power, the language power, the modularity, the structural representation
of primitives, and the linear algebraic structure.

6.1 State representation power

A Petri net is a finite state automaton additionally equipped with weak counters, i.e.,
with the possibility of testing if a counter has reached a fixed value:

M(p) ≥ k?

Example 15. Let us consider the net in Fig. 12. Place p is the counter, whose value is
increased by the firing of t1, and decreased by the firing of t2. If there are k or more
tokens in p, transition t3 is also enabled and may fire (test of the counter) without
changing the value of the counter. ¥

 
t1 p 

t2 

t3 

k k 

 Fig. 12. A weak counter.

It is important to stress that places in a P/T net are weak counters, i.e., may be
tested only for inequalities of the type ≥ while a test for ≤ is not allowed. In fact,
from the enabling rule in Definition 4 follows this obvious result.

Monotonicity property. If something can happen from M it can also hap-
pen from any marking greater than M , i.e., for any sequence σ ∈ T ∗:
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M [σ〉 and M ′ ≥ M =⇒ M ′[σ〉.
This property can be violated adding an inhibitor arc that allows a transition to

fire only if a place is empty, thus testing a counter for zero [37]. However, this feature
increases the modeling power — and the analysis complexity — of Petri nets to that
of a Turing machine, making most properties of interest undecidable: we cannot
properly consider these models as P/T nets.

6.2 Language power

A Petri net is a generator of regular languages with the additional feature of generat-
ing one-sided Dyck languages, i.e., of testing if a string of parenthesis

((())()((· · ·
is well formed [31].

Example 16. Let us consider the net in Fig. 3. Here, the firing of t1 corresponds to
the opening of a parenthesis “(”, while the firing of t2 corresponds to the closing of a
parenthesis “)”. All firing sequences generated by this net correspond to well formed
strings of parenthesis. ¥

6.3 Modularity

With modular synthesis, complex systems may be constructed by aggregation of
simpler modules. The most common operator that allows to automatically construct
the model of a complex system from the models of the subsystems that compose it,
is the concurrent composition operator, that can be defined both for automata and
Petri nets.

There are, however, two main advantages in using Petri nets rather than automata.

• When applying the concurrent composition operator to Petri nets, the structure
of the modules is kept in the composed net.

• The composition of k automata, each with a state space Qi of cardinality n,
yields a composed model with state space Q ⊆ Q1×· · ·×Qk, i.e., the composed
automata has a state space of cardinality up to nk (exponential growth). On the
contrary, the composition of k Petri nets, each with set of place Pi of cardinality
m yields a composed model with set of places P = P1 ∪ · · · ∪ Pk, i.e., the
composed net has a set of places of cardinality k ·m (linear growth).

Example 17. Let us consider the automata in Fig. 13.(a) that represent two machines
with state space Q′ and Q′′ respectively. Here event t2 is shared between the two
modules and their concurrent composition is shown in Fig. 13.(b). Note that each
state of the new automaton is a pair (q′, q′′) ∈ Q′ × Q′′. The structure of the two
modules is lost in the composed system in Fig. 13.(b), in the sense that it is not
possible to partition its structure into two parts, each corresponding to one of the two
modules.
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In Fig. 13.(c) we have represented the P/T net models of the two machines, whose
concurrent composition is given by the net in Fig. 13.(d). Note that the composed
model is obtained by the modules simply fusing the transitions with the same label.
The set of places of the composed net is the union of the set of places of the modules,
whose structure can still be clearly identified in Fig. 13.(d). ¥
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Fig. 13. The automata models of two machines (a) and their concurrent composition (b); the
Petri net models of two machines (c) and their concurrent composition (d).

6.4 Structural representation of primitives

In Section 3.1 we have discussed several primitives that can be represented by Petri
nets, such as “sequency”, “choice”, “concurrency”. Each of these primitives corre-
spond to a clear Petri net structure: sequency corresponds to a path in the graph,
choice to a place inputting to more than one transition, concurrency to parallel tran-
sitions.

In the case of automata concurrency may not be represented, because an automa-
ton can only describe the interleaving of events and not their simultaneous occur-
rence. However, one may think that the other primitives can be well described by
structures similar to those described in Section 3.1. Here we point out that this is not
always true with a simple example.



A Systems Theory View of Petri nets 21

Example 18. Let us consider again the system composed by two machines whose
automaton and Petri net model are shown in Fig. 13.(b) and Fig. 13.(d).

In the automaton structure we identify the path q0 − t1 − q1 − t3 − q3. Can we
conclude that events t1 and t3 are in a sequency relation?

In the automaton structure, from state q0 both event t1 and t3 are enabled. Can
we conclude that events t1 and t3 are in a choice relation?

The answer to both questions is no: transitions t1 and t3 are concurrent as can
be seen from the Petri net model. In fact, the two transitions belong to different
subsystems and can fire concurrently when both are enabled. ¥

6.5 Linear algebraic structure

One of the main advantages of Petri nets is that the state is a vector of non-negative
integers, while it is usually non numerical in other discrete event models, such as
automata.

Example 19. Let us consider again the system composed by two machines whose
automaton and Petri net model are shown in Fig. 13.(b) and Fig. 13.(d). State q′0
(resp., q′′0 ) denotes that the first (resp., second) machine is idle; state q′1 (resp., q′′1 )
denotes that the first (resp., second) machine is working.

In the Petri net a state is represented by a non-negative vector. Marking [1 0 1 0]T

corresponds to the state in which both machines are idle; the marking [0 1 1 0]T

corresponds to the state in which the first machine is working and the second is idle,
and so on. Using a Petri net model the state space of this system, that is a series
of labels with no algebraic structure, can be described by a set of vectors, i.e., by a
highly structured set.

This also allows to describe logical specifications in a numerical form. Assume
for instance, that we want to impose that the first machine should never be working
if the second machine is idle. Using the notation in Fig. 13 such a constraint can be
imposed forcing the constraint M(p2) + M(p3) ≤ 1. ¥

The possibility offered by Petri nets to describe the state space of a discrete event
system that may have absolutely no algebraic structure, with a set of integers vectors
has an important implication. In fact, it is possible to apply algebraic formalisms such
as integer programming for the analysis and control of these systems. Within this
area of research that, as we mentioned before, is called structural analysis, several
well-founded formal approaches have been developed. Unfortunately a survey of this
area is still missing, and we cannot provide comprehensive references; see however
[22, 36] for a few interesting examples.

7 Mapping classical properties into discrete event systems

Classical control theory deals with time-driven systems modeled by difference or
differential equations. However, many properties of dynamical systems have been
defined in very general terms that are model independent.
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It seems natural to study these properties in the context of discrete event systems,
and more specifically in the context of Petri nets. This rather standard approach has
been used by many researchers, and it has proved to be extremely fruitful, inspiring
many of the current research areas in Petri nets.

It is important, however, to point out that the extension from time-driven to dis-
crete event systems must be taken with care. To give a flavor of the problems one
may face, in this section we discuss the classical property of controllability and the
way in which it has been handled in the framework of Petri nets.

Note that much of this discussion is essentially due to Murata [26]. As far as
we know, his 1977 work was the first paper dealing with Petri nets published in an
IEEE journal. The fact that this paper was published on an Automatic Control journal
is emblematic of the appeal that the algebraic structure of Petri nets has to control
engineers.

7.1 Controllability

In Subsection 4.1 we introduced the state equation of a Petri net system, that can be
rewritten as

Mk+1 = Mk + C · σk (6)

where σk ∈ {0, 1}n is the firing vector relative to the transition that has fired at the
marking Mk, thus leading to the new marking Mk+1.

This clearly reminds one of the state equation of a discrete-time linear stationary
time-driven system, namely

xk+1 = Axk + Buk (7)

where xk ∈ Rm (resp., xk+1 ∈ Rm) is the state vector at the sampling time k (resp.,
k + 1), and uk ∈ Rn is the control input vector at sampling time k. More precisely,
equation (6) is a particular case of (7) with A = I and B = C, where I denotes the
identity matrix.

As well known, the following definition of controllability holds.

Definition 17. A discrete-time linear stationary system is controllable if and only if
it is possible, by appropriately acting on the input, to transfer the state of the system
from any initial state x0 to any other state xf , called the target state, in a finite
number of sampling steps f ≥ 0. N

Theorem 3. Given the discrete-time linear stationary system (7), we call controlla-
bility matrix the (m× n ·m) matrix

Γ =
[
B AB A2B . . . Am−1B

]
.

A necessary and sufficient condition for the controllability of (7) is that

nc , rank Γ = m.

N
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Therefore, using Theorem 3, the controllability matrix of a Petri net is

Γ =
[
C C C . . . C

]
,

thus
rank Γ = rank C,

i.e., the rank of the controllability matrix always coincides with the rank of the inci-
dence matrix.

We now observe that:

• the condition rank Γ = m is only a necessary condition for controllability if we
restrict the control input to uk ∈ {0, 1}m and to Mk + C · σk ≥ 0;

• moreover, as already discussed above (see Example 9), the state equation of a
Petri net system only provides a necessary condition for reachability.

Therefore, as a result of this analysis, the following conclusion may be drawn: in
the Petri net framework, rank Γ = m only provides a necessary (but not sufficient)
condition for controllability.

This conclusion is not surprising — discrete event systems are much more dif-
ficult to study than linear systems — but, as Murata observes, does not address the
real issue. What in fact is totally missing from this analysis is a discussion of how
significant for a discrete event system is the property of controllability that derives
from Definition 17. In fact, this classical notion does not fit well with discrete event
systems, and it is hardly meaningful. As an example, consider a Petri net model of
a manufacturing system where the marking of a place denotes the availability of a
resource. It is not meaningful to investigate if the marking of such a place may reach
any value starting from any other marking. As a trivial example, in an assembly sys-
tem described by a Petri net starting from a state in which there are only two wheels
available, it may be possible to reach state in which one bicycle has been assembled,
but not a state in which ten bicycles have been assembled.

It seems thus natural to introduce different notions of controllability, more suited
to describe the desired properties of discrete event systems. Here are some possible
examples.

• Given a Petri net with incidence matrix C of dimension m × n, we say that
x ∈ Zm is a P-flow if xT · C = 0.
A P-flow imposes an invariant law on the reachability set of a net: in fact if
marking M is reachable from the initial marking M0 it must hold

xT ·M = xT ·M0

as can be seen multiplying the state equation (3) by xT from the left.
This condition, however, is necessary but not sufficient for reachability. Given a
net system 〈N, M0〉 with incidence matrix C, let X be a matrix whose columns
are P-flows forming a basis of the left-null space of matrix C. It holds

R(N, M0) ⊆ IX(N,M0)
def= {M ∈ Nm | XT ·M = XT ·M0}.
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Thus a meaningful definition for a Petri net system may be the following: a Petri
net system 〈N, M0〉 is controllable if R(N,M0) = IX(N,M0).

• Yet a different definition of controllability may be given for timed Petri nets,
namely P/T nets in which a time interval is associated to transitions: an enabled
transition may fire provided that it has been enabled for a time that belongs to
its time interval. Such a model is particularly useful when making performance
analysis. Clearly imposing a timing structure over a logical model influences its
reachability set. In fact, since a timed model can be seen as a logical model with
additional timing constraints, the reachability set of the timed net is usually a
subset of that of the underlying untimed one. One may define a timed Petri net
system controllable if its reachability set coincides with that of the underlying
untimed model.

• Finally, in Supervisory Control — one of the most interesting approaches to the
control of discrete event systems — controllability is not defined as a property
of a system alone, but is defined with respect to a given specification, i.e., with
respect to a set of legal states or to a set of legal words. This definition has often
been used to define a Petri net system controllable if its evolution can be restricted
to a given set of legal markings or to a given set of legal words.

8 Current research areas in Petri nets

In the last two decades a large number of researchers from the automatic control
community have devoted their effort to the study of Petri nets. There are, however, a
certain number of basic problems that are still open. Here, we mention the following
four significant areas of on-going research.

• Control: as in classical control, the control problem consists in finding a control
law that constraints the controlled system behavior to satisfy a given specifica-
tion.

• Deadlock: a deadlock represents an anomalous state from which no further evo-
lution is possible. This is an issue that appears in most practical applications, and
appropriate strategies should be adopted in order to prevent it.

• Observability: the problem is that of determining efficient ways of reconstructing
the state of a net based on observed events occurrence and/or on partial marking
observation.

• Identification: this problem consists in determining a Petri net system starting
from examples/counterexamples of its language, or from the structure of its
reachability (or coverability) graph.

In the following we recall the main results that have been proposed in the above
areas.

8.1 Control

The most interesting and original approach to the control of discrete event systems,
that has directly or indirectly shaped much of the research in this area, is Supervisory
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Control Theory (SCT), originated by the work of P.J. Ramadge and W.M. Wonham
[33]. According to the paradigm of SCT, a discrete event system G is a language gen-
erator whose behavior, i.e., language, is denoted L(G). Given a legal language K, the
basic control problem is to design a supervisor that restricts the closed loop behavior
of the plant to K ∩ L(G), disabling controllable events; the events whose occur-
rence cannot be disabled are called uncontrollable. It is also usually required that the
closed loop system satisfies additional qualitative specifications, such as absence of
blocking, reversibility, etc. Since Petri nets can be seen as language generators, it is
also possible to use them as discrete event models for SCT; in this case it is assumed
that some transitions, that we call controllable, can be disabled by an external agent.
See [5, 20] for a review of this topic.

A similar approach can also be taken when considering the state evolution of a
discrete event system, rather than the traces of events it generates. This approach, that
we call state-based, is particularly attractive when Petri nets are used to represent the
plant and was used by several authors, as reviewed in [20]. Let us consider a Petri
net system 〈N,M0〉 with m places, whose set of reachable markings is R(N, M0).
Assume we are given a set of legal markings M ⊆ Nm: the basic control prob-
lem consisting in designing a supervisor that restricts the reachability set of plant
in closed loop to M ∩ R(N, M0), while satisfying some qualitative properties of
interest.

Of particular interest are those Petri net state-based control problems where the
set of legal markings M is expressed by one — or more — linear inequality con-
straints called Generalized Mutual Exclusion Constraints (GMEC) [13]. In this case
we write M(w, k) = {M ∈ Nm | wT M ≤ k} to denote that M is expressed by
the GMEC (w, k) with w ∈ Zm, k ∈ Z. Problems of this kind have been considered
by several authors and this special structure of the legal set has the advantage that the
supervisor for this class of problems takes the form of a place, called monitor, which
has arcs going to and coming from some transitions of the plant net. The plant and
the controller are both described by a net in order to have a useful linear algebraic
model for control analysis and synthesis. Moreover the synthesis is not computation-
ally demanding since it involves only a matrix multiplication. See [22] for a recent
survey.

The use of Petri nets for the control of discrete event systems is still an active
research area and we believe that it will continue to remain central during the next
decade. In fact, there exist many interesting Petri net analysis tools — as an exam-
ple, the partial order based techniques, such as unfolding — whose applicability to
control is still largely unexplored.

8.2 Deadlock

Deadlock is a major issue to be addressed when designing a supervisory controller.
A Petri net is said to be deadlocked if no transition is enabled. Clearly, this is an un-
desirable condition in quite all real applications. This is the reason why this problem
has been largely investigated in the literature, particularly within the area of flexible
manufacturing systems.
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Deadlock problems may be seen from two different prospectives: deadlock pre-
vention refers to static policies — usually coded in the net structure — for eliminating
deadlocks, whereas deadlock avoidance refers to dynamic policies applied on-line.

The first significant contribution in this area dates back to 1990 and is due to
Viswanadham et. al [39]. Here the authors used the reachability graph of the Petri
net model to arrive at static resource allocation policies. For deadlock avoidance,
they proposed an on-line monitoring and control system.

Many other significant contributions on deadlock prevention are based on a lin-
ear algebraic characterization of deadlock in ordinary4 net. In fact, it is well know
that a necessary and sufficient condition for an ordinary net to be deadlocked is the
following: the set of empty places of the net forms a siphon5 and each transitions
has at least one empty input place. An interesting deadlock prevention procedure
has been proposed by Iordache, Moody, and Antsaklis in [21]: the approach consists
in adding to the Petri net that models the plant a number of additional places that
prevent reaching empty siphons, thus ensuring deadlock freeness. Other significant
contributions on deadlock prevention based on a linear algebraic characterization of
empty siphons are due to Ezpeleta et al. [11], to Chu and Xie [6], to Li and Zhou
[24], and more recently to Reveliotis [35]. In particular, in [11] the authors consider a
particular class of Petri nets and proved that for such a class deadlock prevention also
ensures liveness. Finally, in [35] Reveliotis develop a general theory that provides a
unifying framework for all the relevant existing results based on siphon analysis,
and reveals the key structures and mechanisms that connect the resource allocation
systems (RAS) non-liveness to the concept of deadly marked and empty siphon.

The most important contributions in the development of deadlock avoidance
strategies are due to Park and Reveliotis. In [28] the authors shown that a signif-
icant class of deadlock avoidance policies, known as algebraic polynomial kernel–
deadlock avoidance policies, originally developed in the finite-state automata paradigm,
can be analysized using results from Petri net structural analysis. Other interesting
results in this framework have been given by Park and Reveliotis in [29, 30].

Despite the above important contributions, deadlock prevention and deadlock
avoidance are still open research areas because in the case of very large scale prob-
lems the computational complexity of most of the existing approaches may be pro-
hibitive and, in the case of deadlock prevention, the number of places that should be
added is too large. Moreover, using the above approaches it is not always possible to
deal with the case of uncontrollable and unobservable transitions.

8.3 Observability

If the marking of a Petri net system is not measurable, different information can be
used to reconstruct it, or at least to estimate it.
4 A net is ordinary if all the arc weight are unitary.
5 A siphon is a set of places S ⊆ P such that

S
p∈S

•p ⊆ S
p∈S p•, i.e., all transitions

outputting to one place of the set are also inputting from one place of the set.
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Benasser in [1] has studied the possibility of defining the set of markings reached
firing a “partially specified” set of transitions using logical formulas, without having
to enumerate this set.

Meda et al. in [25] have discussed the problem of estimating the marking of a
Petri net using a mix of transition firings and place observations. Finally, Zhang and
Holloway [40] used a Controlled Petri Net model for forbidden state avoidance under
partial event observation assuming that the initial marking is known.

We have also worked in this area and studied the following cases.

• The initial marking of the net is not known (or only a partial information of it is
available) but all events are observable.

• The initial marking of the net is known but the events occurrence is observed
though a labeling function, i.e., a mask, that makes some events undistinguish-
able or silent.

While the first case can be studied using unlabeled Petri nets, the second case
requires labeled models. In particular, undistinguishable events are modeled with
transitions that share the same label; silent events are modeled with transitions whose
label is equal to the empty string.

In all cases the goal is that of characterizing the set of markings in which the
system may be, given the actual observation, and the information, if any, on the
initial marking and on the structure of the net. We denote this set as C(w), where w
is the word of observed events, and we call it the set of markings consistent with w.

Some important contributions in this topic have been given in [7, 14, 18] where
it has been proved that in all the above cases the set C(w) may be characterized by
a finite set of linear algebraic constraints whose structure keeps the same regardless
of the length of the observed word w, and depends on some parameters that can
be easily computed using appropriate recursive algorithms. The main advantage of
such an approach is that it does not require the enumeration of the set of consistent
markings.

In [15, 16] it has also been shown how such characterizations can be efficiently
used when the observer is included in a control loop, and when designing a diagnoser
for fault detection.

8.4 Identification

The first partial but interesting approach to identification is due Hiraishi [19] on the
synthesis of safe Petri nets. Bourdeaud’huy and Yim [2] have presented an approach
based on logic constraints that can deal with positive examples of firing sequences
but not with counterexamples.

A different approach is based on the theory of regions whose objective is that of
deciding whether a given graph is isomorphic to the reachability graph of some free
labeled net and then constructing it. An excellent survey of this approach, that also
presents some efficient algorithms for net synthesis based on linear algebra, can be
found in the paper by Badouel and Darondeau [8].
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Recently, in a series of paper [3, 4, 17] we have presented a general approach
to identification based on integer programming. In particular, in [17] the problem
of identifying a Petri net system, given a finite language that it generates, has been
considered. Note that this approach allows one to specify not only examples of the
systems behavior (i.e., strings that belong to the language) but also counterexamples
(i.e., strings that do not belong to the language). It has been shown that the identi-
fication problem can be solved via an integer programming problem, and additional
structural constraints can also be easily imposed to the net. The above results have
been extended in [3] to the case of labeled Petri nets.

In [4] the following identification problem has been dealt with: given an automa-
ton that represents the coverability graph of a net, determine a net system whose
coverability graph is isomorph to the automaton. Again the proposed approach re-
quires solving an integer programming problem whose set of unknowns contains the
elements of the pre and post incidence matrices and the initial marking of the net.

Finally, in a recent paper Sreenivas [38] dealt with a related topic: the minimiza-
tion of Petri net models. Given a λ-free labeled Petri net generator and a measure
function — that associates to it, say, a non negative integer — the objective is that of
finding a Petri net that generates the same language of the original net while minimiz-
ing the given measure. Unfortunately, these minimization procedures only exist for
restricted families of Petri net languages where language-containment is decidable,
and for a restricted class of measures.

9 Conclusion

In this paper we considered Petri nets, an efficient and powerful formalism for the
simulation, analysis, and control of discrete event systems. The purpose of this pa-
per is that of presenting the main features of such a model to the automatic control
community, whose interest in the area of discrete event systems has been constantly
increasing during the last years. In particular, we focus on the basic Petri net model,
namely on Place/Transition nets, and discuss via some simple but intuitive exam-
ples, its modeling power, and its main advantages with respect to other formalisms,
such as automata. A discussion on the main current research area is also presented,
together with a survey of the classical results in this framework.
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