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Abstract

In this paper we use Colored Petri Nets (CPN) to model the dynamics of a railway
system: places represent tracks and stations, tokens are trains. Using digraph tools, deadlock
situations are characterized and a strategy is established to define off-line a set of constraints
that prevent deadlocks. We show that these constraints limit the weighted sum of colored
tokens in subsets of places. In particular, we extend the notion of Generalized Mutual
Exclusion Constraints (GMEC) to CPN and we show that the above constraints, as well as
the collision avoidance constraints, can be written as colored GMEC.

To solve this problem, we extend the theory of monitor places for place/transition nets
to the case of CPN and we show that these constraints can be enforced by a colored monitor
place that minimally restricts the behaviour of the closed-loop system.

Keywords: Colored Petri nets, generalized mutual exclusion constraints, monitor places, rail-
way networks, deadlock prevention.
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1 Introduction

Railways form one of the most important part of transportation systems and their constantly
improving safety record, makes them a very attractive option compared with other modes of
transport [16, 18, 24, 25, 27]. As a result, the overall complexity of railway network systems
(RNS) increases, and hence greater demands are placed on the control logic of these systems
[18].

Consider, to mention just one example, the case of the European Union. As the EU is opening
to counties of Eastern Europe, it is also making substantial investments to revitalize the railways
and plans to achieve the following objectives by 2020 [4]:

• for rail to increase its market share of passenger traffic from 6% to 10% and of goods traffic
from 8% to 15%;

• a trebling of manpower productivity on the railways;

• a 50% gain in energy efficiency;

• a 50% reduction in emissions of pollutants;

• an increase in infrastructure capacity commensurate with traffic targets.

The specification, analysis and implementation of control logic for RNS is an important activity
because its failure can lead to railway accidents and loss of human life [26]. At present time, this
activity is even more important because railway networks are often large, the speed of trains
and traffic density is increasing, and activities within networks are taking place concurrently
and at geographically different locations [18, 24].

Very different approaches have been used to design efficient controllers for RNS. For a detailed
treatment of the subject, the interested reader may consult the literature [16, 18, 24, 25, 27]
and follow links provided on Internet sites [2, 3]. In [5] railway networks are modelled as
discrete event systems that define a control design problem leading to a non-convex nonlinear
optimization problem.

Note that the control of a railway network can be divided into two parts: logical control and
performance control. The first one deals with structural problems, and imposes the satisfaction of
a series of safeness constraints (collision avoidance) and liveness constraints (deadlock freeness).
The second one, is related to the operation of the network and is concerned with problems such
as scheduling both the departures and the stops, so as to optimize the efficiency of the net.

In this paper the attention is uniquely devoted to the design of control logic for logical control.
The contribution of this paper is threefold.

1. We discuss how a RNS can be modelled with a particular class of Petri nets, called Colored
Petri nets (CPN) [19, 20], that provide a powerful framework to the analysis and the
definition of safeness constraints. In CPN, attributes (called colors) are associated to
tokens, so that different activities can be assigned to tokens of different types, within the
same structure of the net. The main advantage of CPN with respect to (wrt) other discrete
event models, such as place/transition nets and Finite State Machines (FSM), is that this
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model carries the relative simplicity and graphical representation of the other approaches,
along with greater support for concurrency.

In [12] the railway network is modelled by a Petri net (PN) and deadlock avoidance con-
straints are expressed as Generalized Mutual Exclusion Constraints (GMEC). However, the
controller does not distinguish among the routes assigned to the trains, and when forks
and joins are present in the network the marking does not describe completely the system
state.

This paper overcomes this problem by using CPN. More precisely, places represent tracks
and stations, while transitions are the control points where the train movements are en-
abled or inhibited. The trains travelling in the system are represented by colored tokens
and their color is the assigned path.

2. In this paper we consider two types of constraints, namely collision prevention constraints
and deadlock prevention constraints.

Collision prevention constraints originates from the fact that all tracks and stations have
a finite capacity, thus we have to ensure that each resource does not accomodate a number
of trains that is greater than the corresponding capacity.

Deadlock prevention constraints ensure that no deadlock situation may occur. To char-
acterize deadlock situations we use some results obtained in the field of Automated Man-
ufacturing Systems where deadlock has been extensively studied [6, 7, 8, 17, 28]. Simple
and efficient deadlock avoidance policies exist in the related literature (e.g., [1]).

The aim of this paper is that of proposing a deadlock control function that has to be
applied to particular systems in which, for the sake of security, the decision about the
resource acquisition can not be taken in real time, by means of a deadlock avoidance
policy. Hence, we characterize deadlock states by using digraph tools that describe the
interactions between trains and resources (i.e., tracks and stations). In addition, a deadlock
prevention strategy defines off-line the rules to prevent deadlock in advance.

We observe that both collision and deadlock prevention constraints have a particular struc-
ture, namely, they limit the weighted sum of colored tokens in subsets of places. To this aim
we extend the notion of GMEC to the case of CPN and we show that all these constraints
can be written as colored GMEC.

3. The third contribution of this paper consists in showing that the control approach based
on the construction of monitor places presented in [11] for place/transition nets can be
extended to the more general case of CPN [19]. In particular, we show that when all
transitions are controllable and observable, a colored GMEC can still be enforced by
adding a colored monitor place pc. We also provide a systematic procedure to compute the
incidence matrix defining such a monitor place, as well as its initial marking. Moreover,
we show that under the assumption that all transitions are controllable and observable,
the monitor place minimally restricts the behavior of the closed-loop system, in the sense
that it prevents only those transition firings that yield forbidden markings.

Finally we apply these results to design a controller for the considered RNS.

Note that the supervisory design approach based on colored GMEC and monitor places can
be easily extended to the case of transitions that are uncontrollable and/or unobservable wrt
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certain colors, i.e., it can be easily extended to the case in which the monitor designed for a given
GMEC is not admissible (it either disables a transition wrt an uncontrollable color, or observes
the firing of a transition wrt an unobservable color). In particular, in [12] we showed that in
such a case one can design a less permissive, but admissible monitor, extending to the case of
colored nets the parametrization and the tabular procedure proposed by Moody and Antsaklis
for PN [22]. This point is not dealt here for sake of brevity. The interested reader is referred to
[12] for a comprehensive discussion of this approach.

RNS are just one of the many application fields in which it is much more convenient to deal with
a CPN model rather than a PN model. In all these cases an alternative to our procedure would
be that of unfolding the net, converting the colored GMEC into a set of uncolored GMEC, then
compute the admissible monitor places, and finally convert them into a single colored monitor
place. Our approach provides a systematic procedure to compute the final colored monitor within
the framework of CPN. Furthermore there is some computational advantage in our procedure:
to compute a monitor for a colored GMEC, we do not need to compute the unfolding of the
whole CPN, but we only consider the incidence matrix of the subnet composed by the places in
the support of the GMEC.

Finally, the proposed approach is a first step towards the formulation of a procedure for the
definition of GMEC and monitor places for arbitrary high-level PN.

The paper is structured as follows. In Section 2 we provide the formal definition of CPN based on
the notion of multisets and on the matrix representation of multisets presented in the Appendix.
The notion of GMEC is extended to the case of CPN in Section 3. The theory of monitors for
CPN is proposed in Section 4. In Section 5 we define the considered RNS and we show how
it can be easily modeled as a CPN. In this section we also introduce the collision constraints
and we show how they can be imposed using monitors. The deadlock prevention policy is then
derived in Section 6, based on the theory of digraphs. Conclusions are finally drawn in Section 7.

The paper contains 3 appendices. Appendix A recall the notion of multiset. Appendix B is a
list of abbreviations. Appendix C is a list of symbols used in the paper.

Note that the main results of this paper have also been presented in two conference papers
[9, 10].

2 Colored Petri nets

A Colored Petri Net (CPN) is a bipartite directed graph represented by a quintuple N = (P, T,

Co, Pre, Post) where P is the set of places, T is the set of transitions, Co : P ∪ T → Cl is a
color function that associates to each element in P ∪ T a non empty ordered set of colors in the
set of possible colors Cl.
Therefore, for all pi ∈ P , Co(pi) = {ai,1, ai,2, . . . , ai,ui} ⊆ Cl is the ordered set of possible colors
of tokens in pi, and ui is the number of possible colors of tokens in pi. Analogously, for all
tj ∈ T , Co(tj) = {bj,1, bj,2, . . . , bj,vj} ⊆ Cl is the ordered set of possible occurrence colors of tj ,
and vj is the number of possible occurrence colors in tj .

In the following we assume that m = |P| and n = |T|.
Matrices Pre and Post are the pre-incidence and the post-incidence m×n dimensional matrices
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respectively. In particular, each element Pre(pi, tj) is a mapping from the set of occurrence
colors of tj to a non negative multiset1 over the set of colors of pi, namely, Pre(pi, tj) : Co(tj) →
N (Co(pi)), for i = 1, . . . , m and j = 1, . . . , n. In the following we denote Pre(pi, tj) as a matrix
of ui × vj non negative integers, whose generic element Pre(pi, tj)(h, k) is equal to the weight
of the arc from place pi wrt color ai,h to transition tj wrt color bj,k.

Analogously, Post(pi, tj) : Co(tj) → N (Co(pi)), for i = 1, . . . , m and j = 1, . . . , n, and
we denote Post(pi, tj) as a matrix of ui × vj non negative integers. The generic element
Post(pi, tj)(h, k) is equal to the weight of the arc from transition tj wrt color bj,k to place
pi wrt color ai,h.

The incidence matrix C is an m × n matrix, whose generic element C(pi, tj) : Co(tj) →
Z(Co(pi)), for i = 1, . . . , m and j = 1, . . . n. In particular C(pi, tj) = Post(pi, tj)−Pre(pi, tj).

For each place pi ∈ P , we define the marking mi of pi as a non negative multiset over Co(pi).
The mapping mi : Co(pi) → N associates to each possible token color in pi a non negative
integer representing the number of tokens of that color that is contained in place pi, and

mi =
∑

d∈Co(pi)

mi(d)⊗ d.

In the following we denote mi as a column vector of ui non negative integers, whose h-th
component mi(h) is equal to the number of tokens of color ai,h that are contained in pi.

Finally, the marking M of a CPN is an m-dimensional column vector of multisets, i.e.,

M =




m1

...
mm


 .

A CPN system 〈N,M0〉 is a CPN N with initial marking M0.

A transition tj ∈ T is enabled wrt color bj,k at a marking M if and only if for each place pi ∈ P

and for all h = 1, . . . , ui, we have mi(h) ≥ Pre(pi, tj)(h, k).

If an enabled transition tj fires at M wrt color bj,k, then we get a new marking M ′ where, for
all pi ∈ P and for all h = 1, . . . , ui, m′

i(h) = mi(h) + Post(pi, tj)(h, k)− Pre(pi, tj)(h, k).

We will write M [tj(k)〉M ′ to denote that t fires at M wrt color bj,k yielding M ′.

A firing sequence from M0 is a (possibly empty) sequence of transitions, each one firing wrt a
given color,

σ = tj1(kj1)tj2(kj2) . . . tjr(kjr)

such that
M0[tj1(kj1)〉M1[tj2(kj2)〉M2 . . . tjr(kjr)〉M r.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0[σ〉M .

Given a system 〈N,M0〉, the set of firing sequences (also called language of the net) is denoted
L(N, M0) and the set of reachable markings (also called the reachability set of the colored net)
is denoted R(N, M0).

1In Appendix A we recall all the definitions and properties concerning multisets that are useful in the paper.
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If the marking M is reachable in 〈N,M0〉 by firing a sequence σ, then the following state
equation is satisfied:

M = M0 + C ◦Σ

where
Σ =

[
σ1 . . . σn

]T

is a vector of non negative multisets, and σj ∈ N (Co(tj)), for j = 1, . . . , n is a multiset that
specifies how many times transition tj has fired wrt each of its colors. The vector Σ is called
the firing count vector of the firing sequence σ.

Finally, let X be an m-dimensional vector of multisets where for all i = 1, . . . , m, xi ∈
N (Co(pi)). Let P ′ ⊆ P . The projection of X on P ′ is the restriction of X to P ′ and will
be denoted X ↑P ′ . This definition is extended in the usual way to the projection of a set of
vectors X , i.e., X ↑P ′= {X ↑P ′ | X ∈ X}.
Example 2.1. Let us consider the CPN in Figure 1.a apart from place pc and all connected
arcs. The set of colors is Cl = {c1, c2, c3}. Place p1 may only contain tokens of colors c2 and c3,
while place p2 may contain tokens of any color in Cl. Finally, transitions t1 and t3 may only fire
wrt to colors c1 and c2, while transition t2 may fire wrt any color in Cl.
Given the structure of the net, the only non null matrices Pre and Post are those reported
Figure 1.a using the matrix notation, or equivalently,

Post(p1, t1)(c1) = 2⊗ c2 + 1⊗ c3,

Post(p1, t1)(c2) = 1⊗ c2 + 2⊗ c3,

Pre(p1, t2)(c1) = 1⊗ c2 + 1⊗ c3,

Pre(p1, t2)(c2) = 2⊗ c2 + 1⊗ c3,

Pre(p1, t2)(c3) = 1⊗ c2 + 2⊗ c3,

Post(p2, t2)(c1) = 1⊗ c1 + 1⊗ c3,

Post(p2, t2)(c2) = 2⊗ c2,

Post(p2, t2)(c3) = 1⊗ c1 + 1⊗ c2 + 1⊗ c3,

Pre(p2, t3)(c1) = 1⊗ c1 + 2⊗ c2,

Pre(p2, t3)(c2) = 2⊗ c1 + 1⊗ c2 + 1⊗ c3.

Assuming that no token is initially contained in the net, i.e.,

M0 =
[

ε ε
]T

,

if t1 fires wrt to c1 then we reach a new marking

M1 =
[

2⊗ c2 + 1⊗ c3 ε
]T

.

Now, if t2 fires wrt c2, then we reach a new marking

M2 =
[

ε 2⊗ c2

]T
.

The firing vector associated to the whole sequence σ = t1(c1)t2(c2) is

Σ =
[

1⊗ c1 1⊗ c2 ε
]T

.

¥
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p1 t2

{c1,c2} {c2,c3} {c1,c2,c3}

t1






21
12







211
121

p2 t3

{c1,c2,c3} {c1,c2}













101
120
101













10
12
21

pc













96
42
31













63
66
12













000
462
020













112
000
101

{z1,z2,z3}

unfolding

(a)

pc,1

2
t1,1

t1,2

2

2

2

2 2

2

t2,1

t2,2

t2,3

t3,1

t3,2

p1,2

p1,3

p2,1

p2,2

p2,3

2
2

3

pc,2

6

6 2

6

4 2 4

pc,3

6

3

2

6

9

(b)

Figure 1: The closed-loop colored Petri net of Example 1 and the unfolded closed-loop net.
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3 GMEC in colored Petri nets

In this section we extend the notion of GMEC for place/transition nets to the case of CPN.
In fact, as it will be clear in the next session both collision and deadlock avoidance constraints
can be written in the form of a colored GMEC. Then, in Section 4 we will show that when all
transitions are controllable and observable, a GMEC can still be enforced by adding a monitor
place pc, and we provide a systematic procedure to compute the incidence matrix defining such
a monitor place, as well as its initial marking.

3.1 GMEC in P/T nets

In the context of place/transition nets, the problem of designing a supervisory controller that
restricts the open-loop reachability set R(Np, Mp,0) of a plant 〈Np, Mp,0〉, to a closed-loop
reachability set L∩R(Np, Mp,0), where L ⊆ Nm is a given set of legal markings, has been exten-
sively investigated by many authors [15, 23, 30, 31]. Of particular interest in many applications
are those control problems where the set of legal markings L is expressed by a set of nc linear
inequality constraints called Generalized Mutual Exclusion Constraints [11]. Each GMEC is a
couple (w, k) where w : P → Z is a m × 1 weight vector and k ∈ Z, and defines a set of legal
markings: L = M(w, k) = {M ∈ Nm | wT M ≤ k}.
A controlling agent, called supervisor, must ensure that only legal markings are reached. If all
transitions are controllable and observable, the maximally permissive supervisor for a GMEC
takes the form of a single monitor place pc. If Cp is the incidence matrix of the open-loop
plant and Mp,0 is its initial marking, the monitor that enforces (w, k) has incidence matrix
Cc = −wT Cp and initial marking mc,0 = k − wT Mp,0. The controller exists iff the initial
marking Mp,0 is a legal marking, i.e., k −wT Mp,0 ≥ 0. By definition a monitor is loop-free2,
thus its incidence matrix Cc uniquely defines the pre- and post- incidence matrices P rec =
max{−Cc,0} and P ostc = max{Cc,0}.

3.2 GMEC in CPN

Now, we introduce the notion of colored GMEC: we show that it may represent in a compact
way several constraints, and can be unfolded into a set of uncolored GMEC.

Definition 3.1. A GMEC is a couple (W , k) where

W =
[

w1 · · · wm

]
, k ∈ Z(D), (1)

for all i, wi : Co(pi) → Z(D), and D is a set of colors different from Co(pi), i = 1, · · · ,m. Thus
W can also be represented by a matrix with |D| rows and

∑m
i=1 |Co(pi)| columns.

2A transition cannot be at the same time input and output transition of a monitor.
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The set of legal markings defined by (W ,k) can be written as

M(W , k) =





M =




m1
...

mm




∣∣∣∣∣∣∣
mi ∈ N (Co(pi)),

W ◦M ,
m∑

i=1

wi ◦mi ≤ k

}
.

(2)

¥

Note that here we are extending the ◦ operator to the case of scalar product of vectors of
multisets.

Example 3.2. Let us consider again the CPN in Figure 1.a apart from place pc and all connected
arcs. Assume D = {z1, z2, z3}. Moreover, let

w1 =
[

w1(c2) w1(c3)
]

w1(c1) = 1⊗ z1 + 2⊗ z2,

w1(c3) = 2⊗ z2 + 3⊗ z3,

w2 =
[

w2(c1) w2(c2) w2(c3)
]

w2(c1) = 1⊗ z1 + 2⊗ z2 + 2⊗ z3,

w2(c2) = 2⊗ z3,

w2(c3) = 1⊗ z1 + 3⊗ z3.

k = 3⊗ z1 + 5⊗ z2 + 6⊗ z3.

Using the matrix notation we can write:

w1 =

c2 c3


1 0
2 2
0 3




z1

z2

z3

w2 =

c1 c2 c3


1 0 1
2 0 0
2 2 3




z1

z2

z3

and
k =

[
3 5 6

]T
.

Therefore,

W ◦M ,
m∑

i=1

wi ◦mi =




1 0
2 2
0 3


 ·

[
m1(c2)
m1(c3)

]
+




1 0 1
2 0 0
2 2 3


 ·




m2(c1)
m2(c2)
m2(c3)


 ≤




3
5
6




and

M(W ,k) = { M =

[
m1

m2

]
| mi ∈ N (Co(pi)),

m1(c2) + m2(c1) + m2(c3) ≤ 3,

2m1(c2) + 2m1(c3) + 2m2(c1) ≤ 5
3m1(c3) + 2m2(c1) + 2m2(c2) + 3m2(c3) ≤ 6} .
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In the next section we show how to compute a monitor place pc that can be added to the net in
order to enforce the given specification. ¥

4 Monitors for colored Petri nets

In this section we show how the results presented in [11] for place/transition nets can be extended
to the more general case of CPN. In particular, we show that a GMEC can still be enforced
by adding a monitor place pc, and we provide a systematic procedure to compute the incidence
matrix defining such a monitor place, as well as its initial marking.

Note that in this section we assume that all transitions are controllable and observable. This
implies that the firing of all transitions with respect to any color may be prevented and observed
by any external agent.

Definition 4.1. Given a CPN system 〈Np, Mp,0〉, with Np = (P, T,Co,Prep, Postp), and a
GMEC (W ,k), the monitor that enforces this constraint is a new place pc with Co(pc) = D, to be
added to Np. The resulting system is denoted 〈N,M0〉, with N = (P ∪{pc}, T, Co,Pre, Post).
Then N will have incidence matrix

C =

[
Cp

Cc

]
, where Cc = −W ◦Cp. (3)

We are assuming that there are no self-loops containing pc in N , hence Pre and Post may be
uniquely determined by C. This means that if

C(pi, tj) =
vj∑

k=1

ck ⊗ dk

then

Post(pi, tj) =
vj∑

k=1

max{ck, 0} ⊗ dk, Pre(pi, tj) =
vj∑

k=1

max{−ck, 0} ⊗ dk.

The initial marking of 〈N, M0〉 is

M0 =

[
Mp,0

mc,0

]
, where mc,0 = k −W ◦Mp,0. (4)

We assume that the initial marking Mp,0 of the system satisfies the constraint (W ,k). ¥

In the case of controllable and observable transitions we can prove the following result.

Theorem 4.2 ([10]). Let 〈Np, Mp,0〉 be a CPN system, and (W , k) a colored GMEC. Let
〈N,M0〉 be the system with the addition of the monitor place pc.

(1) The monitor place pc enforces the GMEC (W , k) when included in the closed-loop system
〈N,M0〉.

(2) The monitor place pc minimally restricts the behavior of the closed-loop system 〈N, M0〉,
in the sense that it prevents only transition firings that yield forbidden markings.
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Example 4.3. Let us consider again the CPN in Figure 1.a apart from place pc and all connected
arcs. The incidence matrix is

Cp =

[
Post(p1, t1) −Pre(p1, t2) 0

0 Post(p2, t2) −Pre(p2, t3)

]

where Post(p1, t1), Pre(p1, t2), Post(p2, t2) and Pre(p2, t3) are shown in Figure 1.a using the
matrix notation introduced in Appendix.

Assume that we want to enforce the GMEC (W ,k) considered in the previous Example 3.2.

This constraint can be enforced by adding a monitor place pc whose incidence matrix Cc is

Cc =
[

Cc(pc, t1) Cc(pc, t2) Cc(pc, t3)
]

= −W ◦Cp

= −
[

w1 w2

]
◦

[
Post(p1, t1) −Pre(p1, t2) 0

0 Post(p2, t2) −Pre(p2, t3)

]

=




−(w1 ◦ Post(p1, t1) )T

( w1 ◦ Pre(p1, t2)−w2 ◦ Post(p2, t2) )T

(w2 ◦ Pre(p2, t3) )T




T

=

c1 c2 c1 c2 c3 c1 c2

−2 11 −1 2 −1 1 3
−6 −6 2 6 4 2 4
−3 −6 −2 −1 −1 6 9




z1

z2

z3

The resulting closed-loop net is reported in Figure 1.a. For completeness in the same figure we
have also reported the unfolding of the closed-loop net N . Note that an uncolored Petri net is a
CPN where for all p ∈ P and for all t ∈ T , Co(p) = Co(t) = {•} where • is the usual uncolored
token.

In particular, we used the following notation. Different colors and filling patterns have been
used to denote the open-loop net and the monitor places. More precisely, black has been used
to represent the open-loop net, while (squared) blue, r(horizontally striped) red and (vertically
striped) green denote the monitor places (pc,1, pc,2, and pc,3), and all arcs connected to them,
relative to the constraints associated to colors z1, z2 and z3, respectively. Moreover, the marking
of the generic place pi,j denotes the number of tokens of color cj that are contained in the place
pi of the original CPN. Finally, the firing of transition ti,j corresponds to the firing of transition
ti wrt color cj . If we order the set of places and transitions of the unfolded open-loop net so
that its marking M is equal to

M =
[

m1,2 m1,3 m2,1 m2,2 m2,3

]T

and the set of transitions is

T = {t1,1, t1,2, t2,1, t2,2, t2,3, t3,1, t3,2},
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the incidence matrix of the unfolded open-loop net is equal to

C =




2 1 −1 −2 −1 0 0
1 2 −1 −1 −2 0 0
0 0 1 0 1 −1 −2
0 0 0 2 1 −2 −1
0 0 1 0 1 0 −1




.

By looking at the definition of the set of consistent markings, it is easy to write the constraint
matrix W , i.e.,

W =




1 2 0
0 2 3
1 2 2
0 0 2
1 0 3




.

Therefore the incidence matrix of the controller of the unfolded net is

Cc = −W
T ·C =



−2 −1 −1 2 −1 1 3
−6 −6 2 6 4 2 4
−3 −6 −2 −1 −1 6 9




in accordance with the results obtained using the colored Petri net.

Now, assume that the initial marking of the open-loop colored net is

Mp,0 =

[
1⊗ c1

1⊗ c1 + 1⊗ c3

]

that satisfies the GMEC. In such a case the initial marking of the monitor place should be taken
equal to

mc,0 = k −W ◦Mp,0 = k −
3∑

i=1

wi ◦mp,0,i

= 1⊗ z1 + 3⊗ z2 + 1⊗ z3.

Analogously, if we consider the unfolded net, using the well known theory of the GMECs, we
find out that the initial marking of the monitor places is mc,1 = mc,3 = 1 and mc,2 = 3. ¥

5 The railway network system

A RNS consists of three fundamental elements: railway lines, stations, vehicles (i.e., trains,
single engines, etc.) travelling over these lines.

Let us consider the set V = {v1, · · · , vNV
} that collects all the vehicles moving over the lines and

the stations. The railway lines are divided into several tracks and each track can be occupied
by only one vehicle at a time. In our framework, each station is described by a resource ri, for
i = 1, · · · , NS , where NS is the number of stations. Moreover, each track of the RNS is viewed
as a resource that vehicles can acquire and it is denoted by ri, for i = NS + 1, · · · , NS + NT ,
where NT is the overall number of tracks. Since each station is composed of one or more tracks,
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r6
r7

r8

r9

r10

Figure 2: The railway network of Example 5.1.

and each track can accommodate only one train at a time, a finite capacity C(ri) ≥ 1 is assigned
to each station ri, for i = 1, · · · , NS . Moreover, each track ri has unit capacity, i.e., C(ri) = 1
for all i = NS + 1, · · · , NS + NT .

We also assume that the terminal stations of the train paths are connected to a ”virtual” docking
station r0. The docking station can accommodate all the trains in the system, i.e., C(r0) = ∞.

Finally, we generically call resources or nodes the stations and the tracks. Therefore, the set
R = {ri, i = 0, · · · , NS + NT } denotes the resource set of the system.

Other basic elements of the RNS are the control points where the trains are authorized to enter
a generic node by the real-time traffic controller. In addition, a path (or route) πk is assigned
to each train vk ∈ V travelling in the system: each vehicle starts its travel from a station; it
reaches a destination station and finally the docking station where a new path can be assigned
to it. More precisely, each path is described by the following sequence of resources that ends at
the docking station: πk = (rk1 , · · · , rkNk

, r0). The set A collects all the possible paths planned
in the system.

Example 5.1. Let us consider the railway composed by five stations ri, for i = 1, · · · , 5, depicted
in Figure 2.

The first station is a three track station, while the remaining ones have only two tracks, i.e.,
C(r1) = 3 and C(ri) = 2 for i = 2, 3, 4, 5.

All intermediate tracks ri, for i = 6, 9, 10, are single tracks, apart from r7 and r8 that represent
two track segments. ¥

5.1 The CPN model of the RNS

In this paper we use CPN to model RNS. In particular, places represent resources (stations and
tracks), while the firing of transitions represent the flow of vehicles into the system.

The generic place pi ∈ P models resource ri ∈ R and there is a one to one relationship between
resources and places, thus in the following we always refer to P as R (and to pi as ri). Moreover,
if there exists a link that goes from node rh to node ri, then in the CPN we introduce a transition
tj such that tj ∈ rh

• and tj ∈• ri
3. Note that each transition represents a control point where

the controller can stop the trains or can authorize a train to move on. Thus all transitions in
the CPN model are assumed to be both controllable and observable.

3Given a node x ∈ P ∪ T we denote as •x and x• the preset and the postset of x, respectively.
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Figure 3: The CPN model of the RNS in Figure 2.

A colored token in a place represents a vehicle in a resource. The color of each token specifies
the vehicle vk or, equivalently, the routing πk assigned to the train. As an example, πk =
(rh, · · · , rq, r0) can be the path (i.e. the sequence of resources) assigned to the train vk. Hence,
for each ri ∈ R we have Co(ri) = {πk | πk contains ri}, and for each tj ∈ T such that tj ∈ rh

•

and tj ∈• ri, we have Co(tj) = {πk | πk contains rh and ri in strict succession order}.

Example 5.2. Let us consider the RNS described in Example 5.1. The corresponding CPN
model is reported in Figure 3 where place r0 represents the docking station.

Let us assume that four trains are travelling in the system, namely, v1, v2, v3 and v4. Moreover,
let π1 = (r1, r6, r2, r7, r3, r9, r4, r0), π2 = (r4, r9, r3, r8, r2, r6, r1, r0), π3 = (r1, r6, r2, r10, r5, r0),
π4 = (r5, r10, r2, r6, r1, r0).

Therefore, by definition Co(r1) = {π1, π2, π3, π4} for i = 0, 1, 2, 6, Co(ri) = {π1, π2} for i =
3, 4, 9, Co(r7) = {π1}, Co(r8) = {π2}, Co(ri) = {π3, π4} for i = 5, 10, and Co(tj) = {π1, π3} for
j = 1, 2, 19, Co(tj) = {π2, π4} for j = 13, 14, 22, Co(tj) = {π3} for j = 3, 4, 17, Co(tj) = {π4}
for j = 15, 16, 20, Co(tj) = {π1} for j = 5, 6, 7, 8, 18, Co(tj) = {π2} for j = 9, 10, 11, 12, 21.

The pre and post-incidence matrices can be easily deduced by looking at the structure of the
net and at the above paths definition. As an example

Pre(r1, t1) = Post(r6, t13) =

π1 π3


1 0
0 0
0 1
0 0




π1

π2

π3

π4

Now, let us assume that initially trains v1 and v3 are in r1, train v2 is in r4 and train v4 is in
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r5. Thus the CPN system is initially at marking

Mp,0 =




m0,0

m1,0

m2,0

m3,0

m4,0

m5,0

m6,0
...

m10,0




=




ε

1⊗ π1 + 1⊗ π3

ε

ε

1⊗ π2

1⊗ π4

ε
...
ε




.

Using the matrix notation, each term mi,0 may be written as a column vector of dimension
|Co(ri)|. As an example,

m1,0 =




1
0
1
0




π1

π2

π3

π4

, m4,0 =

[
0
1

]
π1

π2

¥

5.2 Collision prevention constraints

In this paper we deal with the real-time traffic control of RNS whose task is that of authorizing
the movement of the trains and imposing safety constraints. Such a control can be applied to
railway tracks and to station tracks, and its main goal is that of avoiding collisions and deadlock
in all subsystems.

To ensure that each resource does not accommodate a number of trains that is greater than the
corresponding capacity, we have to introduce appropriate collision prevention constraints. More
precisely, for all ri ∈ R \ {r0}, with i = 1, · · · ,m, we have to impose that

ui∑

h=1

mi(πjh
) ≤ C(ri) (5)

where Co(ri) = {πj1 , · · · , πjui
} and ui = |Co(ri)|.

The capacity constraints may be rewritten in terms of a single GMEC (W , k), that we call
capacity GMEC. The capacity GMEC will have as color set D = {z1, · · · , zm} because we need
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m capacity constraints, and is defined as follows:

W =
[

w0 w1 · · · wm

]
,

w0 = ε

wi =

πj1 · · · πjui


0 0 0
...

...
...

0 0 0
1 1 1
0 0 0
...

...
...

0 0 0




z1
...

zi−1

zi

zi+1
...

zm

i = 1, · · · ,m

k =
[

C(r1) · · · C(rm)
]T
∈ Z(D).

(6)

The incidence matrix of the monitor place is equal to

Cc = −W ◦Cp

where Cp is the incidence matrix of the open loop net. The incidence matrix of pc has the
following structure,

Cc =
[

Cc(pc, t1) · · · Cc(pc, t15)
]
.

As an example,

Cc(pc, t1) =

π1 π3


1 1
0 0
0 0
0 0
0 0

−1 −1
0 0
0 0
0 0
0 0




z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

while all the other matrices Cc(pc, tj), j = 2, · · · , 15, are omitted here for sake of brevity.

Finally, the monitor place pc is initialized at marking

mc,0 =
[

1 2 2 1 1 1 2 2 1 1
]T

.

6 Deadlock prevention policy

The design of a deadlock prevention policy is not so easy and is the object of this section. In
particular, here we show that also deadlock prevention constraints can be written in the form
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of a colored GMEC.

However, in order to derive an appropriate deadlock prevention policy we first need to provide
some background on digraph theory. Then we show how some theoretical results firstly obtained
in the context of deadlock avoidance in Automated Manufacturing Systems [7, 8], can be used
here to derive a deadlock prevention policy.

6.1 Basic definitions

A digraph is a couple D = (N,E) where N = {ν1, ν2, . . . , νn} is the set of vertices and E ⊆ N×N

is the set of edges [14].

A path is a subdigraph of D composed by an alternating sequence of distinct vertices and arcs.
If D contains a path from νi to νj , then νj is said reachable from νi. Moreover, if νj is reachable
from νi and νi is reachable from νj , then the two vertices are said mutually reachable. A cycle
of D is a nontrivial path in which all vertices are distinct except the first and the last one4.

A subdigraph Dµ = (Nµ, Eµ) of D is called strong if every two vertices of Nµ are mutually
reachable. Finally, a strong component of D is a maximal strong subdigraph, i.e., a strong
subdigraph that is not contained in any other strong subdigraph of D.

6.2 Deadlock characterization

Given a CPN describing a RNS, a deadlock corresponds to a marking from which a set of enabled
transitions in the plant are indefinitely disabled by the capacity GMEC: such a marking is said
deadlock marking.

In this section we establish some necessary and sufficient conditions for deadlock occurrence
based on the analysis of the digraphs associated to a CPN. Since in this paper the main interest
is on RNS, for clearity of explanation, results will be presented with reference to a RNS, thus
we will talk of places as resources, trains as colored tokens, etc. Note however that these results
can be easily generalized to any finite colored state machine with capacity constraints and a
resource (place) that can accomodate all colored users (tokens) in the system.

Let us first introduce a relation that is based on the order in which the resources in a RNS are
used.

Definition 6.1. A resource rj immediately follows a resource ri wrt path πk if πk = (· · · , ri, rj · · · ).
This is also denoted ri Bk rj . ¥

We can now define two digraphs associated to a RNS represented by a CPN.

Definition 6.2. Given a RNS represented by a CPN Np = (R, T, Co,Pre, Post) we may
associate to it two main digraphs.

• The route digraph DR = (NR, ER) describes the paths of all the trains travelling in the
system. Each vertex in this graph represents a resource, i.e., NR = R while ER = {eij |
(∃πk ∈ A) ri Bk rj}, i.e., an edge ei,j belongs to ER if there exists a path where rj follows
ri.

4What we call cycle is sometimes called elementary cycle.
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Figure 4: Digraph DR for Example 6.3.
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Figure 5: Digraph DT (Mp) for Example 6.3.

• The transition digraph DT (Mp) = (NR, ET (Mp)), describes the interactions between
trains and resources when the actual marking is Mp. Each vertex in this graph still
represents a resource as in the route digraph, i.e., NR = R, while

ET (Mp) = {eij | (∃πk ∈ A)mi ≥ 1⊗ πk, ri Bk rj},

i.e., an edge ei,j belongs to ET (Mp) if there exists a train in resource ri at marking Mp

and rj is the next resource the train has to acquire. ¥

Obviously, the arc set of the transition digraph changes as the marking is updated.

Example 6.3. Figure 4 shows digraph DR corresponding to the system and the CPN described
in Examples 5.1 and 5.2. Each edge of DR is labelled with the name of the path to which it
correspond. Moreover, for sake of simplicity, the node r0 is repeated in Figure 4.

Assume that the four trains travelling in the system are in these positions: v1 in r6, v2 and v3 in
r2, and v4 in r10. Hence, the CPN is at marking Mp equal to m6 = 1⊗π1, m2 = 1⊗π2 +1⊗π3,
m10 = 1⊗ π4, mi = ε elsewhere.

The corresponding transition digraph DT (Mp) is shown in Figure 5. ¥

To characterize deadlock markings we also need the following definition.
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Definition 6.4. A strong component Dµ = (Nµ, Eµ) of DT (Mp) is called a Maximal-weight
Zero-outdegree Strong Component (MZSC for brevity) if the following properties hold true:

(a) Maximal-weight: all the resources from Nµ are busy, i.e., the number of tokens in each
place ri is equal to the maximal capacity of the place: |mi| = C(ri).

(b) Zero-outdegree: all the edges of DT (Mp) outgoing from vertices of Nµ belong to Eµ.

¥

Remark 6.5. Note that the node r0 corresponding to the docking station can not be in a MZSC
because it has an infinite capacity and all cycles containing it may be disregarded for deadlock
analysis.

It is possible to give a simple characterization of an MZSC in terms of resources allocated to
the trains at a given marking.

Definition 6.6. Given a strong subdigraph Dµ = (Nµ, Eµ) of DR and a marking Mp, we denote
the set of trains that occupy a resource of Nµ and require a resource of Nµ by an edge of Eµ at
the next step as

V (Mp)µ = {vk ∈ V | (∃ri, rj ∈ Nµ) mi ≥ 1⊗ πk,

ri Bk rj , ei,j ∈ Eµ}.
¥

Definition 6.7. Let Dµ = (Nµ, Eµ) be a strong subdigraph of DR. We denote

C(Nµ) =
∑

ri∈Nµ

C(ri)

the sum of the capacities of the resources in Nµ. ¥

The following result holds.

Proposition 6.8. A necessary and sufficient condition for a strong subdigraph Dµ = (Nµ, Eµ)
of DR to be an MZSC in DT (Mp) is that |V (Mp)µ| = C(Nµ).

Proof. Sufficiency derives directly from Definitions 6.4 and 6.6.

To prove necessity we observe that if Dµ is a MZSC then (by the maximal-weight condition) the
number of tokens in Nµ at Mp is equal to

∑
ri∈Nµ

|mi| =
∑

ri∈Nµ
C(ri) = C(Nµ). Furthermore,

each of these tokens correspond to a train in the set of resources Nµ that (by the zero-outdegree
condition) requires at the next step a resource in Nµ, i.e., C(Nµ) = |V (Mp)µ|. ¤

In [7] and [8] necessary and sufficient conditions for deadlock occurrence have been characterized
in terms of digraph analysis.

Proposition 6.9. A marking M = [MT
p mc]T is a deadlock marking for a CPN with capacity

constraint iff there exists at least one MZSC in DT (Mp).

Proof. The statement is a slightly different formulation of Theorem 1 from [7] in terms of net
marking rather than system state. As such, it applies to CPN modelling RNS. ¤
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From Propositions 6.8 and 6.9, the following corollary is derived.

Corollary 6.10. The marking M = [MT
p mc]T is a deadlock marking for a CPN with capacity

constraints iff there exists a strong component Dµ = (Nµ, Eµ) of DR such that |V (Mp)µ| =
C(Nµ). ¤

Example 6.11. Let us consider again Example 6.3 and the transition digraph DT (Mp) in
Figure 5 corresponding to the defined marking Mp. It is easy to verify that the strong component
Dµ = γ2 ∪ γ6 = ({r6, r2, r10}, {e6,2, e2,10, e10,2, e2,6}) of DR is an MZSC in DT (Mp). Moreover,
we obtain: V (Mp)µ = {v1, v2, v3, v4}, and |V (Mp)µ| = C(Nµ) = 4. ¥

6.3 Second level deadlocks

By imposing constraints of the form |V (Mp)µ| ≤ C(Nµ)−1 we can prevent any strong component
of DR from becoming an MZSC in the transition digraph.

However, avoiding a deadlock marking is not sufficient to guarantee the liveness of the CPN.
Indeed, it is possible that some critical states are reached that are not deadlocks, but they
necessary evolve to a deadlock marking in the next step: these states are called Second Level
Deadlocks (SLD) [7]. Clearly, if a SLD marking is reached, then a controller that has been
designed to prevent reaching a deadlock marking for the original net will create a new deadlock
marking.

We discuss in this subsection how it may be possible to also prevent a SLD.

A SLD can be characterized in terms of a particular interaction among the cycles of DR that
can be represented by a new digraph.

Definition 6.12. Given a CPN with route digraph DR = (NR, ER) we define the second level
digraph D2

R = (N2, E2
R) such that:

• the set of vertices N2 = {γ1, γ2, · · · , γN} is equal to the set of cycles of DR that do not
contain the dummy node5 r0;

• an edge eu,s belongs to E2
R if:

i) γu and γs have only one vertex in common (say rj) with capacity C(rj) = 1;

ii) there exists a path πk ∈ A such that ri Bk rj Bk rh requiring resources ri, rj , rh in
strict order of succession, with ei,j ∈ γu and ej,h ∈ γs. ¥

Now let γ2
u be a cycle in D2

R (second level cycle). From the previous definitions it follows that
a subset of cycles of DR (say Γu) is associated with vertices of γ2

u. The set Γu = (NΓu , EΓu) is
a strong subdigraph of DR and its capacity is

C(NΓu) = C(γ2
u) =

∑

r∈{γ | γ∈Γu}
C(r)

i.e., it is equal to the sum of the capacities of all the resources in Γu.
5The dummy node r0 has infinity capacity and all cycles containing it may be disregarded for deadlock analysis

as mentioned in remark 6.5.
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Figure 7: Digraph DT (Mp) for Example 6.14.

Finally, let Γ2 indicate the subset of cycles of D2
R, enjoying the following property: γ2

u ∈ Γ2

iff the corresponding set Γu collects cycles that are all disjoint except for one vertex of unit
capacity, common to all of them.

For each γ2
u ∈ Γ2 and for each marking Mp we introduce the following set: V (Mp)γ2

u
= {vk ∈

V | (∃ ri ∈ NΓµ) mi ≥ 1⊗ πk}.
As shown by the following proposition easily derived from the results proved in [7], the set Γ2

plays an important role in defining SLD conditions.

Proposition 6.13. If M = [MT
p mc]T is a SLD marking for a CPN with capacity constraint,

then there exists in D2
R a second level cycle γ2

u ∈ Γ2 such that: |V (Mp)γ2
u
| = C(γ2

u)− 1. ¤

Example 6.14. Considering the cycles of DR depicted in Figure 4, the second level cycles of
D2

R are derived and shown in Figure 6.

We suppose there are four trains in the system so that the CPN is at marking Mp where
m2 = 2 ⊗ π3, m5 = 2 ⊗ π4, and mi = ε elsewhere. The solid lines in Figure 7 depicts
the transition digraph DT (Mp). For convenience, Figure 7 also depicts the second transitions
(dashed lines) in the residual paths of the trains.

The described marking exhibits a SLD for the CPN. Indeed, the second level cycle γ2
3 ∈ Γ2

is in second level deadlock condition, where γ2
3 corresponds to the cycle set Γu = γ6 ∪ γ7 =

({r2, r10, r5}, {e2,10, e10,5, e5,10, e10,2}). Hence, the necessary condition of Proposition 6.13 is
verified, i.e., |V (Mp)γ2

3
| = C(γ2

3)− 1 = 4. ¥
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6.4 Deadlock prevention

A prevention policy is complicated for the following reasons. As already discussed above it
is quite easy to characterize the deadlock states: its detection is performed in a polynomial
complexity on the number of nodes of the digraph [7]. A naif approach would be that of designing
a control policy that forbids such a deadlock states. However, this deadlock prevention policy
may introduce further second order deadlocks that require the introduction of a second order
policy that in its term introduces third order deadlock, and so on. The computational complexity
of this procedure is known to be in the class of NP-complete problems [28]. In this paper we
propose a sub-optimal but efficient procedure that studies first and second order deadlock only
and designs a deadlock prevention policy that, by satisfying an additional constraint, ensures the
deadlock freeness of the system. Thus, we trade-off permissiveness for computational tractability.

In this subsection we first discuss in detail how the proposed prevention policy can be computed.
Then we prove that this policy ensures deadlock freeness.

Corollary 6.10 and Proposition 6.13 establish the deadlock and SLD prevention conditions on
the marking of the CPN. To obtain a direct relation among |V (Mp)µ|, where Dµ = (Nµ, Eµ) is
a strong subdigraph of DR, and the marking of the CPN, the following index set is defined for
each ri ∈ Nµ:

Hµ(ri) = {h | ai,h ∈ Co(ri) ∩ Co(rk) with ei,k ∈ Eµ

and rk ∈ Nµ}.

A controller will prevent reaching a deadlock or a SLD marking if it can enforce the following
deadlock prevention GMEC:

• for each strong subdigraph Dµ of DR

|V (Mp)µ| =
∑

ri∈Nµ

∑

h∈Hµ(ri)

mi(h) ≤ C(Nµ)− 1 (7)

• for each γ2
u ∈ Γ2 of D2

R

|V (Mp)γ2
u
| =

∑

ri∈NΓu

|mi| ≤ C(γ2
u)− 2. (8)

The GMEC given by Equations (7) and (8) restrict the reachability set of the closed loop plant, to
avoid deadlock and SLD. However, the imposed GMEC can eventually lead to a situation similar
to a deadlock, which is known as restricted deadlock (RD).More precisely, in a restricted condition
a set of transitions keeps on remaining indefinitely inhibited by the imposed constraints. Such a
situation is determined when two or more constraints simultaneously inhibit a set of transitions.
The following example clarifies the situation.

Example 6.15. Assume that five trains travel in the system described in Examples 5.1 and 5.2.
Let us suppose that the CPN is at marking Mp such that m1 = 2 ⊗ π1, m2 = m6 = 1 ⊗ π3,
m10 = 1 ⊗ π4. Figure 8 depicts the corresponding transition digraph DT (M). We note that
transitions t1 and t3 of the CPN are color enabled but they are inhibited by the capacity
constraints. Moreover, transition t2 is inhibited by the constraint |V (Mp)γ6| ≤ 2 and transition
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Figure 8: Digraph DT (M) for Example 6.15.

t16 is inhibited by the constraint |V (Mp)γ2
1
| ≤ 4. Hence, all the enabled transitions are inhibited

by the imposed constraints and a restricted deadlock occurs. ¥

Definition 6.16. Let M = [MT
p mc]T be not a deadlock marking and a SLD marking for

the CPN with capacity constraints and deadlock prevention GMEC. The marking M is a RD
marking if there exists a set of color enabled transitions that keep on remaining inhibited by the
imposed constraints. ¥

Remark 6.17. We recall that if the system is constrained by capacity constraints and deadlock
prevention constraints of type (7), the system is in a restricted deadlock condition if and only if
it is in a second level deadlock state [7, 8]. ¥

The following proposition establishes the conditions that must be verified to obtain a RD free
closed loop system.

Proposition 6.18. If M = [MT
p mc]T is a RD marking for a CPN with capacity constraints

and deadlock prevention GMEC, then one of the following two conditions are verified:

a) there exist at least two cycle sets Γ1 = (NΓ1 , EΓ1) and Γ2 = (NΓ2 , EΓ2) of DR corresponding
to the second level cycles γ2

1 , γ2
2 ∈ Γ2 such that |V (Mp)γ2

1
| = C(NΓ1)−2 and |V (Mp)γ2

2
| =

C(NΓ2)− 2;

b) there exists at least a cycle set Γ1 = (NΓ1 , EΓ1) of DR corresponding to γ2
1 ∈ Γ2 and a cycle

γ1 = (Nγ1 , Eγ1) of DR such that |V (Mp)γ2
1
| = C(NΓ1)− 2 and |V (Mp)γ1| = C(Nγ1)− 1.

Proof. Let Mp be a RD marking of the closed loop system. The restricted deadlock is not
determined by the GMEC in Equation (7) because Mp is not a SLD marking (see Remark 6.17).
Hence, one of the following conditions is verified.

1) There exist at least two constraints defined by Equation (8) that determine the RD marking,
say |V (Mp)γ2

1
| ≤ C(NΓ1)− 2 and |V (Mp)γ2

2
| ≤ C(NΓ2)− 2. More precisely there is a transition

tj ∈ T that is inhibited by the constraint |V (Mp)γ2
1 || ≤ C(NΓ1)−2 and a transition tj′ ∈ T that

is inhibited by the constraint |V (Mp)γ2
2
| < C(NΓ2)− 2. Hence, there exists an edge ev,q ∈ ER,

corresponding to transition tj , such that rv 6∈ NΓ1 , rq ∈ NΓ1 , and |V (Mp)γ2
1
| = C(Nγ1) − 2.

Analogously, there exists an edge ei,m ∈ ER, corresponding to transition tj′ , such that ri 6∈ NΓ2 ,
rm ∈ NΓ2 , and |V (Mp)γ2

2
| = C(NΓ2)− 2. This proves condition a).

b) There exists at least one constraint defined by Equation (8) (say |V (Mp)γ2
1
| ≤ C(NΓ1) − 2)

and one constraint of type (7) (say |V (Mp)γ1| ≤ C(NΓ1)− 1) that cause the RD marking. More
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precisely there is a transition tj ∈ T that is inhibited by the constraint |V (Mp)γ2
1
| ≤ C(NΓ1)−2

and a transition tj′ ∈ T that is inhibited by the constraint |V (Mp)γ1| ≤ C(NΓ1) − 1. Hence,
there exists an edge ev,q ∈ ER, corresponding to transition tj , such that rv 6∈ NΓ1 , rq ∈ NΓ1 ,
and |V (Mp)γ2

1
| = C(NΓ1)− 2. Analogously, there exists ei,m ∈ ER, corresponding to transition

tj′ , such that ri 6∈ Nγ1 , rm ∈ Nγ1 , and |V (Mp)γ1| = C(Nγ1) − 1. So necessary condition b) is
proved.

Now, let us define the following parameters:

• C01 = min{C(NΓi)− 2 + C(NΓj )− 2, for each γ2
i , γ2

j ∈ Γ2 with i 6= j}

• C02 = min{C(NΓi)− 2 + C(Nγj )− 1, for each γ2
i ∈ Γ2 and for each γj of DR}

• C0 = min{C01, C02}

Corollary 6.19. If |Mp,0| < C0, the closed loop system with the monitors that enforce the
deadlock prevention GMEC in Equations (7) and (8) is deadlock free.

Proof. Follows from Proposition 6.18, because necessary conditions a) and b) can not be verified
by all markings Mp reachable from Mp,0.

The previous corollary only gives a sufficient condition for deadlock prevention and one may
wonder how conservative the proposed policy is. The value of C0, that constrains the number
of trains admitted in the system depends on the cycle and strong subdigraph capacities. Quali-
tatively, we may say that if the station and tracks have sufficiently large capacities with respect
with the number of trains in service, as it is often the cases in real applications, the obtained
value of C0 is high enough to provide a reasonably good policy.

6.5 Computational complexity

Let us now discuss the computational complexity of the proposed approach. We first point out
that the deadlock prevention policy requires no on-line but just off-line computations. More
precisely, to establish the deadlock prevention GMEC it is necessary to compute off-line the
cycles of DR and of digraph D2

R. Technical literature [29] provide algorithms for generating
cycles of DR in O{[(Card(NR) + Card(ER)](c1 + 1)} time, where c1 represents the number of
cycles of DR. Building D2

R can be performed in O[(c1)2L] operations, where L indicates the
sum of the lengths of all the possible paths (i.e., the sum of resources appearing in all the
paths, counting repetitions). Moreover, generating the cycles of D2

R and characterizing Γ2 need
O{[c1 +Card(E2

R)](c2 +1)} and O(c1c2) operations, respectively, where c2 indicates the number
of second level cycles. To sum up, the complexity of these algorithms depends quadratically on
the number of cycles of DR and D2

R that may be very high (the maximum number of cycles
of a digraph is exponential in the number of nodes). However, the considered digraphs are not
complete and the algorithms are employed once, before the proper real time control. Hence, the
presented strategy can be applied to large systems. Note however, that large and complex RNS
are not controlled by centralized schemes but are decoupled in subsystems that are governed
separately and independently.
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6.6 Deadlock prevention constrains in RNS

Let us consider again the CPN in Figure 3.

To obtain the deadlock prevention GMEC, we have to determine the sets V (Mp)γv associated
with cycle γv with v = 1, · · · , 7, the sets V (Mp)µv associated with each strong subdigraph Dµ

of DR (see Figure 4) and the sets V (Mp)γ2
u

with u = 1, · · · , 3 associated with the second level
cycles γ2

u ∈ Γ2 of D2
R with u = 1, 2, 3.

Moreover, we obtain C01 = 6, C02 = 5, thus C0 = min{6, 5} = 5.

Considering the previously defined sets, the following conditions are imposed by the prevention
policy: 




|V (Mp)γ1| ≤ 3 m1(π1) + m1(π3)+
m6(π2) + m6(π4) ≤ 3

|V (Mp)γ2| ≤ 2 m2(π2) + m2(π4)+
m6(π1) + m6(π3) ≤ 2

|V (Mp)γ4| ≤ 2 m3(π1) + m9(π2) ≤ 2
|V (Mp)γ5| ≤ 2 m4(π2) + m9(π1) ≤ 2
|V (Mp)γ6| ≤ 2 m2(π3) + m10(π4) ≤ 2
|V (Mp)γ7| ≤ 2 m5(π4) + m10(π3) ≤ 2
|V (Mp)γ2∪γ6| ≤ 3 m2(π2) + +m2(π3)+

m2(π4) + m6(π1)+
m6(π3) + m10(π4) ≤ 3

|V (Mp)γ2
2
| ≤ 3 m3(π1) + m3(π2)+

m4(π1) + m4(π2)
+m9(π1) + m9(π2) ≤ 3

|V (Mp)γ2
3
| ≤ 3 m2(π1) + m2(π2)+

m2(π3) + m2(π4)+
m5(π3) + m5(π4)+
m10(π3) + m10(π4) ≤ 3

Since the initial marking is such that |Mp,0| < C0, the resulting closed loop system is deadlock
and RD free.

Note that if we suppose four trains in the system (|Mp,0| < 5), some constraints are always
verified. For example, |V (Mp)γ3| ≤ 5, |V (Mp)γ2∪γ3| ≤ 6, |V (Mp)γ3∪γ6| ≤ 6, |V (Mp)γ2

1
| ≤ 4.

Obviously, the deadlock prevention strategy can be simplified neglecting such constraints.

The above 9 constraints can be rewritten in terms of a single GMEC (W ′, k′), that we call dead-
lock prevention GMEC. The deadlock prevention GMEC will have as color set D′ = {z′1, · · · , z′9}
because we have to impose 9 constraints, and is defined as follows:

W T =
[

wT
0 wT

1 · · · wT
10

]

wT
0 = ε

kT =
[

3 2 2 2 2 2 3 3 3
]T
∈ Z(D′).

As an example, we report here the numerical values of wT
2 and wT

3 , while the other wi’s are
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omitted for sake of brevity:

wT
2 =

π1 π2 π3 π4


0 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 1 1 1
0 0 0 0
1 1 1 1




z′1
z′2
z′3
z′4
z′5
z′6
z′7
z′8
z′9

wT
3 =

π1 π2


0 0
0 0
1 0
0 0
0 0
0 0
0 0
1 1
0 0




z′1
z′2
z′3
z′4
z′5
z′6
z′7
z′8
z′9

Note that each matrix wT
i has as many rows as the number of constraints (i.e., 9 rows) and as

many columns as the number of colors that may be contained in place ri.

Moreover, by looking at matrix wT
2 we may observe that its first row is null because the marking

m2 is not involved in the first constraint. On the contrary, the non null elements in its second
row, relative to π2 and π4 are due to the fact that m2(π2) and m2(π4) are involved in the second
constraint. The value 1 is due to the fact that 1 is the associated coefficient in the corresponding
linear constraint.

The incidence matrix of the monitor place is equal to

Cc = −W ◦Cp

where Cp is the incidence matrix of the open loop net. The incidence matrix of pc has the
following structure,

Cc =
[

Cc(pc, t1) · · · Cc(pc, t15)
]
.

As an example,

Cc(pc, t1) =

π1 π3


1 1
0 0
0 0
0 0
0 0

−1 −1
0 0
0 0
0 0
0 0




z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

while all the other matrices Cc(pc, tj), j = 2, · · · , 15, are omitted here for sake of brevity.

Finally, the monitor place pc is initialized at marking

mc,0 =
[

1 2 2 1 1 1 2 2 1 1
]T

.

A similar reasoning may be repeated to impose the deadlock prevention constraints, being in
the form of colored GMEC.
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7 Conclusions

The contribution of this paper is twofold.

On one side we have extended the classic PN control approach based on GMEC and monitor
places to the case of CPN. A colored GMEC can express a set of linear constraints and can
be enforced by a colored monitor place. We have also developed a matrix representation of
multisets that is useful for the design of the monitor place.

On the other side, we provided a CPN model to describe a RNS and to derive the traffic con-
troller. The introduced framework allowed us to define a supervisor controller guaranteeing
safeness and deadlock freeness in the railway traffic control system. Starting from the analysis
of deadlock on the basis of digraph tools, a deadlock prevention strategy was defined and ex-
pressed by a set of linear inequality constraints. Moreover, we shown how collision and deadlock
prevention constraints can be expressed as colored GMEC and the controller can be realized by
a set of monitor places.

A Appendix: Multisets

In this section we recall some notation that will be useful in the following, when formally defining
the colored PN model.

Definition A.1. Let D be a set. A multiset (resp., non negative multiset) α over D is defined
by a mapping α : D → Z (α : D → N) and is represented using a special symbol ⊗ as

α =
∑

d∈D

α(d)⊗ d

where the sum is limited to the elements such that α(d) 6= 0.

Let Z(D) (resp., N (D)) denote the set of all multisets (resp., non negative multisets) over D.

The multiset ε is the empty multiset such that for all d ∈ D, ε(d) = 0. ¥

Definition A.2. Given two multisets α,β ∈ Z(D) and a number a ∈ Z:

• The sum of α and β is denoted as γ = α+β and is defined as ∀d ∈ D : γ(d) = α(d)+β(d).

• The difference of α and β is denoted as γ = α − β and is defined as ∀d ∈ D : γ(d) =
α(d)− β(d). Note that the difference of two non negative multisets may be negative.

• The product of α and a is denoted as γ = a α and is defined as ∀d ∈ D : γ(d) = a α(d).

• We write α ≤ β iff ∀d ∈ D : α(d) ≤ β(d).

¥

Now, given two sets D and D′, let F : D → Z(D′) be a function that associates to each element
d ∈ D a multiset on D′:

F (d) =
∑

d′∈D′
F (d, d′)⊗ d′ ∈ Z(D′).

We can naturally extend this application to a function F : Z(D) → Z(D′) as follows.
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Definition A.3. Given two sets D and D′, a function F : D → Z(D′), and a multiset α ∈ Z(D),
we define

F ◦α ,
∑

d∈D

α(d)F (d) =
∑

d∈D

∑

d′∈D′
α(d)F (d, d′)⊗ d′ ∈ Z(D′)

i.e., using the special symbol ◦, the linear combination with coefficients α(d) of the multisets
F (d) over D′ is denoted F ◦α. ¥

A simple example will help to clarify the notation.

Example A.4. Let us consider the two sets D = {c1, c2} and D′ = {z1, z2, z3}, and the multiset
α over D, where α = 2 ⊗ c1 + 3 ⊗ c2. Let F (c1) = 4 ⊗ z1 + 5 ⊗ z2 + 2 ⊗ z3 and F (c2) =
3⊗ z1 + 2⊗ z2 + 2⊗ z3 be two multisets over D′. Then, by definition,

F ◦α =
∑

d∈{c1,c2} α(d)F (d)
= 2F (c1) + 3F (c2)
= (2 · 4 + 3 · 3)⊗ z1 + (2 · 5 + 3 · 2)⊗ z2 + (2 · 2 + 3 · 2)⊗ z3

= 17⊗ z1 + 16⊗ z2 + 10⊗ z3 ∈ Z(D′)

¥

We finally observe that it is possible to give a matrix representation of multisets and of functions
over multisets.

Remark A.5. Given two sets D and D′, let us arbitrary order their elements as follows: D =
{d1, . . . , dk} and D′ = {d′1, . . . , d′k′}.
A multiset α ∈ Z(D) can be represented by a vector:

α =




α(d1)
α(d2)

...
α(dk)



∈ Zk.

Thus, given a function F : D → Z(D′) for all d ∈ D we can write

F (d) =




F (d, d′1)
F (d, d′2)

...
F (d, d′k′)



∈ Zk′ .

while its extension F : Z(D) → Z(D′) can be represented by the matrix

F =
[

F (d1) F (d2) . . . F (dk)
]
∈ Zk′×k

and finally the multiset F ◦ α can be computed with the usual matrix-vector product denoted
by ·, i.e.,

F ◦α =




∑k
i=1 α(di)F (di, d

′
1)∑k

i=1 α(di)F (di, d
′
2)

...∑k
i=1 α(di)F (di, d

′
k′)



∈ Zk′ .

¥
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Example A.6. Let us go back to the Example A.4. We can write

F =
[

F (c1) F (c2)
]

=

c1 c2


4 3
5 2
2 2




z1

z2

z3

and thus

F ◦α =




4 3
5 2
2 2


 ·

[
2
3

]
=




17
16
10


 .

¥

B Abbreviation list

• wrt: with respect to,

• PN: Petri net,

• CPN: colored Petri net,

• GMEC: generalized mutual exclusion constraint,

• RNS: railway network system,

• MZSC: maximal-weight zero-outdegree strong component,

• SLD: second level deadlock,

• RD: restricted deadlock.

C Symbol list

• Z(D): set of all multisets over D,

• N (D): set of all non negative multisets over D,

• ε: empty multiset,

• Co: color function,

• Cl: set of possible colors,

• σ: firing sequence,

• Σ: firing count vector,

• M(W ,k): set of legal markings defined by (W , k),

• pc: monitor place,

• vk: k-th vehicle (train),
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• NS : number of stations,

• NT : number of tracks,

• rk: k-th resource,

• R: set of resources,

• πk: path assigned to train vk,

• νk: k-th vertex of a digraph,

• Dµ = (Nµ, Eµ): subdigraph of D = (N,E),

• DR = (NR, ER): route digraph,

• DT (M) = (NR, ET (M)): transition digraph at M ,

• D2
R = (N2, N2

R): second level digraph,

• Γu = (NΓu , EΓu): strong subdigraph of DR.
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