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Abstract

This paper deals with the problem of enforcing generalized mutual exclusion con-
straints (GMEC) on place/transition nets with uncontrollable transitions. An ef-
ficient control synthesis technique, that has been proposed in the literature, is to
enforce GMEC constraints by introducing monitor places to create suitable place
invariants. The method has been shown to be maximally permissive and to give a
unique control structure in the case that the set of legal markings is controllable.
This paper investigates on and formally shows that the class of controllers obtained
by this technique may not have a supremal element for uncontrollable specifications.
Moreover, it is shown that the family of monitor places enforcing an uncontrollable
specification can be parameterized with respect to the solution of a linear system
of equation. An algorithm to obtain such parameterization is here presented.
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1 Introduction

In the original approach of Ramadge and Wonham (1989) to the supervisory
control of discrete event systems (DESs), a DES G is a language generator
whose behaviour, i.e., language, is denoted L(G). Given a legal language L, the
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basic control problem is to design a supervisor that restricts the closed loop
behaviour of the plant to L ∩ L(G), disabling or enabling controllable events;
the events whose occurrence cannot be disabled are called uncontrollable. This
is possible if and only if two conditions are met: L must be prefix-closed and
controllable. The first condition is purely technical and will not be discussed
any further. The language controllability property is, on the contrary, much
more interesting. If L is not controllable, we can consider the class of prefix
closed and controllable sublanguages of L, i.e., the set Ω(L) = {K ⊆ L |
K is prefix closed and controllable}. For each language K in this class we
may construct a supervisor, thus further restricting the closed loop behaviour
of the plant to K ∩ L(G) ⊂ L ∩ L(G). The class Ω(L) is closed under union
and not empty, hence it admits a unique maximal (i.e. supremal) element
with respect to set inclusion. The element L↑ = sup Ω(L), called supremal
controllable sublanguage, is the “optimal” solution to our control problem in
the sense that it is the minimally restrictive solution.

A similar approach can also be taken when considering the state evolution of
a DES, rather than the traces of events it generates. This approach, that we
call state-based , is particularly attractive when Petri nets (PNs) are used to
represent the plant (Krogh and Holloway, 1991; Li and Wonham, 1994; Zhou
and DiCesare, 1993). In this case it is assumed that some transitions, that we
call controllable, can be disabled by an external agent. Let us consider a PN
system 〈N,m0〉 with m places, whose set of reachable markings is R(N,m0) ⊆
Nm. Assume we are given a set of legal markings L ⊆ Nm, and consider the
basic control problem of designing a supervisor that restricts the reachability
set of plant in closed loop to L ∩ R(N,m0). This is possible if and only if
two conditions are met: L must be legally reachable and controllable. The
first condition requires that all legal markings may be reached through a state
evolution that does not contain forbidden markings: this condition, in a similar
way to the prefix-closure property mentioned above, is purely technical and
will not be discussed any further. The state controllability property is, on the
contrary, much more interesting and will be formally given in Definition 2. If L
is not controllable, we can consider the class of controllable subsets of L, i.e.,
the class Ω(L) = {K ⊆ L | K is controllable}. For each set K in Ω(L) we may
construct a supervisor, thus further restricting the reachability set of the plant
in closed loop to K ∩ R(N,m0) ⊂ L ∩ R(N,m0). The class Ω(L) is closed
under union and not empty 2 hence it admits a unique supremal element
with respect to set inclusion. The element L↑ = sup Ω(L), called supremal
controllable subset , is the “optimal” solution to this control problem in the
sense that it allows the largest closed loop reachability set.

2 This is true under the non-concurrency hypothesis. In the approach of Holloway
and Krogh two transitions may fire concurrently and this is not true anymore
(Holloway et al., 1997).
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Of particular interest are those PN state-based control problems where the
set of legal markings L is expressed by a set of nc linear inequality constraints
called Generalized Mutual Exclusion Constraint (GMEC). In this case we
write L = M(L,k) ≡ {m ∈ Nm | Lm ≤ k} to denote that L is expressed
by the GMEC (L,k) with L ∈ Znc×m,k ∈ Znc . Problems of this kind have
been considered by several authors (Giua et al., 1992; Moody et al., 1996; Li
and Wonham, 1994; Krogh and Holloway, 1991). This special structure of the
legal set has the advantage that if L is controllable then the supervisor for this
class of problems takes the form of as many places, called monitors , as there
are constraints. Thus if the matrix L has nc rows, the supervisor will consist
of nc monitor places, each of which has arcs going to and coming from some
transitions of the plant net. The DES plant and the controller are described
by PNs in order to have a useful linear algebraic model for control analysis
and synthesis. Moreover the synthesis is not computationally demanding since
it involves only a matrix multiplication.

Let us assume, however, that L is uncontrollable. Following the general ap-
proach outlined above, we have to compute the set L↑. The supervisory syn-
thesis becomes now complex because we have to deal with controllable subsets.
Furthermore, in most cases the special structure of the legal set is lost, be-
cause, as shown by Giua et al. (1992), it may well be the case that L↑ cannot
be expressed by a set of linear inequalities, i.e., the corresponding supervi-
sor does not have a monitor-based structure. Only in a few cases this special
structure is kept. In Li and Wonham (1994) it was shown that if the plant net
belongs to the special class of TS2 nets then L↑ is guaranteed to be expressed
by a set of nc linear inequalities. In Giua et al. (1992) it was shown that if the
plant net is safe then L↑ is guaranteed to be expressed by a set of n′

c linear
inequalities, where n′

c, however, may be very large (it may be of the same
order of the cardinality of the reachability set).

This problem motivated Moody et al. (1996; 2000) to consider as acceptable
a further restriction of the reachability set. The idea is that of finding a sub-
set of L↑ such that: (a) it can be guaranteed to be controllable by structural
conditions; (b) it can be expressed by a set of nc constraints. In particular the
structural controllability condition requires that no monitor place has arcs go-
ing to an uncontrollable transition so that it may never prevent its firing. Thus
given an uncontrollable legal marking set L expressed by nc constraints, one
may define the set Ωnc

(L) = {K ⊆ L | K is structurally controllable,∃L′ ∈
Znc×m,k′ ∈ Znc : K = M(L′,k′)} of structurally controllable and expressed by
a set of nc linear inequalities subsets of L. In (Moody et al., 1996; Moody and
Antsaklis, 2000) a procedure was also given that leads to compute an element
K ∈ Ωnc

(L), i.e., to compute a constraint (L′,k′) with L′ ∈ Znc×m, and its
corresponding monitor structure, such that K = M(L′,k′). We note that in
this approach one restricts the reachability set of the plant in closed loop to
be within K ⊂ L↑, i.e., one may prevent the closed loop system from reaching
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some perfectly legal markings. One gains, however, in simplicity since the con-
troller takes a simple structure of nc monitors and the controllability condition
can be ensured without resorting to study the reachability set of the net. A
different technique to compute a set of controllable constraints has been also
presented in (Stremersch, 2000). In this work the transformed constraints were
not obtained by working on the net structure and the controllable constraints
were found by using the relaxation that the constraint weights are rational,
hence there was not possible to characterize maximal elements.

In this paper we further pursue the investigation along these lines and we
present the following results:

• A formal proof that the class Ωnc
(L) is not closed under union and not

empty. Hence a maximal element exists but it is not necessarily unique.
• An algorithm to construct a parameterization of monitors corresponding to

a set of constraints that includes the maximal elements of Ωnc
(L) (and thus

they are structurally controllable), when L = M(L,k) with L ∈ Nnc×m,k ∈
Nnc . This parameterization takes the form of a unique control net incidence
matrix that depends linearly on the value of the parameters subject to a
linear equations system.

2 Background

A place/transition (P/T) net is a structure N = 〈P, T,Pre,Post〉 where: P is
a set of m places represented by circles; T is a set of n transitions represented
by bars; P ∩ T = ∅, P ∪ T 6= ∅; Pre (Post) is the | P | × | T | sized, natural
valued, pre-(post-)incidence matrix. The incidence matrix C of the net is
defined as C = Post − Pre. For pre- and post-sets we use the dot notation,
e.g. •t = {p ∈ P | Pre(p, t) 6= 0}. A marking is a m × 1 vector m : P → N
that assigns to each place of a P/T net a non-negative integer number of
tokens. A P/T system 〈N,m0〉 is a P/T net N with an initial marking m0. A
marking m is reachable in 〈N,m0〉 iff there exists a firing sequence σ = t1...tk
such that m0[σ > m, the set of reachable markings in 〈N,m0〉 is denoted
R(N,m0). Consider a set of legal markings L ⊆ Nm and the control problem of
designing a supervisor that restricts the plant reachability set in closed loop to
L∩R(N,m0). Of particular interest are those PN state-based control problems
where the legal marking set L is expressed by a set of nc GMECs. Given the
net system 〈N,m0〉, a GMEC is a couple (l, k) where l : P → Z is a 1 × m

weight vector and k ∈ Z. The support of l is the set Ql = {p ∈ P | l(p) 6= 0}.
The set of legal markings defined by (l, k) is M(l, k) = {m ∈ Nm | lm ≤ k}.
A set of GMEC (L,k), with L = [lT1 , lT2 , ...lTnc

]T and k = [k1, k2, ...knc
]T , will

define the legal markings set M(L,k) = {m ∈ Nm | Lm ≤ k}.
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The markings that are not legal are called forbidden markings. A controlling
agent, called supervisor, must ensure that the forbidden markings will not be
reached, then the set of legal markings under control is Mc(L,k) = M(L,k)∩
R(N,m0). If all transitions are controllable, Giua et al. (1992) showed that the
PN controller enforcing (L, k) has incidence matrix Cc ∈ Znc×n given by Cc =
−LCp where Cp is the incidence matrix of the plant and the initial marking of
the controller mc0 ∈ Nnc×1 is given by mc0 = k−Lmp0 where mp0 ∈ Nm×1 is
the initial marking of the plant. The controller exists iff the initial marking is
legal, i.e. k−Lmp0 ≥ 0. The controller so constructed is maximally permissive,
i.e. it prevents only transitions firings that yield forbidden markings. The
control net has nc control places, called monitor places; no transition is added.
The i-th monitor place, denoted as pci, is connected to transition plant tj
as specified by an arc of weight Cc(pci, tj) = L(i, ·)Cp(·, tj). Consider the
net system in fig. 1a. Assume that all the transitions are controllable. Let
L = M(l, k) = {m ∈ Nm | m(p3) + m(p4) ≤ 1}. Thus, the monitor pc in
fig. 1b is derived since Cc = [−1 −1 1 1 ] and m0(pc) = [ 1 ].

3 Monitor synthesis in presence of uncontrollable transitions

Let us now consider the problem of restricting the reachability set of a PN
within a set of legal markings L in presence of uncontrollable transitions.
The set of transitions T is partitioned in two disjoint subsets: Tu, the set of
uncontrollable transitions, associated to uncontrollable events and drawn as
black bars, and Tc, the set of controllable transitions, associated to controllable
events and drawn as empty boxes.

Definition 1 Consider a net N with Tc 6= ∅ and a GMEC (l, k). We define
the uncontrollable subnet of N , denoted as Nu = 〈P, Tu,Preu,Postu〉, the
subnet obtained from N eliminating every controllable transition.

It is immediate to see that R(Nu,m) ⊆ R(N,m). The uncontrollable subnet
definition let us to define when a set of legal markings L ⊆ Nm is controllable.

Definition 2 A legal marking set L ⊆ Nm is controllable w.r.t. a PN system
〈N,m0〉 with uncontrollable subnet Nu if

⋃

m∈L∩R(N,m0) R(Nu,m) ⊆ L.

According to this definition, L is controllable if from any marking m ∈ L
no forbidden marking is reachable by firing a sequence containing only un-
controllable transitions, that cannot be disabled by a supervisor. Note that
checking this condition requires, in general, computing the reachability set of
the controlled net; only if Nu has a special structure, this computation can be
done with structural analysis.
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When the controller is modeled by a PN structure, the disabling of transition t

is possible only if there is an arc from a controller place to t and the marking of
the controller place does not enable the transition. If GMECs are considered,
since a monitor place is needed for each GMEC, a restriction can be considered:
arcs directed from monitor places to uncontrollable transitions have to be
avoided in order to prevent that a monitor may disable an uncontrollable
transition. It is very efficient from a computational point of view to impose
this condition, as shown in Moody and Antsaklis (2000), that we call structural
controllability condition, since the arcs directed from monitors to transition
can be obtained by a simple matrix multiplication.

Definition 3 Given a set of legal marking represented by a GMEC L =
M(L, k) and a P/T net N having a transition set T = Tc∪Tu with Tc∩Tu = ∅,
L is structurally controllable if LCu ≤ 0 where Cu ∈ Zm×nu is the incidence
matrix of the uncontrollable subnet Nu and nu is the number of uncontrollable
transitions of the plant net.

The structural controllability represents a sufficient condition for the behav-
ioral controllability (Ghaffari et al., 2003). The monitor place pc in fig. 1b)
enforces m(p3) + m(p4) ≤ 1 on the plant net system in fig. 1a). It does
not meet the structural controllability condition because of of the arc from
pc to t2. In fig. 1c) and d) the closed-loop reachability graph for x = 1 and
x = 2 respectively are shown. Notice that the monitor disable the uncontrol-
lable transition only if for x = 2. Thus the specification is controllable in the
behavioral sense. In this paper we consider structural controllability.

a)
 b)
 c
)
 d)


p1
 p2


t1


t3


t2


t4


pc

p3
 p4


x
p1
 p2


t1
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t2


t4


p3
 p4


x


0120


1001


1100


0011


0110


t4

t2
t1
t3


t1
t1

t2


1001


1100


0011


0110


t4

t2
t1
t3


t1


Fig. 1. a) a net system; b) m(p3) + m(p4) ≤ 1 has been forced on net system in a)
by monitor pc; c) reachability graph of the controlled system in the case x = 1 (the
transition firings disabled by the monitor are shown as dashed arcs); d) reachability
graph of the controlled system in the case x = 2.

If L is not controllable, we also must avoid reaching the set of markings Luf =
{m ∈ L | m[σ > m′, m′ 6∈ L, σ ∈ T ∗

u}. We can consider the class of
controllable subsets of L, i.e., the class Ω(L) = {K ⊆ L | K is controllable}.
The element L↑ = sup Ω(L) = L \ Luf , called supremal controllable subset , is
the “optimal” solution to the control problem of restricting the reachability
set of plant to legal markings. In the case of legal sets given by GMEC, Moody
et al. (1996) proposed an efficient way to compute an approximation of L↑,
transforming the control specification GMEC (L,k) into a more restrictive
GMEC (L′,k′) as shown in the next proposition.
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Proposition 4 (Moody et al. (1996)) If we are able to find R1 ∈ Nnc×m,

R2 ∈ Nnc×nc satisfying [ R1 R2 ]
[

mp0

Lmp0 − (k + 1)

]

≤ −1 then the con-

troller computed as Cc = −L′Cp, mc0 = k′ −L′mp0 where L′ = R1 + R2L,
k′ = R2(k + 1)− 1 will be able to ensure that the closed loop net system meet
Lmp ≤ k, and that the initial marking is legal.

4 A first result: there is not a supremal monitor for uncontrollable
specifications

p2


p1


p3


t3


t2


t4


t1


Fig. 2. A P/T net with uncontrollable transition t2.

From now on we consider legal sets given by GMEC, i.e., L is expressed by a
set of nc linear inequality constraints and can be written as L = M(L,k) ≡
{m ∈ Nm | Lm ≤ k}. If L is not controllable, as discussed in the introduc-
tion, L↑ may not be expressed by a set of nc linear inequality constraints. In
this case, one may define the set Ωnc

(L) = {K ⊆ L | ∃L′ ∈ Znc×m,k′ ∈ Znc :
K = M(L′,k′),K is structurally controllable} of structurally controllable and
expressed by a set of nc linear inequalities subsets of L.

Theorem 5 Consider a plant represented by a PN system 〈N,m0〉. Let L =
M(L,k) ≡ {m ∈ Nm | Lm ≤ k} be an uncontrollable set with L ∈ Znc×m

and k ∈ Znc. The class Ωnc
(L) is:

a) not empty;
b) not closed under union.

PROOF. a) Let us consider the set K = ∅ ⊂ L. By definition 2, K is control-
lable. It can also be expressed by a set of linear inequalities: take any constraint
set with no feasible solution. E.g., if we let L′ = {0}nc×m and k′ = {−1}nc ,
clearly K = M(L′,k′). This shows that ∅ ∈ Ωnc

(L).

b) We show this giving a simple counterexample. Consider the net in fig. 2
with Tu = {t2}. Let L = {m ∈ N3 | m(p1) ≤ 1}. This set is not structurally
controllable, because the corresponding monitor requires an arc going to the
uncontrollable transition t2.
Consider the sets: K1 = {m ∈ N3 | m(p1) + m(p2) ≤ 1} and K2 = {m ∈ N3 |
m(p1) + m(p3) ≤ 1}. Clearly, K1,K2 ∈ Ωnc

(L).
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We will show that the set K = K1 ∪ K2 is not convex, hence it cannot be
expressed by a set of linear inequalities. In fact, if we consider the markings
m1 = [1 0 2]T ∈ K1 ⊂ K and m2 = [1 2 0]T ∈ K2 ⊂ K, the marking
m = m1+m2

2
= [1 1 1]T does not belong to K. �

Note that the part a) of the previous theorem shows that Ωnc
(L) is not empty

because it contains the empty set. However, if the supremal element of Ωnc
(L)

is the set K = ∅, the (monitor-based) control problem has no solution, because
the required condition that m0 ∈ K is clearly not satisfied.

Corollary 6 Let consider a PN system 〈N,m0〉. Let L = M(L,k) ≡ {m ∈
Nm | Lm ≤ k} be an uncontrollable set with L ∈ Znc×m and k ∈ Znc. A
maximal element of the set Ωnc

(L) exists but it is not necessary unique.

p2


p5


p1


p3


t1


t3


t2


t4


p6


p7


t5


t6


pc1


pc2


p4


pc


Fig. 3. Net system

5 A second result: a linear parameterization for the maximal mon-
itor based controllers family

Consider the net system in fig. 3 without dashed arcs and places. Let L =
M(l, k) = {m ∈ Nm | m(p1) ≤ 1}. The monitor pc is derived to enforce
M(l, k). It does not meet the structural controllability condition because of
the arc from pc to t2. A controllable subset of the uncontrollable specification
L = M(l, k) = {m ∈ Nm | m(p1) ≤ 1} can be expressed in terms of GMEC
M(l1, k1) = {m ∈ Nm | m(p1) + m(p2) + m(p4) ≤ 1} where l1 = r1

2l + r1
1

with r1
1 = [ 0 1 0 1 0 0 0 ] and r1

2 = 1. The output arc from pc to
the uncontrollable transition t2 has been moved up into an output arc from
pc1 to the controllable transition t5. In this way the firing of t2 (and thus
the marking of p1) is controlled by the marking of places that belong to a
controlled path ending with t2, and thus they are included in the support of
the transformed constraint. Notice that the controlled path t6p5t4p3t2 too can
be used to control the firing of t2. This can be done by enforcing another
controllable subset of M(l, k) that can be expressed in terms of GMEC too
as M(l2, k2) = {m ∈ Nm | m(p1) + m(p3) + m(p5) ≤ 1} where l2 = r2

2l + r2
1

with r2
1 = [ 0 0 1 0 1 0 0 ] and r2

2 = 1; the monitor pc2 can be derived
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to enforce M(l2, k2). It is immediate to see that M(l2, k2) and M(l1, k1)
are incomparable, i.e. M(l2, k2) * M(l1, k1) and M(l2, k2) + M(l1, k1). We
can choose either one of the two monitors if we aim only to enforce (l, k) on
the closed loop net system. However, if an additional control specification is
present, e.g. liveness constraint or the cost of disabling controllable transitions
etc., one of the two monitors may be preferable to the other one. Thus, it can
be useful to represent in a compact form the constraint transformations to
which correspond the monitors family that meet structural controllability. By
introducing two parameters α1, α2, we can obtain the following compact form:

l′ = r1 + r2l, k′ = r2(k + 1) − 1

with r1 = [ 0 α1 α2 α1 α2 0 0 ] , r2 = 1

s.t.







(a) α1 + α2 = 1

(b) αi ∈ N
(1)

The condition (1-a) represents the choice to control t2 by t5 or t6 that both
control the token flow in paths terminating with t2. The dependence from the
α parameters above can be presented in the following linear form

l′ = r1 + r2l, k′ = r2(k + 1) − 1

with r1 = q + αT P , r2 ∈ N

s.t.







Aα = b

α ∈ N2
(2)

where q = 01×7, P =

[
0 1 0 1 0 0 0
0 0 1 0 1 0 0

]

, A = [ 1 1 ], b = [ 1 ]. In the

rest of the section this idea is formalized and an algorithm, that finds all
possible constraint transformations and represents them in the form given by
system (2), is presented.

5.1 An algorithm to find a linear parameterization of structural controllable
monitors

The algorithm extends the one presented in Moody et al. (1996) finding a ba-
sis for the valid constraint transformations. In Moody and Antsaklis (2000) it
is shown that a structure for the admissible constraints can be characterized
working on the basis of the kernel of the matrix [Cu I ]T ; our algorithm
provide a systematic procedure to do it. The advantage of such parameteri-
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zation w.r.t. to the Moody’s one shown in prop. 4 is the fact that it ensures
the structural controllability condition verification. In the next subsection the
algorithm property to determine a maximal monitor based controllers fam-
ily will be discussed. Without loss of generality, from now on we confine our
attention to the case nc = 1.

Algorithm

Input: Cu ∈ Zm×nu , l ∈ Z1×m.
Output q ∈ N1×m, x ∈ N, z ∈ N, P ∈ Nz×m, A ∈ Zx×z, b ∈ Zx×1, r2 ∈ N, infeasible : boolean.

q := 01×m; r2 = 1; x := 0; z := 0;
if [not(l · Cu ≤ 0)] then

(* Check if there is an arc from the monitor to an uncontrollable transition to move up *)
begin

r2 := 1; f(1, ·) := 01×nu
; N := 01×nu

; n := l · Cu;
Let IR be a cellular array where IR(s) is the set of row indexes of negative
elements in the column Cu(., ts) and ir(s) its cardinality;
(* IR(s) represents the set of input places of ts *)
repeat

begin

loop := false;
Let F = {i | n(i) > 0

∨
[∃r, N(r, i) > 0] };

Choose s ∈ F ; (* The algorithm chooses to move up the arc
from the monitor to the uncontrollable transition, denoted by ts *)
if [∄r, f(r, s) = 0] then loop := true;
(* f(r, s) = 1 means that the uncontrollable transition ts has yet been considered *)
if [ir(s) ≥ 1

∧
not(loop)] then

begin

Let β be the least common multiplier (l.c.m.) between Cu(pi, ts) for i ∈ IR(s);
[ n q r2 ] := β [ n q r2 ]; N := βN ;
if [ir(s) = 1

∧
N(·, s) ≥ 0] then make null n(s) and N(·, s);

if [ir(s) > 1
∨

(ir(s) = 1
∧

N(·, s) 6≥ 0)] then make null n(s) & N(·, s) with symbols;
end

else if loop then

begin

loop := 0;
add equation to make null n(s) and N(·, s);
if [n(s) > 0

∧
(N(·, s) ≤ 0)] then infeasible := true;

if [n(s) = 0
∧

A(x, ·) ≤ 0] then check feasibility;
end

else infeasible := true;
end

until [(n ≤ 0
∧

N ≤ 0) or infeasible]
end

Fig. 4. Algorithm.

The algorithm (see figs. 4, 5, 6), works on the following table of integers:



Cu Im×m Om×1

n q r2



 , where at the initial step n = lCu, q = 01×m, r2 = 1 as

in the algorithm of Moody. In fig. 7 it is reported an example to show how
the algorithm works on the table of integers.

At each step, the algorithm goal is to “make null” a positive element of n,
the last row of the table, suppose n(ts), by choosing as pivot a negative el-
ement in the s-th column of the table, suppose Cu(pr, ts) (see procedure
make null n(s) and N (·, s)). By adding the last row of the table multiplied
by −Cu(pr, ts) with the r-th row multiplied by n(ts) and replacing the last
row with the one obtained from the addition, the result is achieved. If we de-
note as (l′, k′) the transformed constraint at the current step of the algorithm,
we have that l′ = r2l + q, k′ = r2(k + 1)− 1 and n = l′Cu. By this operation
the component of vector l′ relative to a place pr ∈

•ts has been augmented by
a positive quantity. A monitor place derived from l′ has no more an output
arc directed to transition ts but an output arc directed to a transition t ∈ •pr

as a result of the constraint transformation.
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procedure make null n(s) and N(·, s) adding symbols

Input s, ir(s), IR(s), n, x, z,N , P , A, b, f .
Output n, x, z,N , P , A, b, f .

begin

(* if transition ts has more than one input place,
symbolic variables have to be introduced*)
A(1 : z + 1, z + 1 : z + ir(s)) := −0(z+1)×ir(s);

x := x + 1; k := 0; (* x is the algorithm symbolic steps counter *);
f(z + 1 : z + 1 + ir(s), :) := 0ir(s)×nu

;

k := 0;
for i ∈ IR(s) do

begin

k := k + 1;
A(x, z + k) := −Cu(pi, ts);
(* an equation for the new symbolic parameter is introduced *)
P (z + k, ·) := ei;
N(z + k, ·) := Cu(pi, ·); N(z + k, s) := 0;
f(z + 1 + k, i) := 1;
end

for i := 1 to z do

if [N(i, s) > 0] then

begin

A(x, i) := −N(i, s);
f(z + j, ·) := f(z + j, ·)&f(i, ·) ∀j = 1..ir(s)
end

if [n(s) > 0] then

begin

b(x) := n(s);
n(s) := 0;
end

z := z + ir(s) (* z is the symbolic variable counter *);
end

procedure make null n(s) and N(·, s)
Input s, IR(s), β,n, q, z,N , P , f
Output n, q, N , P , f

begin

if [n(s) > 0] then

begin

q(IR(s)) := q(IR(s)) + n(s)/β;
n := n + n(s)Cu(IR(s), .)/β;
f(1, s) := 1;
end

for i = 1 to z do

if [N(i, s) > 0] then

begin

P (i, IR(s)) := P (i, IR(s)) + N(i, s);
N(i, ·) := N(i, ·) + N(i, s)Cu(IR(s), ·)/β;
f(i + 1, s) := 1;
end

end

Fig. 5. Algorithm procedures.

When more than a negative element is present in the s-th column of the matrix
Cu, different solutions are obtained by choosing as pivot each of them (see
procedure make null n(s) & N (·, s) with symbols) or a linear combi-
nation of them. Let β be the least common multiplier between negative el-
ements in Cu(·, ts) and IR(s) the set of their row indexes. To consider all
possible solutions, a symbolic variable αi, supposed to be natural valued, is
introduced for each negative element of Cu(·, ts). In addition, if the symbolic
variable αi is associate to Cu(pr, ts), let us define [ N (αi, ·) P (αi, ·) ] as fol-
lows: N (αi, t) = βCu(pr, t) if t 6= ts, N (αi, t) = 0 if t = ts; P (αi, p) = 0 if
p 6= pr, P (αi, p) = 1 if p = pr. In order to work with symbols the table is
augmented as follows
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






Cu Im×m Om×1

n q r2

N P Oz×1








, where each row of [ N P Oz×1 ] is relative to one of

z symbolic variables. At each step l′ = l + q + αT P , l′Cu = n + αT N while
the symbolic variables do not compare in the computation of k′. The pivot
element is now given by negative elements of the s-th column multiplied by αi.
By imposing that the linear combination of pivot elements is equal to βn(ts),
it can be verified that l′Cu(·, ts) = 0. This equation is added to the system
Aα = b (see Step 1 in fig.7 where s = 1 and IR(s) = {2, 3}).

After symbolic variables have been introduced, the algorithm goal at each step
is to “make null” all positive elements in a column of the portion of the table




n

N



 , since l′Cu = n + αT N and symbolic variables are not negative. At

each step a new equation could be added to the system Aα = b since new
symbolic variables may be introduced even if only one negative element is
present in the s-th column of the matrix Cu (see Step 3 where s = 2 and Step
5 where s = 3 in fig.7). The algorithm stops when there is no positive element
in n or N , or when there is no negative element in a column of Cu to make
null a positive element in n or N , i.e. the control law is infeasible.

Other algorithms proposed in (Li and Wonham, 1994) based on the state
equation or in (Moody et al., 1996) based on making null positive elements
of lCu to which our algorithm is inspired, requires that Cu is acyclic. In-
stead, our algorithm works in presence of cycles of uncontrollable transitions.
At this aim a flag matrix f is introduced: f(r + 1, s) = 1 means that the
r-th symbolic variable multiplied by a negative element of Cu(·, ts) has been
already used to make zero a positive element of N (·, ts). The same occurs
when f(1, s) = 1 as for making null n(ts). Thus, if an element of the vec-
tor f(·, ts) is equal to one and the algorithm tries to make null again n(ts)
or N (·, ts), it will enter in a loop. This fact can be interpreted on the net
graph as the presence of an uncontrollable transition cycle to which ts be-
longs. When a cycle of uncontrollable transitions is detected, the constraint
can be transformed in a controllable one imposing with a new equation that
the quantity l′Cu(·, ts) = n(ts) +

∑z
i=1 αiN (αi, ts) is null (see procedure

add equation to make null n(s) and N (·, s)). If n(s) > 0 and N (·, ts) >

0, the equation has not solution. If n(ts) = 0 by imposing l′Cu(·, ts) = 0, it
may occur that all variables involved in this equation has to assume a null value
and so they are eliminated and the equation is eliminated too (see procedure
delete symbol and equation x). As a consequence of eliminating symbols,
some equation of the system Aα = b may no more have solution, thus a
check is needed (see procedure check feasibility). Consider the net system

12



in fig. 8a without dashed arcs and places and the uncontrollable specification
m(p1) ≤ 1. From the algorithm we obtain the controllable sub-specification
m(p1) + m(p2) ≤ 1 corresponding to the monitor pc.

procedure add equation to make null n(s) and N(·, s)
Input s,n, x, z,N , A, b.
Output n, x,N , A, b.

begin

x := x + 1;
for i := 1 to z do

A(x, i) := −N(i, s); N(i, s) := 0
b(x) := n(s); n(s) := 0
end

procedure delete symbol and equation x

Input x, z,N , P , A, b, f .
Output x, z,N , P , A, b, f .

begin

i:=1;
while i ≤ z

begin

if [A(x, i) < 0] then

begin

delete N(i, ·), P (i, ·), A(·, i), f(i + 1, ·); z := z − 1;
end

i:=i+1;
end

delete A(x, ·), b(x); x := x − 1;
end

procedure check feasibility

Input x, z,N , P , A, b, f , infeasible.
Output x, z,N , P , A, b, f , infeasible.

begin

delete symbol and equation x

if z := 0 then infeasible := true;
else if z > 0

∧
then

for i = 1 to x do

begin

if [b(s) > 0
∧

A(x, ·) ≤ 0] then infeasible := true;
if [b(s) < 0

∧
A(x, ·) ≥ 0] then infeasible := true;

end

end

Fig. 6. Algorithm procedures for uncontrollable transition cycles.

The class of constraints Ω1(L) is represented in the form

l′ = r1 + r2l, k′ = r2(k + 1) − 1

with r1 = q + αT P , r2 ∈ N

s.t.







Aα = b

α ∈ Nz
(3)

The algorithm provides not only maximal elements of Ω′
1(L), but a wider class

of monitors. Consider the net system in fig. 8b and the uncontrollable GMEC
M(l, k) = {m ∈ Nm | m(p3) ≤ 1}. Applying the algorithm of fig. 4 we obtain
the transformed legal marking sets M(l1, k1) = {m ∈ Nm | m(p2) + m(p3) ≤
1} and M(l2, k2) = {m ∈ Nm | m(p1) + m(p2) + m(p3) ≤ 1}. Notice that
M(l1, k1) ⊃ M(l2, k2), and thus M(l1, k1) is less restrictive.

Example 7 Notice that the parameterization obtained from the algorithm can
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Fig. 7. Algorithm steps to transform the uncontrollable specification m(p1) ≤ 1 for
the net in figure. The transformed constraint obtained at each step is reported.

be further simplified by reducing the number of parameters, by a simple trian-
gularization of matrix A in the system (3). In the case of fig. 7 we have

a)







α2 = 1 − α1

α4 = 1 − α1 − α3

α5 = α1

α6 = α1 − α7

α8 = α7 − α3

α ∈ N8

⇒ b)







1 − δ1 ≥ 0

1 − δ1 − δ2 ≥ 0

δ1 − δ3 ≥ 0

δ3 − δ2 ≥ 0

δ ∈ N3

(4)

We can write l′ = [ 1 δ1 1 δ1 1 − δ1 − δ2 + δ3 ] and k′ = 1 subject to the
constraints (4b). By comparing (4a) and (4b) we observe that the number of
symbols has been decreased from 8 to 3. In general case we can reduce the
number of symbols to z′ ≤ z and the system (3) to

14



l′ = r1 + r2l, k′ = r2(k + 1) − 1

with r1 = q + δT P , r2 ∈ N

s.t.







A′δ ≥ b′

δ ∈ Nz′

5.2 Algorithm property

In this section we show that the parameterization computed via the algorithm
of fig.4 under the assumption that the considered GMEC have positive weights
has the property to include all maximal elements of the class Ω1(L).

Assumption 1 From now on we consider the legal marking sets having the
form L = M(l, k) where l ∈ N1×m, k ∈ N.

Let us define the l-uncontrollable subnet in order to characterize maximal
elements in Ω1(L) since afterwards we show that no place outside the l-
uncontrollable subnet has to be present in the transformed constraint, because
this would lead to an useless restriction of the legal marking set under control.

Definition 8 Let consider a PN N with Tc 6= ∅ and a GMEC (l, k). We define
the l-uncontrollable subnet of N , denoted as Nl = 〈Pl, Tl,Prel,Postl〉, the
subnet obtained from N eliminating every transition that does not belong to the
set Tl = {t|∃p ∈ Ql, π(t, p) 6= ∅} where π(t, p) = {t1p1...tkpk|∀i, ti ∈ Tu, t1 =
t, pk = p, Pre(pi, ti+1) > 0 and Post(pi, ti) > 0} and every place that does not
belong to the set Pl = Ql ∪ {p|∃t ∈ Tl, p ∈ •t}. In other words, Nl contains
places in Ql and all uncontrollable transitions (and their input places) from
which there exists a directed path with only uncontrollable transitions that leads
to a place in Ql.

Consider the net system in fig. 3 and the control specification L = M(l, k) =
{m ∈ Nm | m(p1) ≤ 1}. In this case Ql = {p1}, Pl = {p1, p2, p3, p4, p5},
Tl = {t2t3t4}.

Given a vector x : P → N, the vector x′ = x|Pl is defined as follows: x′(p) =
x(p) if p ∈ Pl and x′(p) = 0 otherwise.

Now we define a class of constraint, denoted as Ω′
1(L), whose support is con-

tained in Pl. Afterwards, we will show that maximal elements of Ω1(L) are
included in Ω′

1(L) and so the transformed constraints can be computed by
working on a net that has a smaller size, without losing the optimality of our
supervisory control problem solution.
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Definition 9 Let define the set Ω′
1(L) = {K ⊆ L | ∃l′ ∈ N1×m, k′ ∈ N :

K = M(l′, k′),K is structurally controllable and Ql
′ ⊆ Pl} of structurally

controllable and expressed by a linear inequality subsets of L having a support
contained in the set Pl.

Lemma 10 Given (l, k) then ∀(l′, k′) such that M(l′, k′) ⊆ M(l, k), it holds
Ql ⊆ Ql′.

PROOF. By contradiction, assume ∃p ∈ Ql \ Ql′ . Let m be a marking so
defined: m(p) = ⌈k+1

l(p)
⌉, m(p) = 0 if p 6= p. It follows l′m = 0 ≤ k′, lm =

l(p)m(p) ≥ k+1, thus m ∈ M(l′, k′)\M(l, k) violating the assumption. �

The following result shows that a constraint, that includes in its support a
place that does not belong to the l-uncontrollable subnet, is not maximal.

Proposition 11 Let M(l, k) be not structurally controllable and let M(l′, k′)
be structurally controllable with M(l′, k′) ⊆ M(l, k). Let us define l′′ = l′|Pl.
Then it holds:
a) M(l′′, k′) is structurally controllable;
b) M(l′, k′) ⊆ M(l′′, k′) and in particular M(l′, k′) ( M(l′′, k′) if l′ 
 l′′;
c) M(l′′, k′) ⊆ M(l, k).

PROOF. (a) First note that, by lemma 10, Ql ⊆ Ql′ . Hence Ql′′ = Ql′ ∩Pl ⊇
Ql′ ∩ Ql = Ql and Pl ⊇ Ql′′ ⊇ Ql. Assume by contradiction that (a) does
not hold. Hence ∃t̃ ∈ Tu|l

′′Cu(·, t̃) > 0 ⇒ ∃p̃ ∈ Ql′′|Cu(p̃, t̃) > 0 ⇒ ∃p̃ ∈
Ql|Cu(p̃,̃ t) > 0 ⇒ t̃ ∈ Tl. Thus ∀p ∈ •t̃, p ∈ Pl. It is possibile to write
l′Cu(·, t̃) = l′′Cu(·, t̃) +

∑

p∈{t̃•\• t̃},p 6∈Pl

l′(p)Cu(p, t̃)

︸ ︷︷ ︸

≥0

≥ l′′Cu(·, t̃) ≥ 0 where

l′′Cu(·, t̃) =
∑

p∈• t̃ l
′(p)Cu(p, t̃) + l′(p̃)Cu(p̃, t̃) +

∑

p∈{t̃•\• t̃},p 6=p̃ l′(p)Cu(p, t̃),
clearly contradicting that M(l′′, k′) is structurally controllable.

(b) For a generic m it holds l′m ≤ k′ ⇒ l′′m + (l′ − l′′)m
︸ ︷︷ ︸

≥0

≤ k′ ⇒ l′′m ≤ k′,

so M(l′, k′) ⊆ M(l′′, k′). The strict containment follows if we consider m such
that (l′ − l′′)m > 0.

(c) By contradiction, assume ∃m ∈ M(l′′, k′) \M(l, k). Let us consider m̃ =
m|Pl, obviously m̃ 6∈ M(l, k) by observing that lm̃ = lm > k, since Pl ⊇ Ql.
We can write l′m̃ = l′′m̃ ≤ k′ ⇒ m̃ ∈ M(l′, k′) \M(l, k) contradicting the
hypothesis that M(l′, k′) ⊆ M(l, k). �

16



Hence we have the following corollary whose proof follows from proposition 11.

Corollary 12 An element of Ω1(L) is maximal only if it is an element of
Ω′

1(L).

Next two lemmas will be used to show the property of the algorithm to deter-
mine a parameterization of all the constraints that belong to the class Ω′

1(L).

Lemma 13 Assume that M(l, k) is not structurally controllable. It is possible
to find a structurally controllable set M(l′, k) such that M(l′, k) ⊆ M(l, k)
only if ∀t ∈ Tl | lC(·, t) > 0, ∃p ∈ •t, p ∈ Ql′.

PROOF. By contradiction, let suppose that ∃t̃ ∈ Tl | lC(·, t̃) > 0 but
l′C(·, t̃) ≤ 0 and ∀p ∈ •t̃, p 6∈ Ql′ but M(l′, k) ⊆ M(l, k). We have that
lC(·, t̃) − l′C(·, t̃) > 0 ⇒ (l − l′)C(·, t̃) ≥ 0.

It is possible to write (l−l′)C(·, t̃) =
∑

p∈• t̃(l(p)−l′(p))C(p, t̃)+
∑

p∈{t̃•\• t̃}(l(p)−

l′(p))C(p, t̃) =
∑

p∈• t̃

l(p)C(p, t̃)

︸ ︷︷ ︸

≤0

+
∑

p∈{t̃•\• t̃}(l(p) − l′(p))C(p, t̃) ≥ 0.

Thus ∃p ∈ t̃• \ •t̃ |l(p) > l′(p). Then let m be a marking so defined: m(p) =
⌈k+1

l(p)
⌉, m(p) = 0 if p 6= p. It follows l′m = 0 ≤ k′, lm = l(p)m(p) ≥ k + 1,

hence m ∈ M(l′, k′) \M(l, k), thus violating the assumption. �

The previous lemma shows that in order to transform an uncontrollable con-
straint into a structurally controllable one it is necessary to include in the
support of the transformed constraint at least one input place of each uncon-
trollable transition having arcs directed to a place that belongs to the support
of the uncontrollable constraint. The next lemma shows how to do this in a
maximally permissive way.

Lemma 14 Let M(l, k) be not structurally controllable; by definition ∃t ∈ Tl |
lC(·, t) > 0. The largest subset M(l′, k′) such that l′C(·, t) ≤ 0, M(l′, k′) ⊆
M(l, k) and p ∈ Ql′ with p ∈ •t, is given by l′(p) = −C(p, t)l(p)+ lC(·, t) and
l′(p′) = −C(p, t)l(p′),∀p′ 6= p, k′ = −C(p, t)(k+1)−1. It results l′C(·, t) = 0.

PROOF. First note, as shown in (Moody and Antsaklis, 2000), that if we let
l̄ = bl and k̄ = b(k+1)−1 with b ∈ N, it holds M(l, k) = M(̄l, k̄). In our case
b = −C(p, t) ∈ N, since C(p, t) < 0 being p ∈ •t. Suppose now to transform
(̄l, k̄) into (l̄′, k̄) by choosing l̄′(p) = l̄(p) + lC(·, t) and l̄′(p′) = l̄(p′),∀p′ 6=
p. Since C(p, t) < 0 it results l̄′ ≥ l̄ that implies M(l̄′, k̄) ⊆ M(̄l, k̄). It
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is immediate to verify that l̄′C(·, t) = 0. Any transformation l̃ such that
l̃C(·, t) < 0 is a valid one but it is immediate to verify that l̃ 
 l̄′ and
consequently M(l̄′, k̄) ) M(̃l, k̄) (see proposition 11b). �

We can now state the following result whose proof comes from the fact that
the algorithm makes an exhaustive search on the net Nl to make null any
positive element in the vector lC l according to lemma 13 and lemma 14.

Proposition 15 Under the Assumption 1 the Algorithm of fig. 4 determines
a parameterization of constraints class that contains all the elements in Ω′

1(L).

Lemma 13 and lemma 14 are correct even when the assumption 1 does not
hold (the proof can be extended to take this case into account); we conjecture
that also corollary 12 holds if the assumption 1 is removed.

5.3 Algorithm complexity

c
)


p2
 p3


p1


t2
 t3


t1


t4


3
pc1
 pc2

pc3
 pc4


3
 3

2
 2


p2
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t4
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p4

p3
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 b)
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p1
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Fig. 8. a) a net with an uncontrollable circuit p5t5p4t4p3t2. b) Transition t2 controls
the firing of t3 and t4, while t1 only the firing of t3; if p1 is included in the transformed
constraint support, p2 has to be necessary included too. c) A P/T net with four
different monitors to enforce the uncontrollable specification m(p1) ≤ 3.

At each step of the algorithm an addition of a number of rows (at most
maxt∈Tu

|•t|) of an integer table eventually pre-multiplied by an integer num-
ber is performed. In absence of symbolic variables the algorithm complexity
(we mean the number of steps) would be in the worst case O(t), with t ∈ Tu,
because it is not possible to consider more than one time an uncontrollable
transition. In presence of symbolic variables, if we denote by z their number,
we have an algorithm complexity equal to z O(t) in the worst case.

As for the number of symbolic variables, they are introduced in presence of
transitions having more than one input place, i.e. in presence of synchroniza-
tion (an output arc of a monitor place is directed to an uncontrollable syn-
chronization transition): for such transition, a number of symbolic variables
equal to the their input places is introduced. Let us introduce s(t) : T → N,
s(t) = 0 if | •t |= 1, otherwise s(t) =| •t |. Under the hypothesis that for
each place p in the set Ql there is no transition shared by two directed paths
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starting from a controllable transition and ending with an uncontrollable tran-
sition in the set •p we have z =

∑

t∈Tu
s(t). This is the case of the net in fig. 3

with the control specification L = M(l, k) = {m ∈ Nm | m(p1) ≤ 1}. Here
Ql = {p1}, there are two control paths (t5p4t3p2t2 and t6p5t4p3t2) but no place
is shared and s = [ 0 2 0 0 0 0 ], thus we have two symbolic variables.

When a place p in the set Ql has more that one input transition, if a transition
t such that s(t) > 0 belongs to paths ending with different transitions of the set
•p, then a number of s(t) symbolic variables for each path has to be introduced.
Let r(t) be the cardinality of the subset of transitions •p with p ∈ Ql to which
t is connected by a directed path, z =

∑

t∈Tu
s(t)r(t).

Finally, when places shared by more paths are present, it may be necessary
to introduce a symbolic variable for each shared place. We conclude z ≤
∑

t∈Tu
s(t)r(t)+ | Pu | in the worst case.

Consider the example in fig. 7. By definition s = [ 2 0 0 2 0 0 0 ], r =
[ 1 1 1 2 1 1 1 ] since t4 is directly connected to t1 and t2 and •p1 =
{t1, t2}. In addition, p4 is shared by the directed paths t5p4t3p2t1, t5p4t4p3t1
and p3 is shared by the directed paths t5p4t4p3t1, t6p5t4p3t2. Thus a number of
8 symbolic variables is expected according to the result obtained (see fig. 7).
Notice that the number of monitors may be greater than the number of sym-
bolic variables. Consider the net in fig. 8c and the constraint m(p1) ≤ 3. The
algorithm transforms the constraint into m(p1)+α1m(p2)+α2m(p3) ≤ 3 with
α1+α2 = 3. Four different monitor can be derived: pc1,pc2 pc3, pc4 (correspond-
ing to (α1, α2) = (3, 0),(α1, α2) = (0, 3), (α1, α2) = (2, 1), (α1, α2) = (1, 2)
respectively), while z =| •t1 |= 2.

6 Conclusions and future works

In this paper the problem to compute a monitor based controller to enforce
a GMEC on a plant net in presence of uncontrollable transitions has been
focused on. Firstly, we have shown that there is not an optimal solution to
this problem. Then, we have proposed an algorithm to compute structurally
controllable monitors enforcing a given GMEC and to present them in form
of a unique control net incidence matrix that depends linearly on the value of
the parameters subject to a linear equations system.

In this way the logical constraint enforcement may be considered as the first
step of a DES control design, and thus it is useful, when a supremal solution
at this level does not exists, to present all the possible solutions in a form
suitable to solve an optimization problem at the next design step.
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