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Abstract

In this paper we use First–Order Hybrid Petri nets (FOHPN), an hybrid model

that combines fluid and discrete event dynamics, to model the concurrent activities of

manufacturing systems. In particular we consider an existing mineral water bottling

plant and we show how the FOHPN model is extremely suited to describe the high-

throughput production lines, that are one of the main components in the considered

plant. Some variations with respect to the previous definition of the FOHPN model

are also introduced here to better describe the behavior of the conveyor lines. Finally,

we show that, thanks to the fluid approximation of some discrete-event dynamics, the

considered plant may also be efficiently simulated using FOHPN. This also enabled

us to identify, among the most commonly used configurations of the plant, which are

the optimal working conditions in terms of maximal throughput and net profit.
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1 Introduction

In this paper we show how hybrid Petri nets [13], a hybrid model [9] that combines fluid and

discrete event dynamics, are extremely suited to model the dynamic concurrent activities

of manufacturing systems and in particular, high-throughput production lines.

1.1 The considered application

In the present work, a production line of an existing plant is considered. The plant under

study is the Sarda Acque Minerali (SAM) unit, a mineral water bottling plant located in

southern Sardinia, at about 20 km from the city of Cagliari. The company production

achieves about 110 millions of bottles per year; several formats (0.25 `, 0.5 `, 1 `, 1.5 `, 2 `)

of bottles are produced, filled and finally sold, both with still mineral and sparkling water.

Moreover four different mineral water brands are produced. One of the main characteristics

of the company consists in its deep integration with Biorientati Plastici (BP), a company

that produces the PET bottles which are filled by the SAM filling machines. Most of

the problems presently preventing a good production management arises from the lower

productivity of the BP machines with respect to the SAM machines. As a consequence, in

order to ensure to the SAM filling machines the essential working continuity, BP machines

must be run on longer shifts and intermediate stockpiles of the produced bottles in proper

buffers had to be realized.

The target of the present work is that of presenting a formal model that is extremely

suited to capture the main features of high-throughput production lines and the concur-

rent activities of the considered manufacturing system. One important feature of the pro-

posed model consists in allowing the fluid approximation of some discrete-event dynamics.

Thanks to this we have been able to efficiently simulate the behavior of a significant part

of the production plant. In particular, a comparison among some working configurations

often used by the plant operators, enabled us to identify which is the best configuration

in terms of throughput and net profit.

The particular model considered in this paper is called First–Order Hybrid Petri nets

(FOHPN). The Petri net model of the plant have been developed by the same authors and

firstly presented in [15, 5]. Note that Hybrid and Batch Petri net models have also been

used for modeling, packing and bottling plants by I. Demongodin in [12].

1.2 The considered model

Discrete Petri nets [16] are a discrete event model whose state space belongs to the set

of non-negative integers. This is a major advantage with respect to other formalisms

such as automata, where the state space is a symbolic unstructured set, and has been

exploited to develop many analysis techniques that do not require to enumerate the state
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space (structural analysis) [11]. Timed discrete Petri nets, i.e., Petri nets with a timing

structure associated to the transition firing, are a well studied performance model and have

strong inter-relations with other models of positive systems: as an example, deterministic

timed marked graphs (a subclass of Petri nets) can be studied as max-plus linear models

[6, 10]; stochastic Petri nets [1] can model generalized semi-markovian processes, etc.

Recently, much work has been devoted to the extension of the classical discrete Petri net

formalism to continuous Petri nets, i.e., nets obtained from discrete nets by ”fluidification”

[3, 19]. The advantage of ”fluidification” originates from the following considerations. In

many applications dealing with complex systems, e.g., high–throughput manufacturing

systems an example of which is discussed in this paper, a plant has a discrete event

dynamics whose number of reachable states is typically very large. The simulation and

analysis of these systems require large amount of computational efforts, and problems

of realistic scale quickly become analytically and computationally untractable. To cope

with this problem it is possible to give a continuous approximation of the discrete event

dynamics [17, 18, 20]. This has several advantages.

• Firstly, there is the possibility of considerable increase in computational efficiency,

because the simulation of fluid models can often be done much more efficiently.

• Secondly, fluid approximations provide an aggregated formulation to deal with com-

plex systems, thus reducing the dimension of the state space.

• Thirdly, the design parameters in fluid models are continuous hence there is the

possibility of using gradient information to speed up optimization and perform sen-

sitivity analysis.

Note that the discrete event dynamics that can be represented by a fluid model are

usually related to the flow of materials, thus making fluid models essentially a type of

compartmental models [9], a sub-class of positive systems.

It should be noted that in general different fluid approximations are necessary to

describe the same system, depending on its discrete state. Thus, the resulting model

can be better described as an hybrid model , where different dynamics are associated to

each discrete state. This has lead recently to the definition of a new family of Petri net

models that combine discrete and continuous subsystems into a so called hybrid Petri

net [2, 13]. Note that the area of hybrid systems has received a lot of attention in the

automatic control community, lately: we believe that in the next years much attention will

also be devoted to hybrid positive systems, i.e., positive systems combining both discrete

event and continuous dynamics, and hybrid Petri nets are a good example of this class of

systems.

The hybrid Petri net model considered in this paper is called First–Order Hybrid Petri

nets (FOHPN) because its continuous dynamics are piece-wise constant. FOHPN were
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originally presented in [7]. FOHPN have also been used in many application domains such

as manufacturing [8] and inventory management control [14].

The rest of the paper first presents the necessary background on FOHPN and then

shows in detail an example of modelling and simulation applied to a real system.

2 First–Order Hybrid Petri Nets

In this paper we use the Petri net formalism firstly presented in [7].

Net structure: A FOHPN is a structure N = (P, T, Pre, Post,D, C).
The set of places P = Pd∪Pc is partitioned into a set of discrete places Pd (represented

as circles) and a set of continuous places Pc (represented as double circles). The cardinality

of P , Pd and Pc is denoted n, nd and nc.

The set of transitions T = Td∪Tc is partitioned into a set of discrete transitions Td and

a set of continuous transitions Tc (represented as double boxes). The set Td = TI ∪TD∪TS

is further partitioned into a set of immediate transitions TI (represented as bars), a set

of deterministic timed transitions TD (represented as black boxes), and a set of stochastic

timed transitions TS (represented as white boxes). The cardinality of T , Td and Tc is

denoted q, qd and qc.

The pre- and post-incidence functions that specify the arcs are (here R+
0 = R+∪{0}):

Pre, Post : Pc × T → R+
0 , Pd × T → N. We require (well-formed nets) that for all t ∈ Tc

and for all p ∈ Pd, Pre(p, t) = Post(p, t). This ensures that the firing of continuous

transitions does not change the marking of discrete places.

The function D : TD → R+ specifies the timing associated to a deterministic transition

tj ∈ TD, i.e., its (constant) firing delay δj = D(tj). In the case of timed stochastic

transitions, D : TS → F assigns to each tj ∈ TS a probability density function (pdf) that

characterizes its firing delay1.

The function C : Tc → R+
0 × R+∞ specifies the firing speeds associated to continu-

ous transitions (here R+∞ = R+ ∪ {∞}). For any continuous transition tj ∈ Tc we let

C(tj) = (V ′
j , Vj), with V ′

j ≤ Vj . Here V ′
j represents the minimum firing speed (mfs) and Vj

represents the maximum firing speed (MFS). In the following, unless explicitly specified,

the mfs of a continuous transition will be V ′
j = 0.

The incidence matrix of the net is defined as C(p, t) = Post(p, t) − Pre(p, t). The

restriction of C to PX and TY (X, Y ∈ {c, d}) is denoted CXY .

A marking is a function that assigns to each discrete place a non-negative number of

tokens, represented by black dots and assigns to each continuous place a fluid volume. A

continuous place can be seen as a tank that can fill up with fluid (marking). However, we

also consider some connecting elements (such as a pipe) with a zero capacity where fluid
1Here F is the set of probability density functions for a random variable that can only take non negative

values, as is the case with a firing delay.
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Figure 1: A First–Order Hybrid Petri Net.

can flow but not accumulate. Thus we partition the set of continuous places Pc = P0∪P+

into a set of places P0 (represented as full dark circles) whose marking is always equal to

zero (connecting elements), and a set of places P+ (represented as double circles) whose

marking may assume any nonnegative real number (tanks). Therefore m : P+ → R+
0 ,

P0 → 0, Pd → N. The marking of place pi is denoted mi, while the value of the marking

at time τ is denoted m(τ). The restriction of m to Pd and Pc are denoted with md and

mc, respectively. An FOHPN system 〈N,m(τ0)〉 is an FOHPN N with an initial marking

m(τ0).

Note that in the original formalism used in [7, 8] no partition was introduced in the

set of continuous places, thus Pc ≡ P+, and places with a constant zero marking were

modeled through zero–capacity buffers.

Example 1 Consider the net in Figure 1.a. Places p1,on, p1,off , p2,on, p2,off , p3,on and

p3,off are discrete places. Places p1 and p2 are continuous places, with p1 ∈ P0 and

p2 ∈ P+. Discrete transitions t1,on, t1,off , t2,on, t2,off , t3,on and t3,off are exponentially

distributed timed transitions whose average firing rates are λ1,on, λ1,off , λ2,on, λ2,off , λ3,on

and λ3,off respectively. Transitions t1, t2 and t3 are continuous transitions whose mfs and

MFS are specified between brackets.

The net in Figure 1.a represents the manufacturing process sketched in Figure 1.b.

The three continuous transitions t1, t2 and t3 represent three unreliable machines M1, M2

and M3; parts produced by the first two machines are collected into a conveyor whose

capacity may be assumed equal to zero, and are then sent to the third machine M3 who

processed them again before sending them to the buffer (modeled by place p2).

In the net system in Figure 1.a the discrete part of the net represents the failure model

of the machines. When place p1,on is marked, transition t1 is enabled, i.e., machine M1 is

operational; when place p1,off is marked, transition t1 is not enabled, i.e., the machine is

down. A similar interpretation applies to the other machines. The marking represented

in the net shows that initially all machines are operational and the buffer is empty. ¥

Net dynamics: The enabling of a discrete transition depends on the marking of all

its input places, both discrete and continuous. More precisely, a discrete transition t is
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enabled at m if for all pi ∈ •t, mi ≥ Pre(pi, t), where •t denotes the preset of transition t.

A timed transition tj fires after being enabled for a time interval νj of appropriate

length. In particular, if tj ∈ TI , νj = 0 and tj fires as soon as it is enabled. If tj ∈ TD then

νj = δj , thus tj fires after being enabled for a time interval whose length is equal to its

firing delay δj . Finally, if tj ∈ TS then νj is the current sample of the associated random

variable.

If a discrete transition tj fires at a certain time instant τ−, then its firing at m(τ−)

yields a new marking m(τ). For each place pi it holds mi(τ) = mi(τ−) + Post(pi, tj) −
Pre(pi, tj) = mi(τ−) + C(pi, tj), thus we can write mc(τ) = mc(τ−) + Ccdσ, md(τ) =

md(τ−) + Cddσ, where σ is the firing count vector associated to the firing of transition

tj , i.e., σ ∈ Nqd and σi = 1 if i = j else σi = 0.

To every continuous transition tj is associated an instantaneous firing speed (IFS)

vj(τ). It represents the quantity of markings by time unit that fires the continuous tran-

sition at the generic time instant τ . For all τ it should be V ′
j ≤ vj(τ) ≤ Vj , thus the IFS

of each continuous transition is piecewise constant between events.

An empty continuous place pi can be fed, i.e., supplied, by an input transition, which

is enabled. Thus, as a flow can pass through an unmarked continuous place, this place can

deliver a flow to its output transitions. Consequently, a continuous transition tj is enabled

at time τ if and only if all its input discrete places pk ∈ Pd have a marking mk(τ) at

least equal to Pre(pk, tj), and all its input continuous places pi ∈ Pc satisfy the following

condition: either mi(τ) > 0 or pi is fed. If all input continuous places of tj have a not

null marking, then tj is called strongly enabled, else tj is called weakly enabled. Finally,

transition tj is not enabled if one of its empty input places is not fed.

We can write the equation which governs the evolution in time of the marking of a

place pi ∈ Pc as

ṁi(τ) =
∑

tj∈Tc

C(pi, tj)vj(τ) (1)

where v(τ) = [v1(τ), . . . , vnc(τ)]T is the IFS vector at time τ . Indeed Equation (1) holds

assuming that at time τ no discrete transition is fired and that all speeds vj(τ) are con-

tinuous in τ .

The enabling state of a continuous transition tj defines its admissible IFS vj .

• If tj is not enabled then vj = 0.

• If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V ′
j , Vj ].

• If tj is weakly enabled, then it may fire with any firing speed vj ∈ [V ′
j , V j ], where

V j ≤ Vj since tj cannot remove more fluid from any empty input continuous place

p than the quantity entered in p by other transitions.
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The computation of the IFS of enabled transitions is not a trivial task. We will set up

in the next subsection a linear–algebraic formalism to do this. Here we simply discuss the

net evolution assuming that the IFS are given.

We say that a macro–event occurs when: (a) a discrete transition fires, thus changing

the discrete marking and enabling/disabling a continuous transition; (b) a continuous

place becomes empty, thus changing the enabling state of a continuous transition from

strong to weak.

Let τk and τk+1 be the occurrence times of two consecutive macro–events as defined

above; we assume that within the interval of time [τk, τk+1), denoted as a macro–period, the

IFS vector is constant and we denote it v(τk). Then the continuous behavior of an FOHPN

for τ ∈ [τk, τk+1) is described by mc(τ) = mc(τk) + Cccv(τk)(τ − τk), md(τ) = md(τk).

Example 2 Let us consider again the net system in Figure 1.a. Discrete transitions t1,off ,

t2,off and t3,off are enabled, while transitions t1,on, t2,on and t3,on are disabled. Continuous

transitions t1 and t2 are strongly enabled, while transition t3 is weakly enabled because it

has an empty input continuous place p1 that is fed by transitions t1 and t2. ¥

We use linear inequalities to characterize the set of all admissible firing speed vectors S.

Each IFS vector v ∈ S represents a particular mode of operation of the system described

by the net, and among all possible modes of operation, the system operator may choose

the best according to a given objective.

They form a convex set described by linear equations.

Definition 1 (admissible IFS vectors) Let 〈N,m〉 be an FOHPN system with nc con-

tinuous transitions and incidence matrix C. Let TE(m) ⊂ Tc (TN (m) ⊂ Tc) be the subset

of continuous transitions enabled (not enabled) at m, and PE(m) = {p ∈ P+ | mp = 0} be

the subset of empty continuous places in P+. Any admissible IFS vector v = [v1, · · · , vnc ]T

at m is a feasible solution of the following linear set:




(a) Vj − vj ≥ 0 ∀tj ∈ TE(m)

(b) vj − V ′
j ≥ 0 ∀tj ∈ TE(m)

(c) vj = 0 ∀tj ∈ TN (m)

(d)
∑

tj∈TE C(p, tj) · vj ≥ 0 ∀p ∈ PE(m)

(e)
∑

tj∈TE C(p, tj) · vj = 0 ∀p ∈ P0

(2)

Thus the total number of constraints that define this set is

2 card {TE(m)}+ card {TN (m)}+ card {PE(m)}+ card {P0} .

The set of all feasible solutions is denoted S(N, m). ¥

Constraints of the form (2.a), (2.b), and (2.c) follow from the firing rules of continuous

transitions. Constraints of the form (2.d) follow from (1), because if a continuous place
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Figure 2: The set of admissible IFS for transitions t7 and t8 in Figure 1.

is empty then its fluid content cannot decrease. Constraints of the form (2.e) follow from

the fact that places in P0 should always be empty by definition. Note that if V ′
i = 0, then

the constraint of the form (2.b) associated to ti reduces to a non–negativity constraint on

vi.

Example 3 Let us consider the net N in Figure 1.a. As already discussed above the set

of admissible IFS depends on the actual marking of the net. In the particular case at

hand, the set of macro–periods is uniquely characterized by the discrete marking of the

net because PE(m) = ∅.
In Figure 2 we have reported the set of admissible IFS for transitions t1 and t2. Note

that, being m1(τ) = 0 for all time instants τ , it follows that v3(τ) = v1(τ) + v2(τ) for all

τ , thus the dark areas in Figure 2 completely describe the set S(N,m) for all m.

The sets of reachable discrete markings have been characterized by explicitly enu-

merating the set of marked discrete places and have been denoted as A, B, · · · , H. As

an example, A = {p1,on, p2,on, p3,on} is representative of the discrete marking m(p1,on) =

m(p2,on) = m(p3,on) = 1 and m(p1,off ) = m(p2,off ) = m(p3,off ) = 0.

The plot in Figure 2 has been obtained considering that whenever transitions t1 and

t2 are enabled, it should be 4 ≤ v1 ≤ 10 and 2 ≤ v2 ≤ 5, respectively. Moreover, whenever

transition t3 is enabled it should be 3 ≤ v3 ≤ 11, thus implying two additional constraints

in the set of IFS of transitions t1 and t2, i.e., 3 ≤ v1 + v2 ≤ 11.

The set A denotes the macro–period in which all machines are operational. The larger

dark region in Figure 2 is representative of the set of admissible IFS for this discrete

marking. Note that an operating mode with both transitions t1 and t2 firing at their MFS

is not allowed (point (10, 5) does not belong to this region).

The macro–period B corresponds to the situation in which t2 and t3 are enabled
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while t1 is not enabled. We may observe that t2 may never fire at its mfs. Similar

considerations may be repeated for the macro–period C with the only difference that in

this case the admissible IFS of t3 imposes no additional constraint in the IFS of t1 being

[V ′
1 , V1] = [4, 10] ⊂ [V ′

3 , V3] = [3, 11].

Macro–period D corresponds to the situation in which no machine is operational, i.e.,

no continuous transition may fire and the discrete places p1,off , p2,off and p3,off are

marked.

Finally, let us observe that no operational mode exists when the set of marked discrete

places is any of the sets E, F , G and H. As an example, let us consider the set F . In this

case the set of admissible IFS is

S(N,m) =





v1 = 0

2 ≤ v2 ≤ 5

v3 = 0

v1 + v2 − v3 = 0

=





v1 = 0

2 ≤ v2 ≤ 5

v3 = 0

v2 = 0

= ∅.

Similar conclusions may be drawn for the sets E, G and H. Physically this means that

when a machine is operational then its IFS should be within its mfs and its MFS. If its mfs

is strictly positive and we want its IFS to be null, then the machine should be switched

off. ¥

Once the set of all admissible IFS vectors has been defined, we need a procedure to

select one among them. One possible way of computing an optimal IFS vector consists

in introducing an objective function that may be representative of a global performance

index and solving the corresponding optimization problem with constraint set given by

(2).

3 Modeling plant subsystems with FOHPN

In this section we present the Petri net model of the most important elementary modules

of a bottling plant, namely transportation lines and switches, machines and buffers, that

are then put together to make the whole Petri net model of a part of a real production

plant.

We first introduce a novel elementary module of Petri nets, named macro transition,

that will be useful in the following to get a more compact representation of the other

elementary modules. A macro transition is represented with a large rectangle with some

continuous transitions inside to denote that only one continuous transition at a time may

be enabled. In such a way we can omit the representation of the discrete part of the

net. An example of macro transition is reported in Figure 3 in the case of two continuous

transitions. When pon,1 is marked, transition tc,1 may fire. On the contrary, when the

token is in pon,2, only tc,2 is enabled.
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Figure 3: The Petri net model of a macro transition: (a) detailed representation, (b)

simplified representation.

tM,2

t2,1

t2,2

pc

t1,1

t1,2

tM,1

Figure 4: A MIMO switch with 2 input and 2 output lines.

Transportation lines and switches: Transportation lines consist of pipes of appro-

priate diameter, depending on the bottle sizes, where bottles are conveyed at a very high

speed thanks to the force produced by the compressed air. Due to the high speed, the

main feature of these elements is that there is no accumulation of bottles in their inside.

Therefore, transportation lines may be seen as connecting elements and the corresponding

places in the Petri net model are zero capacity places, i.e., places in P0.

In the general scheme the connections among different lines may vary: this corresponds

to a switch that can be of different types: MIMO (multi input - multi output), MISO

(multi input - single output) and SIMO (single input - multi output). In the MIMO

case, we represent a switch with a macro transition at the input and a macro transition

at the output, thus enabling one possible path at a time. In Figure 4 a MIMO switch is

represented in the case of two input and two output lines, where place pc has been denoted

as a dark circle because it is a zero capacity place.

Note that the position of the switch at the different time instants is a decision variable

and should be established so as to optimize the performance of the whole plant.

Machines: In this plant we have two different types of machines. The first type

produces bottles, while the second one fills and corks them.

Machines of the first type are equipped so as to produce bottles of different sizes.

In the following, we consider the case of a machine that can be used to produce 1.5 `

bottles and 2 ` bottles. A detailed and a reduced scheme of the Petri net model for such

a machine is shown in Figure 5. In particular, the firing of tc,1 denotes the production of

1.5 ` bottles, whereas the firing of tc,2 denotes the production of 2 ` bottles. Clearly, the

productivity of the machine is not the same in the two cases, thus the maximum firing
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poff

Figure 5: The Petri net model of a machine that produces bottles: (a) detailed representa-

tion, (b) simplified representation.

tM
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pc,1
tc,1

tc,2

pon,1

pon,2

(a) (b)

poff

pc,2

pc,3

pc,2

pc,3

Figure 6: The Petri net model of a machine that fills bottles: (a) detailed representation,

(b) simplified representation.

speed of transitions tc,1 and tc,2 are different, while the minimum firing speed is equal to

zero in both cases. Note that this machine may also be turned off (when poff is marked):

thus three discrete places have been introduced in the detailed Petri net model. In the

compact representation the presence of the place poff is denoted by one empty circle at

the bottom of the macro-transition.

Let us finally observe that as in the previous model, the firing delays associated to

discrete transitions, as well as the initial configuration of the net, are design parameters.

This means that controlling the plant implies to establish a priori when bottles of different

formats should be produced. An additional degree of freedom is the speed at which each

machine works when it is operational. This value is chosen so as to optimize a given

performance index that usually coincide with the throughput of the net. In terms of

Petri net model this is equivalent to select the instantaneous firing speed of continuous

transitions tc,1 and tc,2 among the set of admissible IFS vectors.

A dual scheme may be used to describe the functioning of those machines that are

used for bottles filling and corking. An example in the case of bottles of two different

sizes is reported in Figure 6. A macro transition with an empty circle is used again

to denote that the machine may also be off. Once again the firing delays associated to

discrete transitions, the initial condition of the net, and the instantaneous firing speeds of

continuous transitions are decision parameters.

Buffers: A Petri net model of a buffer is reported in Figure 7 in the case that bottles
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Figure 7: The simplified Petri net model of a buffer.

of two different sizes may be stored in it. For brevity’s requirements the detailed model has

been omitted, but it can be easily deduced, given the detailed model of a macro transition.

When effectively modeling a buffer we should take into account all sizes of bottles that

can be stored in it. This can be easily done by simply introducing a continuous place

for each possible format (see places pc,1 and pc,2). Then, an additional place (p) should

also be introduced to limit the total volume of bottles entering the buffer, according to

its capacity. In this place the fluid content is complementary to the whole content of the

buffer, i.e., it is empty when the buffer is full and is full when the buffer is empty. Clearly,

the total number of bottles that can be introduced in the buffer depend on their size,

and this is taken into account through the different values of α1 and α2. Moreover, we

should also impose that bottles of different sizes are not put together. This implies that

the following conditions should be verified:

• if m(pc,1) > 0, then t1,2 is not enabled;

• if m(pc,2) > 0, then t1,1 is not enabled.

These are safeness specifications that may be structurally enforced in the net (e.g., by

inhibitory arcs) or may be imposed on-line by a supervisory controller.

4 The FOHPN model of a real bottling plant

In this section we first describe a part of the whole production process of a real bottling

plant in Sardinia we already considered in [5, 15]. Then, we show how it can be modeled

through FOHPN by simply putting together the previous elementary modules.

Plant description: Let us consider the flow diagram sketched in Figure 8. It consists

of seven machines (M1, · · · ,M7), 7 buffers (B1, · · · , B7) and 13 switches (s1, · · · , s13).

In this paper for sake of simplicity we focus our attention only on a part of the whole

production plant. This is not a limitation: the rest of the plant can be similarly modelled

using the modules described in the previous sections. In particular, we provide the hybrid

Petri net model of the production line that starts from machine M1, terminates with

machines M2, M3, M4, and uses buffers B1, · · · , B7. Machines M5, M6 and M7 have been

neglected in the modeling phase. They have been reported here for sake of completeness,

12



M1 M2 M3 M4 M5 M6 M7

1.5 ` 6000 23000 20000 18000 10000 7800 3600

2 ` 5600 17000 15000 16000 9800 7600 −−

Table 1: Nominal productivity of the machines [bottles/hour].

B1 B2 B3 B4 B5 B6 B7

1.5 ` 210000 31500 31500 31500 31500 31500 36750

2 ` 120000 18000 18000 18000 18000 18000 21000

Table 2: Nominal capacity of the buffers [bottles].

because they interact with the considered production line as shown in Figure 8. This is

the reason why a dashed line has been used to represent them, as well as an arrow, instead

of a continuous line, has been used to represent the connecting elements joining them to

the rest of the production line.

The first stage of the considered production cycle consists in the creation of the PET

bottles, while the last stage consists in filling and corking them. More precisely, the

first operational machine is M1 that produces PET bottles starting from raw-material of

PET granules (PET chips). Thanks to an appropriate equipment, this machine may be

extremely versatile and may produce different bottle sizes, e.g., 1.5 ` and 2 `. In Figure 8

the flow of 1.5 ` bottles has been represented with a continuous green line, while the

flow of 2 ` bottles has been represented with a dashed red line. The produced bottles

are directed to appropriate lines of different diameter, depending on their size. The flow

of bottles through the conveyor lines occurs at a high speed and is induced by a jet of

compressed air. Bottles may follow different paths and may be assigned to different buffers.

Path assignment may be seen as a decision problem whose solution aims to optimize the

production process. In particular, in the production line we are dealing with, there are

7 buffers (B1, · · · , B7) and the assignment is established so as to compensate as much

as possible the delay due to the reduced productivity of the machines that fill bottles of

mineral water with respect to those that produce them.

Finally, from the buffers bottles are conveyed to the zone of self–filling through other

appropriate flow lines. Even in this case, bottles may follow different paths so as to better

exploit the filling machines. In particular, there are 3 filling machines that are denoted in

Figure 8 as M2, M3 and M4, and that can be used to fill bottles of all sizes.

The nominal productivity of the different machines, in terms of number of bottles that

can be produced (filled) in one hour, are reported in Table 1. Finally, in Table 2 we have

reported the capacity of the buffers. Clearly, both the productivity of the machines and

the capacity of the buffers, depend on the considered format.
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The FOHPN model: The FOHPN model of the above production process has been

reported in Figure 9, where all the elementary modules previously defined can be easily

recognized. The same colour notation has been used in the two figures, so as to better

distinguish the flow of bottles of different sizes, and their flow in the belt conveyor. We

may also observe that all continuous places with a zero capacity have been denoted as full

dark circles.

Note that two further colours with respect to those in Figure 8, namely blue and yellow,

have been introduced in Figure 9 to denote that machine M4 is also used for filling and

corking bottles of two other sizes, namely 0.5 and 1 `.

5 Simulation results

In this section we show how the FOHPN model of the production line can be efficiently

used to carry out some numerical simulation. In particular, we consider a certain number

of operating configurations, that are the most commonly used by the plant operators, and

we show how, among these configurations, it is possible to identify the best one in terms

of a given performance index.

All simulations have been carried out using Simulink, a Toolbox of Matlab particularly

suited when dealing with large scale and modular systems, like the one of interest here.

Details on the simulation model are omitted here for sake of brevity but can be found in

[4].

The Petri net model of the considered production line is reported in Figure 9 and

represents only a part of the whole production process. Note however that the presence

of the dashed arcs coming from other production lines enables us to take into account the

effect of the rest of the production plant, namely machines M5, M6, and M7 as shown in

Figure 8.

As already mentioned in the previous section the design parameters that characterize

an operating condition of the plant are the following:

• the initial configuration of the plant, i.e., the initial marking of the net;

• the paths that bottles should follow at the different time intervals, i.e., the firing

delays associated to discrete transitions in the Petri net model of switches;

• the time intervals at which machines should produce (fill) bottles of different formats,

i.e., the firing delays associated to discrete transitions in the Petri net model of

machines producing (filling) bottles.

• the productivity rate of machines producing and filling bottles, namely the instan-

taneous firing speed of continuous transitions modeling the machine operation.
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Figure 8: A scheme representing a part of the bottling production process.

In the considered application we assume that the instantaneous firing speeds of con-

tinuous transitions are selected among the set of admissible IFS so as to optimize the

throughput of the net. This implies that in the case of machines producing bottles we

may always assume that when these machines are operational, they always work at their

nominal productivity. In terms of Petri net model this means that when a continuous

transition modeling the machine operation (namely, tc,1 or tc,2 in Figure 5) fires, it always

fires at its maximum firing speed, regardless of the actual marking of the net. This is no

longer valid in the case of machines filling bottles because of their higher productivity.

Therefore, in the case of machines M2, M3 and M4 we first establish in which time inter-

vals they can fill bottles of a given format: within these time intervals machines work at a

firing speed, that may not coincide with their maximal firing speed (MFS), i.e., with the

productivity of the machine, but may be smaller and strictly related both to the velocity

at which bottles are produced by the upstream machines and to the actual configuration

of the net. In particular, filling machines cannot work at their nominal productivity when

the upstream buffers are empty. On the contrary, if buffers are full filling machines may

work at their nominal productivity, or equivalently continuous transitions may fire at their

MFS. In other words, when the upstream buffers are empty continuous transitions mod-

elling filling machines are weakly enabled, while they are strongly enabled when buffers

are full.

Different numerical simulations have been carried out using the real data of the ma-

chines (namely, their productivity) and the buffers (namely, their maximum capacity). In

the following we focus our attention on 1.5 and 2 ` bottles. In particular, we consider 8

different working conditions that are typical according to the plant operators.

Note that in all cases examined we assumed that all buffers are initially empty.
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M1

B1
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B6

B2

B3 B5

B4

M2 M3 M4

Finite capacity place for 2 "  b.

Finite capacity place for 1.5 "  b.

Finite capacity place for 0.5 "  b.

Finite capacity place for 1 "  b.

zero capacity place for 2 "  b.

zero capacity place for 1.5 "  b.

zero capacity place for 0.5, 1, 1.5, 2 "  b.

zero capacity place for 1.5 and 2 "  b.

zero capacity place of transportation lines

Figure 9: The Petri net model of the production process in Figure 8.
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Case  1 Case  2 Case  3 Case  4
Production
Machines

M1 [1.5 
�
 (50%),

2 
�
 (50%) ]

M1 [1.5 
�
 (50%),

2 
�
 (50%) ]

M6 [1.5 
�

(100%) ]

M1 [1.5 
�

(100%) ]
M5 [1.5 

�
(100%) ]

M1 [1.5 
�
 (90%),

2 
�
 (10%) ]

M5 [1.5 
�

(100%) ]
M6 [1.5 

�
 (50%),

2 
�
 (50%) ]

M7 [1.5 
�

(100%) ]
Buffers B1, B2, B3 B1, B2, B3 B1, B2 B1, B2, B3, B4, B5,

B6, B7

Filling
machines

M2 [1.5 
�
 (40%),

2 
�
 (60%) ]

M2 [1.5 
�

(100%) ]
M3 [1.5 

�
(100%) ]

M4 [2 
�

(100%) ]

M2 [1.5 
�

(100%) ]
M3 [1.5 

�
(100%) ]

M2 [1.5 
�

(100%) ]
M3 [1.5 

�
(100%) ]

M4 [2 
�

(100%) ]
Switches s1, s2, s4, s5, s9, s10,

s11, s12, s13

s1, s2, s3, s4, s5, s6,
s9, s10, s11, s12, s13

s1, s2, s3, s4, s5, s6,
s9, s10, s11, s12, s13

s1, s2, s3, s4, s5, s6,
s7, s8, s9, s10, s11,
s12, s13

Case  5 Case  6 Case  7 Case  8
Production
Machines

M1 [1.5 
�
 (50%),

2 
�
 (50%) ]

M5 [1.5 
�
 (77%),

2 
�
 (23%) ]

M6 [1.5 
�
 (100%)]

M1 [1.5 
�
 (50%),

2 
�
 (50%) ]

M5 [2 
�

(100%) ]
M7 [1.5 

�
(100%) ]

M1 [1.5 
�
 (20%),

2 
�
 (80%) ]

M5 [1.5 
�

(100%) ]

M1 [1.5 
�
 (50%),

2 
�
 (50%) ]

M5 [2 
�

(100%) ]

Buffers B1, B2, B7 B1, B2, B3 B1, B2, B3, B4, B5,
B6, B7

B1, B2

Filling
machines

M2 [1.5 
�

(100%) ]
M3 [1.5 

�
(100%) ]

M4 [2 
�

(100%) ]

M2 [1.5 
�

(100%) ]
M3 [2 

�
(100%) ]

M4 [2 
�

(100%) ]

M2 [1.5 
�

(100%) ]
M3 [1.5 

�
(100%) ]

M4 [2 
�

(100%) ]

M2 [2 
�

(100%) ]
M3 [1.5 

�
(100%) ]

Switches s1, s2, s3, s4, s5, s7,
s8,  s9, s10, s11, s12,
s13

s1, s2, s3, s4, s5, s6,
s9, s10, s11, s12, s13

s1, s2, s3, s4, s5, s6,
s7, s8, s9, s10, s11,
s12, s13

s1, s2, s3, s4, s5, s6,
s9, s10, s11, s12, s13

Table 3: The main features of the considered numerical simulations.

In Table 3 we have summarized the main features of the considered numerical simula-

tions: we have specified which are the machines involved in the production of bottles and

the percentage of the production time dedicated to each format; the buffers where bottles

are stored; the machines used for filling bottles and the percentage of the production time

dedicated to each format; the switches where the flow of bottles really occurs. More de-

tails about the considered numerical simulations, have only been reported for Case 5 that,

as shown in the following, corresponds to the optimal working configuration among the

considered ones, according to some performance criteria. Details about the other cases

have not been reported here for sake of brevity, but can be read in [4].

Note that in all cases we considered a time period of simulation that is equal to 48

hours. This choice originates from the observation that, in all the considered cases, 48

hours is the interval of time over which the evolution repeats identically.
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Example 4 Let us now consider Case 5 of Table 3. The decision parameters for Case 5

are reported in Table 4. More precisely, in this table we have reported:

• the time intervals where each machine producing bottles is involved in the production

of a given format;

• the time intervals where machines filling bottles may operate on a given format;

• the time intervals where the flow of bottles trough a given switch may occur.

As an example, from this table we can argue that machine M1 is operational for 42 hours

over the whole period of simulation. In particular, the first 11 hours are devoted to the

production of 1.5 ` bottles, then the machine stops working for an hour, then it produces

2 ` bottles for the successive 11 hours, and so on. We can also argue that the position of

switch s1 is such that during the first 12 hours of simulation the flow of bottles may occur

from machine M2 towards switch s2, then in the successive 12 hours, bottles may flow

from machine M1 towards switch s3, and so on. Finally, each machine filling bottles may

only operate on a given format, namely machines M2 and M3 may only fill 1.5 ` bottles,

while machine M4 may only fill 2 ` bottles. ¥

The results of the considered simulations, in terms of throughput and net profit, are

summarized in Figures 10 and 11.

Figure 10 shows the number of 1.5 ` and 2 ` bottles (N1.5 and N2, respectively)

produced in a time interval of 48 hours.

Clearly, the main goal of the company is that of maximizing the net profit resulting

from selling its end items. We first assume that all the produced bottles are sold. In such

a case the net profit is

P = (SP1.5 − UC1.5) ·N1.5 + (SP2 − UC2) ·N2

where SP1.5 (SP2) is the selling price of 1.5 (2) ` bottles, while UC1.5 (UC2) is the unitary

cost associated to 1.5 (2) ` bottles. The selling price is the price at which the end item is

sold to a customer. In all numerical simulations we assumed SP1.5 = 18 c and SP2 = 22 c,

where c denotes a cent of Euro. The unitary cost is the cost that the company pays for

one unit of end item. It includes the cost that the company pays for the PET and the

water, plus an additional term taking into account the production costs pertaining to one

bottle. In particular, we assumed UC1.5 = 5 c and UC2 = 6 c.

The resulting net profit, computed under the assumption that all the produced bottles

are sold, is that shown by the light (magenta) bars in Figure 11. Thus we can conclude that

Case 5 corresponds to the best configuration of the plant with respect to the considered

performance index P . By looking at Figure 10 we may also observe that Case 5 does not

correspond to the maximal productivity of any format. This means that the maximum
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1.5 
� �

2 
��

M1 [ 0, 11], [ 24, 35] [ 12, 23], [ 36, 47]

M5 [ 0, 17], [ 24, 41] [ 18, 23], [ 42, 47]

M6 [ 17, 22], [41, 46]

Switches’ position Time intervals
M1 → s2 [ 0, 12), [ 24, 36)s1

M1 → s3 [ 12, 24), [ 36, 48]

s1 → s5 [ 0, 18), [ 24, 42)s2

M5 → s7 [ 18, 24), [ 42, 48]

s3 s1 → s8 [ 0, 48]

s4 M6 → B1 [ 0, 48]

s5 s2 → B2 [ 0, 48]

s7 s2 → B7 [ 0, 48]

s8 s3 → B7 [ 0, 48]

B1 → s10 [ 0, 18), [ 24, 42)s9

M7 → s10 [ 18, 24), [42, 48]

B1 → s10 [ 0, 18), [ 24, 42)s10

s9 → s12 [ 18, 24), [42, 48]

B2 → s13 [ 0, 12), [ 24, 36)s11

B7 → M4 [ 12, 24), [ 36, 48]

B1 → s10 [ 0, 12), [ 24, 36)s12

S10 → M2 [ 12, 24), [ 36, 48]

s13 s11 → M3 [ 0, 48]

1.5 
� �

2 
��

M2 [ 0, 48]

M3 [ 0, 48]

M4 [ 0, 48]

Table 4: The decision parameters for Case 5 as described in Example 4.
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Figure 10: The number of 1.5 ` (N1.5) and 2 ` (N2) bottles produced at the considered

operating conditions.
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Figure 11: The net profit P under the assumption that all bottles are sold and the net

profit P taking into account some constraints in the sale.

profit is guaranteed by appropriately partitioning the production resources among bottles

of different sizes.

Finally, we compute the net profit under the following two realistic assumptions.

Firstly, we assume that there is an upper bound on the demand of bottles of each format:

if the number of produced bottles is greater than such a limit, then there is a certain

number of bottles that are not sold, thus producing no profit. Secondly, we assume that

if the number of bottles is less than a given lower bound then the whole demand cannot

be met. This produces a shortage which usually has many associated costs. Apart from

the loss of profit, the effects of shortage include loss of goodwill, loss of future sales, and

so on. In particular, in all numerical simulations we assumed that within the considered

time period of simulation, the maximum number of bottles of each format that can be

sold is Nmax = 7 ·105, while the number of produced bottles under which there is shortage

is Nmin = 105. Finally, we evaluated that shortage cost is equal to SC = 2 c for unit of
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end item for both formats. In such a case the net profit is equal to

P = SP1.5 ·min{N1.5, Nmax} − UC1.5 ·N1.5 − SC ·max{0, Nmin −N1.5}
+SP2 ·min{N2, Nmax} − UC2 ·N2 − SC ·max{0, Nmin −N2}.

When the performance index to be maximized is P , the resulting histogram is given by

the dark (blue) bars in Figure 11. Thus we can conclude that even in this case the best

configuration of the plant is the fifth one.

Example 5 Let us consider again Case 5 whose decision parameters have been reported

in Table 4. In Table 5 we have summarized the simulation results for this case, namely

the time intervals at which the flow of bottles “really” occurs in the transportation lines,

depending on the switches’ position, and the productivity of filling machines at the different

time intervals of operation. ¥

6 Conclusions

In this paper we have shown how FOHPN can be efficiently used to model the dynamic

behavior of a mineral water bottling plant. One important feature of the proposed model

consists in allowing the fluid approximation of some discrete event dynamics. Thanks to

this, we have been able to provide some numerical simulations. In particular, we focused

our attention on the most commonly used working configurations and we show how thanks

to simulation, we can identify among them the best configuration in terms of net profit,

also taking into account shortages costs.

Our future efforts in this area will be devoted to a careful analysis of optimization

via simulation and to perform sensitivity analysis using the analytical properties of the

FOHPN model.
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