
Optimal control of discrete-time hybrid

automata under safety and liveness

constraints

Carla Seatzu a Dmitry Gromov b Jörg Raischb, c

Daniele Corona a Alessandro Giua a

aDip. di Ing. Elettrica ed Elettronica, Università di Cagliari, Italy
Email: {daniele.corona,seatzu, giua}@diee.unica.it

bLehrstuhl für Systemtheorie technischer Prozesse, Otto-von-Guericke-Universität
Magdeburg, Germany

Email: {dmitry.gromov, joerg.raisch}@e-technik.uni-magdeburg.de
cSystems and Control Theory Group, Max-Planck-Institut für Dynamik komplexer

technischer Systeme, Magdeburg

Abstract

In this contribution we address an optimal control problem for a class of discrete-
time hybrid automata under safety and liveness constraints. The solution is based on
a hierarchical decomposition of the problem, where the low-level controller enforces
safety and liveness constraints while the high-level controller exploits the remaining
degrees of freedom for performance optimization. Lower-level control is based on a
discrete abstraction of the continuous dynamics. The action of low-level control can
be interpreted as restricting invariants in the hybrid automaton representing the
plant model. A state feedback solution for the high-level control is provided, based
on the off-line construction of an appropriate partition of the state space. c©2006
Elsevier Ltd. All rights reserved.

Key words: Hybrid automata; switched systems; safety constraints; liveness
constraints

1 In press on Nonlinear Analysis, 2006. Work partially done in the framework of
the HYCON Network of Excellence, contract number FP6-IST-511368

1 Introduction

Hybrid automata are dynamic systems that consist of both continuous dynam-
ics (modeled by a set of differential or difference equations) and a switching
scheme (modeled by invariants and guards). Hybrid automata (and other mod-
eling paradigms for hybrid systems) have been widely investigated because of
their importance in many application areas. Often, the control objective for
such systems is to minimize a cost function while respecting safety and live-
ness constraints. There are a number of abstraction-based control synthesis
approaches that address safety and liveness issues while largely ignoring per-
formance optimization aspects [8, 19, 16, 11]. On the other hand, very inter-
esting papers on the optimal control of hybrid systems have been presented,
but the proposed approaches are often not able to handle “hard” safety con-
straints. Among these we mention [4, 10, 14, 18, 21, 20, 22, 24, 25].

In this paper we provide a method for synthesizing a state feedback control
strategy which minimizes a given cost function under certain safety and live-
ness constraints.

More precisely, the contribution of this paper is threefold and can be summa-
rized in the following items.

• Firstly, we investigate how the action of an approximation based discrete
supervisor can be interpreted as restricting invariants of the hybrid automa-
ton plant model. This has been briefly described in the conference papers
[7, 9]. In this contribution, we provide a much more detailed exposition.

• Secondly, we extend our previous results on the optimal control and sta-
bilization of switched systems [6] and hybrid automata [4, 7, 5] where a
technique was presented to solve an infinite time horizon optimal control
problem for an hybrid automaton whose continuous dynamics are affine,
when a quadratic performance index is considered.

Here we generalize our previous results in two ways:
(a) we take into account the existence of forbidden regions assuming that the

invariant set invi of a location i ∈ L may be a proper subset of Rn, i.e.,
invi (Rn;

(b) we assume that an infinite number of switches is allowed.
We show that a state feedback solution based on the off-line construction
of an appropriate switching region, that we call switching table, can be
computed. Each point of the table uniquely determines the corresponding
optimal mode.

• The third contribution consists in combining the above approaches in order
to deal with the optimal control of discrete-time hybrid automata under
safety and liveness constraints. More precisely, the problem is divided in
two hierarchical levels. The low-level controller enforces safety and liveness

constraints, and can be interpreted as restricting invariants in the hybrid
automaton representing the plant model. The high-level control uses the
remaining degrees of freedom to perform optimization.

The paper is structured as follows. In Section 2, we recall some basic facts
on hybrid automata, introduce the plant model and formalize the specifica-
tions. In Section 3, the safety and liveness requirements are addressed using
`-complete abstraction of the continuous plant dynamics. In Section 4, the
remaining degrees of freedom are used to minimize a quadratic cost function.
In Section 5, a numerical example is provided.

Finally, a remark regarding terminology. As time, i.e. the domain of signals,
is discrete throughout this paper, the words “continuous” and “discrete” will
always refer to the range of signals: continuous signals live in dense subsets
of some Euclidean space, whereas discrete signals live in discrete, and for the
purpose of this paper, finite sets; continuous (respectively discrete) systems
are characterized by continuous (respectively discrete) signals.

2 Plant Model and Specifications

In this section we first define the class of Hybrid Automata (HA) on which we
focus attention. Then we formally describe the safety specifications and the
optimal control problem.

2.1 Hybrid Automata

Like a continuous-time hybrid automaton [12, 1], a discrete-time hybrid au-
tomaton HA consists of a “classic” automaton extended with a continuous
state. The latter, denoted by x(k) ∈ Rn, evolves in discrete time k ∈ N0

with arbitrary dynamics. The hybrid automaton considered here is a struc-
ture HA = (L,X, f, inv, E) which, in complete analogy to, e.g. [2], is defined
as follows:

• L = {1, . . . , α} is a finite set of locations.
• X ⊆ Rn is a continuous state space.
• fi : X → X is a function that associates to each location i ∈ L a discrete

time difference equation of the form

x(k + 1) = fi(x(k)). (1)

• inv : L → 2X is a function that associates to each location i ∈ L an invariant
invi ⊆ X.

1

2

3

g1,2

g3,1

ξ0

g2,3

inv 1 inv 3

inv 2

g2,1

g3,2

g1,3

4

inv 4

g2,4

g4,3
g3,4

g4,2

Fig. 1. A graph describing an hybrid automaton.

• E ⊂ L × 2X × L is the set of edges. An edge ei,j = (i, gij, j) ∈ E is an arc
between locations i and j with associated guard region gij. The set of edges
can be interpreted as the discrete part of the overall hybrid automaton as
shown in Fig.1. This is a directed graph with vertices corresponding to the
locations (state-graph). The state-graph is assumed to be connected.

The pair (l(k), x(k)) represents the hybrid state at time k, where l(k) is the
discrete location l(k) ∈ L and x(k) ∈ Rn is the continuous state.

Starting from initial state ξ0 = (i, x0) ∈ L×X, x0 ∈ invi, the continuous state
x may evolve according to the corresponding discrete-time transition function
fi, i.e., x(k + 1) = fi(x(k)), until it is about to leave the invariant invi, i.e.
fi(x(k)) /∈ invi, k ∈ N0. This enforces a switch to another location j satisfying
the guard constraint x(k) ∈ gij and x(k) ∈ invj; the future evolution of the
continuous state is now determined by the transition function fj, provided
that the condition fj(x(k)) ∈ invj holds. If several potential “follow-up” lo-
cations satisfy the constraint, this degree of freedom can be exploited by an
appropriate discrete control scheme. Thus, the sequence l(k) of discrete loca-
tions can be interpreted as a constrained control input. Note that the hybrid
automaton may also switch to a “new” location j before being forced to leave
its “old” location i, if the corresponding guard constraint and “new” invariant
are satisfied.

It may also happen that for some state (l(k), x(k)) the system evolution can-
not be extended to the interval [k+1,∞). This situation is referred as blocking.
The notion of liveness, in turn, corresponds to the fact that the system evo-
lution can always be extended to infinity. In this paper the liveness property
of interest for the considered system is assumed to equivalent to nonblocking.
This is described formally in Section 2.3. Obviously, the initial hybrid automa-
ton does not necessarily possess the liveness property. A first goal of low-level
control is to assure this property along with safety specifications.

2.2 The Plant Model

In this paper we assume that the uncontrolled plant is modeled as a specific
discrete-time hybrid automaton satisfying the following assumptions:

A1. The difference equation (1) is linear and time-invariant, i.e.

x(k + 1) = Aix(k) ∀i ∈ L, k ∈ N0. (2)

A2. invi = X ∀i ∈ L.
A3. Transitions between any two locations i, j ∈ L are allowed.
A4. gij = X ∀i, j ∈ L.

Note that assumption A3 does not reduce the generality of the approach, since
possible restrictions on discrete transitions can be considered as specifications
– this will be illustrated in Sec. 3.2.1. Under the assumptions A1 - A4, the
uncontrolled plant is a switched linear system with a free input signal l : N0 →
L.

It will turn out in Section 3.3 that adding low-level control to the plant model
will add nontrivial invariants to the plant automaton. This may be interpreted
as adding state space constraints that force the plant dynamics to respect
safety and liveness constraints.

2.3 Safety and Liveness Specification

To formalize safety specifications, the continuous plant state space X is par-
titioned via a function qy : X → Yd, where Yd is a finite set of symbols. To
express dynamic safety constraints, certain sequences of input/output symbols
are declared illegal or, in other words, the evolution of the hybrid automaton
needs to be restricted such that only legal (L, Yd)-sequences are generated. It
is assumed that this set of sequences can be realized by a finite automaton P .
The procedure of “building” such an automaton is described in detail in Sec.
3.2.1

The liveness requirement implies that ∀ i ∈ L, ∀ k ∈ N0, the following
must hold: x(k) ∈ invi, fi(x(k)) /∈ invi ⇒ ∃e = (i, gij, j), x(k) ∈ gij and
x(k + 1) = fj(x(k)) ∈ invj. Note that the liveness condition guarantees the
existence of an evolution (i(k), x(k)), k ∈ N0, from every initial hybrid state
(i, x0).

2.4 Optimal Control Problem

Subject to plant model, safety and liveness constraints, we aim at minimizing
the cost function

J =
∞∑

k=0

x(k)′Ql(k)x(k), (3)

where, for each k ∈ N0 and l(k) ∈ L, Ql(k) is a positive semidefinite real
matrix.

This problem will now be approached using a two-level control hierarchy.
Safety and liveness requirements are being taken care of by the low-level con-
trol. This is described in Section 3. The remaining degrees of freedom are used
to minimize the cost function (3). This is described in Section 4.

3 The low-level task

In a first step, the hybrid plant automaton is approximated by a finite state
machine employing the `-complete approximation approach [16, 11]. Subse-
quently, Ramadge and Wonham’s supervisory control theory [e.g. 17] is used
to synthesize a least restrictive supervisor. Note that, in general, controller
synthesis and approximation refinement are iterated until a nontrivial super-
visor guaranteeing liveness and safety for the approximation can be computed
or computational resources are exhausted. In the former case, attaching the
resulting supervisor to the hybrid plant model amounts to introducing re-
stricted invariants. The resulting hybrid automaton represents the plant under
low-level control and can be guaranteed to respect both safety and liveness
constraints.

3.1 Ordered set of discrete abstractions

The low-level control deals with a continuous system (2) with discrete external
signals. l : N0 → L is the discrete control input and yd : N0 → Yd the discrete
measurement signal generated by

yd(k) = qy(x(k)). (4)

The set of output symbols, Yd, is assumed to be finite: Yd = {y(1)
d , . . . , y

(β)
d },

and qy : X → Yd is the output map. Without loss of generality, the latter is
supposed to be surjective (onto). The output map partitions the state space

into a set of disjoint subsets Y (i) ⊂ X, i = 1, . . . , β, i.e.

β⋃
i=1

Y (i) = X,

Y (i) ∩ Y (j) = ∅ ∀i 6= j .

To implement supervisory control theory, the hybrid plant model is approxi-
mated by a purely discrete one. This is done using the method of `-complete
approximation [16, 11], which is described in the following paragraphs.

Denote the external behavior of the hybrid plant model by Bplant, i.e. Bplant ⊆
(L × Yd)

N0 is the set of all pairs of (discrete valued) input/output signals
w = (l, yd) that (2) and (4) admit. In general, a time-invariant system with
behavior B is called `-complete if

w ∈ B ⇔ σkw|[0,`] , w|[k,k+`] ∈ B|[0,`] ∀k ∈ N0,

where σ is the unit shift operator and w|[0,`] denotes the restriction of the signal
w to the domain [0, `] [23]. For `-complete systems we can decide whether a
signal belongs to the system behavior by looking at intervals of length `.
Clearly, an `-complete system can be represented by a difference equation in
its external variables with lag `. Hence, an `-complete system a finite range
for its external signals can be realized by a finite state machine. However, the
hybrid plant model Bplant is, except for trivial cases, not `-complete. For such
systems, the notion of strongest `-complete approximation has been introduced
in [11]: a time-invariant dynamical system with behavior B` is called strongest
`-complete approximation for Bplant if

(i) B` ⊇ Bplant,

(ii) B` is `-complete,

(iii) B` ⊆ B̃` for any other `-complete B̃` ⊇ Bplant,

i.e. if it is the “smallest” `-complete behavior containing Bplant. Obviously,
B` ⊇ B`+1 ∀` ∈ N, hence the proposed approximation procedure may generate
an ordered set of abstractions. Clearly, w ∈ B` ⇔ w|[0,`] ∈ Bplant|[0,`]. For

w|[0,`] = (l0, . . . , l`, y
(i0)
d , . . . , y

(i`)
d) this is equivalent to

fl`−1

(
. . . fl1

(
fl0

(
q−1
y (y

(i0)
d)

)
∩

(
q−1
y (y

(i1)
d)

))
. . . (q−1

y (y
(i`−1)
d)

)
∩ q−1

y (y
(i`)
d)

, X(w|[0,`]) 6= ∅.
(5)

Note that for a given string w|[0,`], X(w|[0,`]) represents the set of possible
values for the continuous state variable x(`) if the system has responded

to the input string l(0) = l0, . . . , l(` − 1) = l`−1 with the output yd(0) =

y
(i0)
d , . . . , yd(`) = y

(i`)
d . Note also that (5) does not depend on l(`). For linear

and affine systems evolving on discrete time N0, (5) can be checked exactly,
as all involved sets are polyhedra.

As both input and output signal evolve on finite sets L and Yd, B` can be
realized by a (nondeterministic) finite automaton. In [16, 11], a particularly
intuitive realization is suggested, where the approximation state variable stores
information on past values of l and yd. More precisely, the automaton state
set can be defined as

Xd :=
`−1⋃

j=0

Xdj
, ` ≥ 1,

where Xd0 = Yd, and Xdj
is the set of all strings (l0, . . . , lj−1, y

(i0)
d , . . . , y

(ij)
d)

such that
(l0, . . . , lj, y

(i0)
d , . . . , y

(ij)
d) ∈ B|[0,j].

The temporal evolution of the automaton can be illustrated as follows:
From initial state xd(0) ∈ Xd0, it evolves through states

xd(j) ∈ Xdj, 1 ≤ j ≤ `− 1

while
xd(j) ∈ Xd`−1

, j ≥ `− 1.

Hence, until time ` − 1, the approximation automaton state is a complete
record of the system’s past and present, while from then onwards, it contains
only information on the “recent” past and present.

As the states x
(i)
d ∈ Xd of the approximation realization are strings of input

and output symbols, we can associate x
(i)
d with a set of continuous states,

X(x
(i)
d), in completely the same way as in (5).

Note that we can associate y
(ik)
d as the unique output for each discrete state

xd(k) = (lk−j, . . . , lk−1, y
(ik−j)
d , . . . , y

(ik)
d) ∈ Xd, j < `. Thus, the output is just

the last symbol in the symbolic description of the state. It is then a straight-
forward exercise to provide a transition function δ : Xd × L → 2Xd such that
the resulting (non-deterministic) Moore-automaton M` = (Xd, L, Yd, δ, µ, Xd0)
with state set Xd, input set L, output set Yd, output function µ : Xd → Yd,
and initial state set Xd0 is a realization of B`. Note that the state of M` is
instantly deducible from observed variables [15].

To recover the framework of supervisory control theory [e.g. 17] as closely as

x
d

(i1)

x
d

(i2)

x
d

(i3)

x
d

(i4)

x
d

(i1)
x

d

(i1)

x
d

(i4)

x
d

(i3)

x
d

(i2)

xd

(i2)

xd

(i3)

x
d

(i4)

l1

l1

l2

l1

l1

l2

y
d

(i1)

y
d

(i2)

y
d

(i2)

y
d

(i2)

yd

(i1)

y
d

(i2)

y
d

(i3)

y
d

(i4)

a) b)

d

Fig. 2. Moore-automaton (left) and an equivalent automaton without outputs
(right). Note that y

(ik)
d = µ(x(ij)

d) ∈ Yd is the output symbol associated with the
discrete state x

(i)
d .

possible, we finally convert M` into an equivalent automaton without outputs,
G` = (X̃d, Σ, δ̃, X̃d0), where Σ = L ∪ Yd, L represents the set of controllable
events and Yd the set of uncontrollable events.

Technically, this procedure is carried out according to the following scheme
(for an illustration, see Fig.2):

• Each state x
(j)
d ∈ Xd is split into two states: x

(j)
d and x̂

(j)
d . Thus, the new

state set is formed as X̃d = Xd
⋃

X̂d. Initial states are replaced by their
complements, X̃d0 = X̂d0 .

• The new transition function δ̃ is defined as a union of two transition func-
tions with nonintersecting domains:

δ̃(x̃
(i)
d , σ(j)) =

vx̃
(i)
d , x̃

(i)
d ∈ X̂d, σ(j) = µ(x̃

(i)
d) ∈ Yd,

δ(x̃
(i)
d , σ(j)), x̃

(i)
d ∈ Xd, σ(j) ∈ L,

undefined , otherwise,

where v denotes an operation of taking the complementary state, i.e. vx̂
(i)
d ,

x
(i)
d and vice versa. Note that the first event always belongs to the set Yd,

and the following evolution consists of sequences where events from L and
Yd alternate.

Note that since the function µ is scalar-valued, the set of feasible events for
each state x ∈ X̂d contains only one element. Thus, any two states x and vx
form a fixed pair, where the states X̂d are in some sense fictitious and play an
auxiliary role.

3.2 Specifications and supervisor design

3.2.1 Formal specifications

In the following, we consider specifications, which consist of the independent
specifications for the input and the output, respectively.

The specification on outputs expresses both static constraints (through re-
stricting the set of allowed outputs Y ∗

d ⊂ Yd) and dynamic constraints. Dy-
namic constraints are usually represented as a set of forbidden strings such
as, e.g., “the symbol y

(j)
d follows immediately upon the symbol y

(i)
d ”, or “the

symbol y
(i)
d appears three times one after another without any other symbol in

between”. The set of all allowed strings is then realized as a finite automaton
PY = (SY , Yd, δY , sY 0).

The specifications for inputs, in turn, reflect structural restrictions on the
allowed sequence of input symbols. They can be extracted from the state-graph
in Fig.1 and realized by a finite automaton PL = (SL, L, δL, sL0) according to
the algorithm shown in Fig.3.

Initialize: SL = {1, . . . , |L|},
ξ0 = (i, x0) : sL0 = {i} % initial location

For j, k = 1 to |L|, j 6= k
If (j, ·, k) ∈ E

δL(j, k) = k
End If

δL(j, j) = j
End For

Fig. 3. Transformation of state-graph to a finite automaton.

The last stage is the composition of input and output specifications to obtain
the overall specification P . Note that to be compatible with the approxima-
tion automaton G`, the overall specification has to have a special transition
structure, namely, it must generate only sequences of events that consist of
alternating symbols y ∈ Yd and l ∈ L, where the first symbol must belong
to the set Yd (see Fig.2(right)). Thus, the resulting specification automaton is
obtained as an “ordered” product of PL and PY :

P = PY ∨ PL = (PY || PL)× Ω = (S, Yd ∪ L, δ, s0), (6)

where the automaton Ω is given by ({0, 1}, Yd ∪ L, ω, {0}),

ω(x, σ) =

1, x = 0, σ ∈ Yd,

0, x = 1, σ ∈ L,

undefined , otherwise.

To characterize the resulting specification automata, we need the notion of
current-state observability [cf. 3, 13]:

Definition 3.1 A finite state machine A = (Q, Σ, φ) is said to be current-
state observable if there exists a nonnegative integer K such that for every
i ≥ K, for any (unknown) initial state q(0), and for any admissible sequence of
events σ(0) . . . σ(i−1) the state q(i) can be uniquely determined. The parameter
K is referred to as the index of observability.

In the following, we assume that the automata PL and PY are current-state
observable with indices of observability KPL

and KPY
, respectively.

The notion of current-state observability can be extended to the overall spec-
ification automaton. Its index of observability KP is given by

KP =

2KPY
− 1, KPY

> KPL
,

2KPL
, KPY

≤ KPL
.

(7)

Furthermore, to stay within the time-invariant framework we have to restrict
ourselves to specifications that can be realized by strongly current-state ob-
servable automata:

Definition 3.2 A finite state machine A = (Q, Σ, φ) is said to be strongly
current-state observable if it is current-state observable with observability in-
dex K and if for each state q ∈ Q there exists another state q′ ∈ Q such that
the state q can be reached from q′ by a sequence of K events, i.e. ∀q ∈ Q ∃q′ ∈
Q, s.t. q = φ(q′, s), s ∈ Σ∗, |s| = K, where Σ∗ is the Kleene closure of Σ and φ
the extension of the automaton transition function to strings in Σ∗.

Note that each state of such an automaton can be deduced from the string
consisting of the past K events, independently from the initial state.

3.2.2 Supervisor design

Given an approximating automaton G` and a deterministic specification au-
tomaton (6) with observability index KP , supervisory control theory checks,

whether there exists a nonblocking supervisor and, if the answer is affirmative,
provides a least restrictive supervisor SUP via ”trimming” of the product of
G` and P . Hence the state set of the supervisor, XSUP , is a subset of X̃d × S.

The functioning of the resulting supervisor is very simple. At time k it ”re-
ceives” a measurement symbol which triggers a state transition. In its new
state x(j)

sup, it enables a subset Γ(x(j)
sup) ⊆ L and waits for the next feedback

from the plant. As shown in [11], the supervisor will enforce the specifica-
tions not only for the approximation, but also for the underlying hybrid plant
model.

In the following, we will be interested in the special case of quasi-static spec-
ifications. To explain this notion, let papp : XSUP → X̃ denote the projection
of XSUP ⊆ X̃d × S onto its first component. If papp is injective, i.e. if

papp(x1) = papp(x2) ⇒ x1 = x2, (8)

and, moreover, the specification is strongly current-state observable, then the
specification automaton is called quasi-static with respect to the approximation
automaton Gl.

Proposition 3.3 P is quasi-static with respect to G` if

2`− 1 ≥ KP . (9)

Proof. (Sketch) Let x1 and x2 be two states of the supervisor SUP with
papp(x1), papp(x2) ∈ X̃d. There are two cases:

(1) papp(x1), papp(x2) ∈ X̃dj
, 1 ≤ j < ` − 1. Each element from X̃dj

stores a
record of the complete past and present of yd and l. Since the specification
automaton is assumed to be deterministic, this record unambiguously
determines the current state of the specification automaton. Thus, (8)
holds.

(2) papp(x1), papp(x2) ∈ X̃d`−1
. In this case an element from X̃d`−1

contains
information only on “recent” past values of yd and l. Precisely speaking,
it contains information about the last ` output symbols and the last `−1
control symbols. Thus, the complete record has length of 2`− 1 symbols,
which is sufficient to unambiguously determine the current state of P .

3.3 Plant model under low-level control

For the case of quasi-static specifications, each supervisor state x(i)
sup corre-

sponds exactly to a state x̃
(i)
d = papp(x

(i)
sup) of the approximating automaton,

which, in turn, can be associated with a set X(x̃
(i)
d) = X(papp(x

(i)
sup)).

For k ≥ `−1, attaching the discrete supervisor to the plant model is therefore
equivalent to restricting the invariants for each location lj ∈ L according to

invlj =
⋃

i, s.t. lj ∈ Γ(x(i)
sup)

papp(x
(i)
sup) ∈ Xd`−1

X(papp(x
(i)
sup))

⋃
fi(X(papp(x

(i)
sup))). (10)

Note that for the initial time segment, i.e. k < ` − 1, (10) is more restrictive
than the discrete supervisor computed in Sec.3.2.

Hence the action of supervisory control is to restrict the invariants from invj =
X to invj given by (10) and, accordingly, to restrict the guards from gij = X
to gij = invi ∩ invj where invi and invj are computed according to (10)

The union of all invariants invlj , j = 1, . . . , α, forms the refined state set that
contains only safe points, i.e. points for which exists at least one sequence of
control symbols such that the resulting behavior satisfies the specifications.

The resulting hybrid automaton represents the plant model under low-level
control (for k ≥ `). As control system synthesis has been based on an `-
complete approximation, it is guaranteed that the resulting hybrid automaton
satisfies safety and liveness requirements. The remaining degrees of freedom
in choosing l(k) can be used in a high-level controller addressing performance
issues.

4 The high-level task

The high-level task requires the solution of an optimal control problem of the
form (3).

The aim of this section is that of showing in detail that a state feedback
solution of (3) can be obtained by computing off-line appropriate partitions
of the state space, that we call switching regions, extending to the case at
hand previous results on the optimal control of switched systems [20], based
on dynamic programming arguments. In particular, we present the following
three main results.

• Firstly, we recall how one can extend the results of [20] to the case of HA
with invariants in order to compute an optimal state feedback control law
for the problem (3) when a finite number of switches N is allowed.

• Then, we show how the proposed approach can be easily extended to the
case of an infinite number of allowed switches.

• Finally, we show how to deal with the case of hybrid systems whose dynamics
are all unstable.

For sake of simplicity we will deal with completely connected automata. These
results can be easily extended to the case of generic automata using the same
arguments of [4], where continuous-time HA were taken into account.

4.1 The optimal control problem with a finite number of switches

Let us now consider an optimal control problem of the form:

V ∗
N(i0, x0) , min

I,K

{
F (I,K) ,

∞∑

k=0

x(k)′Qi(k)x(k)

}

s.t. x(k + 1) = Ai(k)x(k)

i(k) = ir ∈ L, for kr ≤ k < kr+1, r = 0, 1, . . . , N

x(k) = invi(k), for k = 0, 1, . . . , +∞
0 = k0 ≤ k1 ≤ . . . ≤ kN < kN+1 = +∞

(11)

where Qi are positive semi-definite matrices, (i0, x0) is the initial state of the
system, and N < +∞ is the maximum number of allowed switches, that is
given a priori.

In this optimization problem there are two types of decision variables:

• I , {i1, . . . , iN} is a finite sequence of modes;
• K , {k1, . . . , kN} is a finite sequence of switching time indices.

Problem (11) is clearly well posed provided that the following hypothesis are
verified.

Assumption 4.1 The invariant sets invi, i ∈ L, guarantee the liveness of the
HA. ¥

Note that Assumption 4.1 is generally not easy to verify. Nevertheless, in
the case at hand, its satisfaction is guaranteed a priori by the low-level task,
namely by the procedure used to construct the invariant sets.

Moreover, to ensure a finite optimal cost for any x0 ∈ Rn and any i0 ∈ L we
assume the following:

Assumption 4.2 There exists at least one mode i ∈ L such that Ai is strictly

Hurwitz and invi = Rn. ¥

Note that this condition is sufficient but usually not necessary to get a finite
optimal cost.

In [20] it was shown that under the assumption that invi = Rn for all i ∈ L,
the optimal control law for the optimization problem (11) takes the form of
a state-feedback, i.e., it is only necessary to look at the current system state
in order to determine if a switch from linear dynamics Air−1 to Air , should
occur.

For a given mode i ∈ L when r switches are still available, it is possible to
construct a table Ci

r that partitions the state space Rn into α regions Rj’s,
j = 1, · · · , α = |L|. Whenever iN−k = i we use table Ci

r to determine if a switch
should occur: as soon as the continuous state x reaches a point in the region
Rj for a certain j ∈ L \ {i} we will switch to mode iN−k+1 = j; no switch will
occur if the continuous system’s state x belongs to Ri.

In [20] it was constructively showed how the tables Ci
r can be computed off-line

using a dynamic programming argument: first the tables Ci
1 (i ∈ L) for the

last switch are determined, then, by induction the tables Ci
r can be computed

once the tables Ci
r−1 are known.

Remark 4.3 In order to provide a graphical representation of Ci
r we associate

a different color to each dynamics Aj, j ∈ L. The regionRj of Ci
r is represented

according to the defined color mapping. ¥

Note that when invi = Rn for all i ∈ L, the regions Rj’s are homogeneous,
namely if x ∈ Rj then λx ∈ Rj for all λ ∈ R. This implies that they can
be computed by simply discretizing the unitary semisphere. Clearly, this is no
more valid when invi (Rn for some i ∈ L, as in the case of interest here
where a discretization of all state space of interest is necessary.

To show how the procedure of [20] can be extended to the case we are consid-
ering here, let y ∈ Rn be a generic vector, and let D be an appropriate set of
points in the portion of the state space of interest, that define the considered
state space discretization grid. Moreover, given a discrete state i ∈ L and a
continuous state y ∈ Rn, we define the set

succ(y) = {j ∈ L | y ∈ invj}

which denotes the indices associated to the locations whose invariant set in-
cludes y.

The procedure to compute the switching regions is based on dynamic pro-
gramming. Let us denote Tr(i, y) the optimal remaining cost when the current

continuous state is y, the current dynamics is Ai and r switches are still avail-
able. Thus, when r = 0, i.e., when no more switch may occur, T0(i, y) = y′Ziy
if Ai is Hurwitz and the system trajectory starting in y and evolving with
dynamics Ai until the origin is reached, always keeps within invi. The matrix
Zi is the solution of the discrete Lyapunov equation A′

iZi + ZiAi = −Qi. In
all the other cases, T0(i, y) = +∞.

The optimal remaining cost Tr(i, y) for r = 1, . . . , N , is computed recursively
starting from r = 1 towards increasing values of r. More precisely, we first
choose a finite time horizon kmax that is large enough to approximate the
infinite time horizon. Then, for any r = 1, . . . , N , any y ∈ D and any i ∈ L,
we compute the value of the cost to infinity when the initial state is (i, y), r
switches are still available, the generic dynamics Ai is used for the first k times
sampling, then the system switches to dynamics Aj. This cost, that we denote
T (i, y, j, k, r), is the sum of the cost due to the evolution with dynamics Ai for
k times sampling, plus the optimal remaining cost from the new state (j, Ak

i y)
reached after the switch when r − 1 switches are still available, i.e.,

T (i, y, j, k, r) = y′
(

k∑

h=0

(Ah
i)
′Qi(A

h
i)

)
y + Tr−1(j, A

k
i y). (12)

The previous equation expresses the dynamic programming argument used
to efficiently compute the optimal switching law. When r switches are still
available, we consider a nominal trajectory starting from a discretization grid
point y and evaluate its cost assuming we remain in the current dynamic i for
a time k; the cost remaining after the after the switch the switch is evaluated
on the basis of the table previously constructed for the r−1 switch. Note that
for a fixed value of i, y, j and r we only need to find the optimal value of k
with a one-dimensional search.

Note that only those evolutions that do not violate the invariant constraints
should be taken into account. This means that if z = Ak

i y is the generic
continuous state reached from y evolving with dynamics Ai for k steps, an
evolution with dynamics Aj, j ∈ L, should be considered if and only if j ∈
succ(z).

Finally, we define the switching tables as mappings Ci
r : D → L, and the

generic region Rj as

Rj = {y ∈ D | Ci
k(y) = j}.

The procedure to compute the switching regions is briefly summarized in the
following algorithm.

Algorithm 4.4 (Tables construction)

Input:

Ai ∈ Rn×n, Qi ∈ Rn×n, invi ⊆ Rn (i ∈ L), N, kmax, D.

Output:
Ci

r, r = 0, 1, . . . , N, i ∈ L.

Notation:

Q̄i(k) =
k∑

h=0

(Ah
i)
′Qi(A

h
i), Zi = lim

k→∞
Q̄i(k).

(1) Initialization: r = 0 remaining switches
for i = 1 : α

for all y ∈ D
Cost assignment:

T0(i, y) =

y′Ziy if Ai is Hurwitz and the system trajectory starting

in y and evolving with dynamics Ai until the origin

is reached, always keeps within invi

+∞ otherwise

end (y)
end (i)

(2) for r = 1 : N
for i = 1 : α

for all y ∈ D
Computation of the remaining cost:
let k = 0, ∆ = ∅
while k ≤ kmax

z = Ak
i y

if z /∈ invi

for all j ∈ succ(z)
T (i, y, j, k, r) = y′Q̄i(k)y+Tr−1(j, k),
∆ = ∆ ∪ {(j, k)}

end (j)
k = kmax + 1

else
for all j ∈ succ(z) \ {i}

T (i, y, j, k, r) = y′Q̄i(k)y+Tr−1(j, k),
∆ = ∆ ∪ {(j, k)}

end (j)
k = k + 1

end if

end while
if i ∈ succ(y) and Ai is Hurwitz

T (i, y, i, kmax, r) = y′Ziy,
∆ = ∆ ∪ {(i, kmax)}

end if
Cost assignment: Tr(i, y) = min

(j,k)∈∆
T (i, y, j, k, r)

Color assignment: (j∗, k∗) = arg min
(j,k)∈∆

T (i, y, j, k, r),

Ci
r(y) =

j∗ if k∗ = 0

i otherwise

end (y)
end (i)

end (r)

Algorithm 4.4 first computes the optimal remaining cost T0(i, y) when no
more switches are available. This is obviously done for any i ∈ L and any
y ∈ D. Then, the switching tables are computed backwards, starting from
that corresponding to one available switch, until that corresponding to N
available switches (r = 1 : N). More precisely, for any r, any mode Ai and
any sampling point y ∈ D, we compute the optimal remaining cost starting
from (i, y) when r switches are available. In order to do this we compare all the
costs that can be obtained starting from (i, y), evolving with Ai for k sampling
instants, then switching to any mode Aj, and up to then evolving with the
optimal evolution from (j, z), z = Ak

j y, when r−1 switches are available. Note
that k may only take finite values, namely k = 0, 1, . . . , kmax. This clearly does
not affect the validity of the solution provided that kmax is taken large enough.
If the minimum cost is obtained for k = k∗ = 0 and j = j∗, this means that
when the current state is (i, y) and r switches are still available, the cost is
minimized if we immediately switch to mode Aj. Therefore, we assign the
color corresponding to Aj to the point y in the table Ci

r. On the contrary, if
k∗ > 0 it means that if the state is (i, y) and r switches are available, it is
convenient to continue evolving with dynamics Ai. Therefore we assign the
color corresponding to Ai to the point y in the table Ci

r.

The computational cost of the proposed approach is of the order O(qnNs2)
where n is the dimension of the state space and q is the number of samples
in each direction (i.e., qn is the cardinality of D). Therefore, the complexity
is a quadratic function of the number of possible dynamics and linear in the
number of switches.

Remark 4.5 Two important cautions should be taken in order to ensure the
uniqueness of the tables and (as it will be discussed in the following) the
Zeno-freeness when the procedure is extended to the case of N = ∞.

The argument (j∗, k∗) that minimizes the cost T (i, y, j, k, r) may be not unique
and this may cause ambiguity in the construction of the tables. To this aim
we introduce the following lexicographic ordering.

Let Γ = {(j, k) ∈ ∆ | (j, k) = arg min T (i, y, j, k)} be the set of solutions of
problem

Tr(i, y) = min
(j,k)∈∆

T (i, y, j, k, r), (13)

and assume that Γ has cardinality greater than one. Let (j′, k′) and (j′′, k′′)
be any two couples in Γ with j′ 6= j′′. We say that (j′, k′) ≺ (j′′, k′′) iff j′ < j′′.
Finally, if j′ = j′′ we say that (j′, k′) ≺ (j′′, k′′) iff k′′ < k′.

Choosing the minimal element in Γ with respect to ≺, the optimal solution of
Problem (13) is unique.

The second caution that should be taken is the following. Consider the case in
which at a given value of the switching index k, the arguments that minimize
the remaining cost T (i, y, j, k) starting from point y in dynamics Ai are (j∗, k∗)
with k∗ = 0. It may be the case that the system, once entered in dynamics Aj∗

requires an immediate switch to another dynamics, say p causing the presence
of 2 switches in zero time. This behavior is undesirable, because it leads to a
potential risk of a Zeno behavior when the number of available switches goes
to infinite.

To avoid this it is sufficient to take (p, k∗) instead of (j∗, k∗), or more precisely,
to consider (j∗, k∗) = arg min T (j∗, y, j, k) at the previous switching index
r − 1. When this extra precaution is taken, we can ensure that a spacing
condition kr+1 − kr > 0 is always verified during an optimal evolution.

¥

4.2 The optimal control problem with an infinite number of switches

In [6] it was shown that under the assumption that invi = Rn for all i ∈ L,
the above procedure can be extended to the case of N = ∞, provided that (i)
for at least one i ∈ L, Ai is Hurwitz, and (ii) for all i ∈ L, Qi > 0.

Analogous results can be proved here under Assumptions 4.1 and 4.2, and
under the additional following hypothesis.

Assumption 4.6 For all i ∈ L, Qi > 0. ¥

Proposition 4.7 For any continuous initial state x0, x0 6= 0, and ∀ ε > 0,

∃ N̄ such that for all N > N̄ ,

V ∗
N(i, x0)− V ∗

N̄ (j, x0)

V ∗
N(i, x0)

< ε,

for all i, j ∈ L.

Proof. See Appendix. ¤

According to the above result, one may use a given fixed relative tolerance ε
to approximate two cost values, i.e.,

V ∗
N(i, x)− V ∗

N ′ (j, x)

V ∗
N(i, x)

< ε =⇒ V ∗
N(i, x) ∼= V ∗

N ′ (j, x).

This result enables us to prove the following important theorem.

Theorem 4.8 Given a fixed relative tolerance ε, if N̄ is chosen as in Propo-
sition 4.7 then for all i, j ∈ L it holds that Ci

N̄+1 = Cj
N̄+1

.

Proof. It trivially follows from the fact that, by Proposition 4.7, V ∗̄
N+1(i, x0) =

V ∗̄
N+1(j, x0) for all i, j ∈ L, and from the uniqueness of the optimal tables as

discussed in Remark 4.5. ¤

This result also allows one to conclude that

∀ i ∈ L, C∞ = lim
N→∞

Ci
N ,

i.e., all tables converge to the same one.

To construct the table C∞ the value of N̄ is needed. We do not provide so
far any analytical way to compute N̄ , therefore our approach consists in con-
structing tables until a convergence criterion is met.

Table C∞ can be used to compute the optimal feedback control law that solves
an optimal control problem of the form (11) with N = ∞. More precisely, when
an infinite number of switches is available, we only need to keep track of the
table C∞. If the current continuous state is x and the current mode is Ai, on
the basis of the knowledge of the color of C∞ in x, we decide if it is better to
still evolve with the current dynamics Ai or switch to a different dynamics,
that is univocally determined by the color of the table in x.

Let us finally observe that table C∞ is Zeno-free, i.e., it guarantees that no Zeno
instability may occur when it is used to compute the optimal feedback control
law. This property is guaranteed by the procedure used for their construction
as discussed in Remark 4.5.

e1,2

e2,1

e3,2

e2,3

e3,1

e1,3

1 2

3

Fig. 4. Graph of the automaton HA (continuous) and HA (continuous and dashed)
described in the example.

4.3 The optimal control of switched systems with unstable dynamics

In this section we show that the above results still apply when Assumption 4.2
is relaxed. To this aim, let us first introduce the following definitions.

Definition 4.9 (Forbidden region) A forbidden region for the HA is a set

Xf ⊂ X : Xf = X \
s⋃

i=1

invi, where α is the number of locations. ¥

Thus Xf is a region forbidden to all dynamics of the HA.

Definition 4.10 (Augmented HA and OP) An augmented automaton HA =
(L, act, inv, E) of HA = (L, act, inv, E) and the corresponding optimal control
problem OP of OP , are related as follows:

(i) HA includes a new Hurwitz dynamics Aα+1 and OP includes a correspond-
ing weight matrix Qα+1 = qQ̃α+1 (with rank(Q̃α+1) > 0, and q > 0).

(ii) A new invariant invα+1 = X is associated to the new dynamics.
(iii) The edges ei,α+1 ∈ E and eα+1,i ∈ E are defined ∀ i ∈ L.

¥

Thus the augmented automaton HA is the same as HA except for an extra lo-
cation (α+1) completely connected to all the locations in the HA. Its invariant
set coincides with invα+1 = X and its dynamics is Aα+1. The corresponding
OP weights location (α + 1) with matrix Qα+1 > 0.

The following important result holds.

Proposition 4.11 Assume that there exists an exponentially stabilizing switch-
ing law for problem OP (HA). Then there also exists a sufficiently large value

of q > 0 in the OP (HA), such that the table C∞, solution of OP (HA),
i = 1, . . . , α + 1, contain the color of Aα+1 at most in Xf . ¥

Proposition 4.11 allows one to consider the solution of OP (HA) equivalent to
the solution of OP (HA). This follows from the fact that the dynamics Aα+1

does not influence at all any solution of the augmented problem. Therefore it
can be removed from the augmented automaton.

This result is formally proved in [6], in absence of state space constraints. As
before this result can be trivially extended if the liveness of the automaton is
guaranteed (see Assumption 4.1). In fact, by definition, it holds that, for any
initial couple (i0, x0) ∈ X \Xf of the HA, the hybrid trajectory (i(k), x(k)),
solution of OP (HA), always keeps within X \Xf .

Let us finally observe that the convergence to a unique table C∞ is due to the
fact that we are dealing with strongly connected HA. If such were not the case,

then α different tables Ci
∞, i = 1, . . . , α, would be obtained as a solution of

OP , and all of them should be used to compute the optimal feedback control
law.

4.4 Robustness of the procedure

The high-level procedure we suggest in this paper provides a switching table,
i.e., a partition of the state space, that the controller consults on-line in order
to establish which is the current mode that ensures the minimality of the cost
function. If no disturbance is acting on the system and no numerical error
affects the switching table construction, the optimality of the solution, as well
as the safeness and liveness of the closed-loop system, are guaranteed.

In practice, two different problems may occur.

• The first one concerns disturbances acting on the continuous system that
may change its nominal trajectory. If the disturbance does not bring the
system inside the forbidden region Xf , this does not affect the validity of
the result: the controller continues taking its decisions on the basis of the
current continuous state, the minimality of the cost is guaranteed, and the
safety and liveness constraints are still satisfied.

On the contrary, the procedure obviously fails if the disturbance is such
that the trajectory enters the forbidden region Xf : in this case the safety
and liveness constraints cannot be satisfied any more.

• The second problem is related to the inevitable numerical errors that affect
the construction of the switching tables due to the state space discretization
required by our approach. For each switch, the table is computed for all
points that belong to the discretization grid. From these points the nominal

trajectories are studied piecewise using eq. (12): after the switching the
remaining evolution may start from a point that does not belong to the grid
and the actual remaining trajectory is an approximation of the nominal one.

The actual trajectories during the system evolution will be close to the
nominal ones used to compute the tables if the discretization step is suf-
ficiently small. A numerical error in the computation of the tables is not
critical if the forbidden region is empty. In such a case, the provided solution
may be sub-optimal but it is still viable.

However, assume that the forbidden region is not-empty. If the forbidden
regions constraints the optimal solution, it is likely that an optimal nominal
trajectory needs to pass as close as possible to the forbidden region without
entering it. However, an evolution that differs from a nominal one may
graze or even hit the forbidden region. In this case, the safety and liveness
constraints cannot be satisfied any more.

A solution we suggest to overcome both problems is the following.

In the low level task we define a ”tolerance region” Xtr around the forbidden
state space set Xd, then we redefine the forbidden state space set as X ′

d =
Xd∪Xtr. This clearly implies a reduction of the invariant sets of each location
(inv′1, . . . , inv′α), and consequently, a wider forbidden region X ′

f ⊃ Xf in the
high level task.

The tolerance region should be large enough to make sure that a trajectory
that differs from a nominal one — either because a disturbance is acting on
the system, or because of the numerical errors in the construction of the tables
— may pass within X ′

f but never reaches Xf .

In this way we improve the robustness of the procedure. We have to pay a cost
for this: the optimality of the solution with respect to the chosen performance
index is no more guaranteed, and the computed solution will be suboptimal.

5 Numerical example

Let us consider a HA with two locations, whose graph is depicted in Figure 4
(the part sketched with continuous lines). Moreover, let

A1 =

0.981 0.585

−0.065 0.981

 , A2 =

0.981 0.065

−0.585 0.981

be the corresponding continuous dynamics, whose eigenvalues have unitary
norm. In particular, in both cases it holds λ1,2 = 0.9808±j0.1951. Two generic

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A
1

A
2

x
1

x
2

Fig. 5. Discrete time trajectories of dynamics A1 and A2, with eigenvalues along the
unitary circle.

trajectories relative to dynamics A1 and A2, respectively, are reported in Fig-
ure 5.

Assume that

X = {x ∈ R2 | x2
1 + 9x2

2 ≤ 40 ∧ 9x2
1 + x2

2 ≤ 40},

where x2
1 + 9x2

2 ≤ 40 and x2
1 + x2

2 ≤ 40 are the equations of the trajectories
trough the point of coordinates x1 = x2 = 2 and evolving with dynamics A1

and A2, respectively.

Finally, assume that the safety constraint is given by the forbidden state space
set

Xd = {x ∈ R2|H ′x ≤ h}
where

H =

0 0 1 −1

1 −1 −1 −1

h =
[
0.8 −0.2 0 0

]
,

(14)

i.e., Xd is the trapezoid depicted in Fig.6.

The set X \Xd can be blocking, i.e., there exists some initial point in X \Xd

such that, regardless of the switching strategy, any trajectory starting from
these points always hit the set Xd.

In order to guarantee liveness, the previous setup is passed to the procedure
described in Section 3. In terms of safety specification it means that we mark
all output symbols yd ∈ Ŷd, where Ŷd = {yd ∈ Yd |q−1

y (y
(i)
d)∩Xd 6= ∅}, as forbid-

den and require that the allowed sequences of output symbols do not contain
such forbidden symbols. Then, the obtained supervisor is transformed into the
appropriate invariant sets inv1 and inv2 to be associated to the dynamics A1

and A2, respectively. A new forbidden region Xf = X \ (inv1 ∪ inv2) ⊃ Xd is
defined according to Definition 4.9.

The invariant sets of locations 1 and 2 are reported in Fig.6.(a) and (b),
respectively, while the set Xf is sketched in figure (c).

Within the given constraints we want to solve an optimal control problem 2

OP of the form (3), where Q1 = Q2 = I. For this purpose we consider the
augmented problem OP (HA), with the following data:

A3 =

0.9838 0

0 0.9838

 , Q3 = qQ1, inv3 ≡ X

where q = 103, and A3 is Hurwitz. The graph of the augmented automaton is
depicted in Fig.4 (continuous and dashed part).

Remark 5.1 Given the symmetry of the two dynamics, it can be easily shown
that the solution of OP (HA) when invi ≡ X, i = 1, 2, is to use dynamics A2

when x1x2 > 0 and dynamics A1 when x1x2 < 0. This result is very intuitive
if we observe the trajectories of the given dynamics (Figure 5) and if we use
the identity matrices as weight matrices in problem (3).

−2 −1 0 1 2
−2

−1

0

1

2

x
2

x
1

(a)

−2 −1 0 1 2
−2

−1

0

1

2
x

2

x
1

(b)

−2 −1 0 1 2
−2

−1

0

1

2

x
1

x
2

(c)

Fig. 6. Invariants (in white) of locations 1 (a) and 2 (b) and (c) the forbidden region
Xf = X \ (inv1

⋃
inv2) defined in Def. 4.9. The interior of the blue trapezoid is the

forbidden region Xd.

Note that the augmented problem OP (HA) satisfies the conditions given in
Definition 4.10. The switching table procedure, applied to OP (HA) for a re-
cursively increasing number of switches, converges after N = 15 switches.
Moreover the tables Ci

∞, i = 1, 2, 3 are coincident with a unique table C∞,
because HA is strongly connected.

2 Note that neither A1 nor A2 are Hurwitz, hence an infinite number of switches is
necessary.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

 Location l1
 Location l2
 Location l3

Fig. 7. Switching table of the problem OP (HA) defined in the example.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

(a)

0 200 400 600 800 1000

1

2

i(k)

k

(b)

Fig. 8. Trajectories x(k) (a) and i(k) (b) of the optimal solution of OP (HA) obtained
by using the table in Figure 7 for an initial point (i0 = 1, x0 = [−1 0]′).

The table C∞ is depicted in Figure 7 and some relevant considerations can be
immediately done.

(i) The color of the augmented dynamics exactly covers the region Xf .
(ii) In inv1 \Xf (inv2 \Xf) the color is that relative to dynamics A2 (A1).
(iii) Around the origin the solution of OP (HA) coincides with the solution de-

scribed in Remark 5.1, relative to the case of invi = X for i = 1, 2.

From the above table we deduce that there exists a finite optimal solution for

any initial hybrid state (i0, x0) ∈ X \Xf of the HA; moreover, if (i0, x0) ∈ Xf

the optimal solution of HA uses dynamics A3 for the minimum time required
to leave Xf ; from then on the optimal solution of HA is used. This can be
viewed by the simulations depicted in Figure 8(a). The optimal cost from the
point (i0 = 1, x0 = [−1 0]′) is J = 196.6. For completeness also the index
trajectory i(k) is reported in Figure 8(b).

The total computational time (Matlab 7, on an Intel Pentium 4 with 2 GHz
and 256 Mb RAM) for constructing the table in Figure 7 is about 40 hours.
This time is big, because a very dense space discretization was considered
(approximately 2 × 103 points). It is important, however, to point out that
this computational effort is spent off-line. The on-line part of the procedure
consists in measuring the hybrid state (i(k), x(k)) and comparing its value
with the switching table to decide the optimal strategy.

6 Conclusion

We addressed the problem of designing a feedback control law for a discrete
time hybrid automaton HA. We showed that this law can be designed so
that the system’s behavior satisfies two levels of specifications. The low level
specification prescribes liveness and safety conditions for the HA. We showed
that the action of the low-level controller can be implemented restricting the
invariants of HA. The high level specification deals with the optimization of
the trajectories: within the degree of freedom left by the low level task, for
a given initial state the high-level task finds the evolution that minimizes
a given performance index. The robustness of the procedure has also been
discussed. One perspective of interest for future developments is to provide
structural conditions of the HA that guarantee the existence of admissible
optimal control laws.

References

[1] R. Alur and D.L. Dill. A theory of timed automata. In Theoretical
Computer Science, 1994.

[2] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective
synthesis of switching controllers for linear systems. Proceedings of the
IEEE, 88(7), 2000.

[3] P.E. Caines, R. Greiner, and S.Wang. Dynamical logic observers for finite
automata. In Proceedings of the 27th Conference on Decision and Control,
pages 226–233, Austin, Texas, 1988.

[4] D. Corona, A. Giua, and C. Seatzu. Optimal control of hybrid automata:

an application to the design of a semiactive suspension. Control Engi-
neering Practice, 12:1305–1318, 2004.

[5] D. Corona, A. Giua, and C. Seatzu. Optimal feedback switching laws for
autonomous hybrid automata. In Proc. IEEE Int. Sym. on Intelligent
Control, Taipei, Taiwan, 2004.

[6] D. Corona, A. Giua, and C. Seatzu. Stabilization of switched system via
optimal control. In Proceedings of 16th IFAC World Congress, Praga,
Czech Republic, 2005.

[7] D. Corona, C. Seatzu, A. Giua, D. Gromov, E. Mayer, and J. Raisch. Op-
timal hybrid control for switched affine systems under safety and liveness
constraints. In Proceedings of CACSD’05, Taipei, Taiwan, 2004.

[8] J.E.R. Cury, B.H. Krogh, and T. Niinomi. Synthesis of supervisory con-
trollers for hybrid systems based on approximating automata. IEEE
Transactions on Automatic Control, 43(4):564 – 568, April 1998.

[9] D. Gromov, E. Mayer, J. Raisch, D. Corona, C. Seatzu, and A. Guia. Op-
timal control of discrete time hybrid automata under safety and liveness
constraints. In ISIC, Limassol, Cyprus, June 2005.

[10] S. Hedlund and A. Rantzer. Convex dynamic programming for hybrid
systems. IEEE Trans. Automatic Control, 47(9):1536–1540, September
2002.

[11] T. Moor and J. Raisch. Supervisory control of hybrid systems within a
behavioural framework. Systems and control letters, 38:157–166, 1999.
Special issue on Hybrid Control Systems.

[12] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the
description and analysis of hybrid systems. In Hybrid Systems, LNCS
736, Springer Verlag, 1993.

[13] Cüneyt M. Özveren and Allan S. Willsky. Observability of discrete event
dynamic systems. IEEE Trans. Automatic Control, 35(7):797 – 806, 1990.

[14] B. Piccoli. Necessary conditions for hybrid optimization. In Proc. 38th
IEEE Conf. on Decision and Control, Phoenix, Arizona USA, December
1999.

[15] J. Raisch. Discrete abstractions of continuous systems – an input/output
point of view. Mathematical and Computer Modelling of Dynamical Sys-
tems, 6(1):6 – 29, 2000. Special issue on Discrete Event Models of con-
tinuous systems.

[16] J. Raisch and S. O’Young. Discrete approximation and supervisory con-
trol of continuous systems. IEEE Transactions on Automatic Control,
43(4):569–573, 1998.

[17] P.J. Ramadge and W.M. Wonham. The control of discrete event systems.
Proc. IEEE, Special Issue on Discrete Event Dynamic Systems, 77(1):81–
98, 1989.

[18] P. Riedinger, F. Kratz, C. Iung, and C. Zanne. Linear quadratic opti-
mization for hybrid systems. In Proc. 38th IEEE Conf. on Decision and
Control, pages 3059–3064, Phoenix, USA, December 1999.

[19] J. Schröder. Modelling, State observation and Diagnosis of Quantised

Systems. Springer-Verlag, 2002.
[20] C. Seatzu, D. Corona, A. Giua, and A. Bemporad. Optimal control of

continuous-time switched affine systems. IEEE Transactions on Auto-
matic Control, to appear, 2005.

[21] M.S. Shaikh and P.E. Caines. On the optimal control of hybrid systems:
analysis and algorithms for traiectory and scheduled optimization. pages
2144–2149, Hawaii, USA, December 2003.

[22] H.J. Sussmann. A maximum principle for hybrid optimal control prob-
lems. In Proc. 38th IEEE Conf. on Decision and Control, pages 425–430,
Phoenix, USA, December 1999.

[23] J.C. Willems. Models for dynamics. Dynamics reported, 2, 1989.
[24] X. Xu and P.J. Antsaklis. An approach to switched systems optimal

control based on parameterization of the switching instants. In Proc.
IFAC World Congress, Barcelona, Spain, 2002.

[25] X. Xu and P.J. Antsaklis. Results and perspectives on computational
methods for optimal control of switched systems. In Hybrid Systems,
Computation and Control, Prague, Czech Republic, 2003.

Appendix: Proof of Proposition 4.7

Let us first introduce some preliminary results.

Property 6.1 Let N, N ′ ∈ N. If N < N ′ and the switched system evolves
along an optimal trajectory, then for any continuous initial state x0, and for
all i, j ∈ L,

+∞ > V ∗
N(i, x0) ≥ V ∗

N ′(j, x0).

Proof. We first observe that by Assumptions 4.1 and 4.2 V ∗
N(i, x0) is finite

for any N ≥ 1. In fact, regardless of the value of the initial dynamics i and
the continuous state x0, we can always switch to the stable dynamics whose
cost to infinity is finite. Now, we prove the second inequality by contradiction.
Assume that ∃ j ∈ L such that V ∗

N ′(j, x0) > V ∗
N(i, x0). Then it is obvious that

the same evolution that generates V ∗
N(i, x0) is also admissible for (11) starting

from (j, x0) when a larger value N ′ of switches is allowed (it is sufficient to
switch immediately from mode j to mode i). This leads to a contradiction. ¤

Proposition 6.2 Given a continuous initial state x0, for any ε′ > 0, there
exists N̄ = N̄(x0) ∈ N such that for all N > N̄ , V ∗

N(i, x0)− V ∗
N̄ (j, x0) < ε′ for

all i, j ∈ L.

Proof. By definition V ∗
N(i, x0) ≥ 0 for all i ∈ L, hence V ∗

N is a lower bounded
non-increasing sequence (by Property 6.1). By the Axiom of Completeness it
converges in R, hence it is a Cauchy sequence. ¤

Now, the statement of Proposition 4.7 can be proved.

We first observe that by Assumption 4.6 V ∗
N(i, x0) is lower bounded by a

strictly positive number. Moreover, the optimal costs are quadratic functions of
x0, i.e., if x0 = λy0, then V ∗

N(i, λy0) = λ2V ∗
N(i, y0). Finally, by Proposition 6.2

∀ y0 and ∀ ε′ > 0, ∃ N̄(y0) such that ∀ N > N̄(y0), V ∗
N(i, y0)−V ∗

N̄ (j, y0) < ε′.
Hence if we define

N̄ = max
y0 : ||y0||=1

N̄(y0) ⇒
V ∗

N(i, x0)− V ∗
N̄ (j, x0)

V ∗
N(i, x0)

=
λ2[V ∗

N(i, y0)− V ∗
N̄ (j, y0)]

λ2V ∗
N(i, y0)

≤ ε′

min
y0 :||y0||=1

V ∗
N(i, y0)

= ε.

¤

