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Abstract

In this paper we deal with the problem of estimating the marking of a labeled Petri net with
nondeterministic transitions. In particular, we consider the case in which nondeterminism is due to
the presence of transitions that share the same label and that can be simultaneously enabled. Under
the assumption that: the structure of the net is known, the initial marking is known, the transition
labels can be observed, the nondeterministic transitions are contact-free, we present a technique for
characterizing the set of markings that are consistent with the actual observation. More precisely,
we show that the set of markings consistent with an observed word can be represented by a linear
system with a fixed structure that does not depend on the length of the observed word.

1 Introduction

In this paper we consider the problem of estimating the marking of a Petri net based on the observation
of transition labels.

The problem of estimating the state of a dynamic system is a fundamental issue in system theory. A similar
problem has also been addressed in theoretical computer science within the framework of nondeterministic
language generators. Nevertheless, the problem statement is quite different depending on the considered
framework.

• In system theory, a state observer reconstructs the plant states that cannot be measured on the
basis of the observation of some physical variables. The initial state of the system is completely
unknown, while a perfect knowledge of the system dynamics is usually assumed, i.e., the behaviour
of the system is deterministic.

Analogous problems in the case of discrete event systems (DES) have been discussed in the literature.
For systems represented as finite automata, Ramadge [14] was the first to show how an observer
could be designed for a partially observed system. Caines et al. [2] showed how it is possible to use
the information contained in the past sequence of observations (given as a sequence of observation
states and control inputs) to compute the set of consistent states, while in [3] the observer output is
used to steer the state of the plant to a desired terminal state. A similar approach was also used by
Kumar et al. [9] when defining observer based dynamic controllers in the framework of supervisory
predicate control problems. Özveren and Willsky [12] proposed an approach for building observers
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that allows one to reconstruct the state of finite automata after a word of bounded length has been
observed, showing that an observer may have an exponential number of states.

The main drawback of the automata based approach is the requirement that the set of consistent
markings must explicitly be enumerated. A valid solution to this problem has been proposed using
Petri nets [5]. In particular, in [5] a procedure that simply produces an estimate of the state
has been proposed, while the special structure of Petri nets allowed us to determine, using linear
algebraic tools, if a given marking is consistent with the observed behaviour without the explicit
enumeration of the (possibly infinite) consistent set. An extension to the case of times DES, where
the timing information is used to improve the marking estimate has been presented in [6].

• In the context of computer science, where the behaviour of a system is modeled by a language, the
problem of observation is quite different. The event set E of a DES is viewed as an alphabet, and a
sequence of events from this alphabet forms a word (or a string) of events, that describe a particular
evolution of the system.

The state observer of a DES aims to provide an estimate of the system state based on the observation
of the word of events. The initial state is usually assumed to be known but, on the contrary, it
may be the case that the system dynamics is not perfectly known in the sense that it may be
nondeterministic.

More precisely, the nondeterminism may be due to two different facts.

1. Silent events. There may be events that cause a change in the state of the DES but that are
not observable by an outside observer. Events of this kind are labeled with the empty string
ε.

2. Undistinguishable events. There may be events whose occurrence from a given state yields two
or more new states. Such is the case if two or more transitions labeled with the same symbol
in E are enabled at a given state.

For DES modeled as finite automa, the most common way of solving the problem of partial obser-
vation is that of converting, using a standard determinization procedure, the nondeterministic finite
automaton (NFA) into an equivalent deterministic finite automon (DFA) where: (i) each state of
the DFA corresponds to a set of states of the NFA; (ii) the state reached on the DFA after the word
w is observed, gives the set C(w) of states consistent with the observed word w.

However, there are some drawbacks in the above mentioned procedure. Firstly, each set C(w) must
be exhaustively enumerated. Then, to compute C(w) we first need to compute C(w′) for all prefixes
w′ ¹ w. Finally, if the NFA has n states, the DFA can have up to 2n states.

In this paper we explore the possibility of using Petri nets as discrete event models and address the
observer design from a computer science point of view. In particular, we assume that the nondeter-
minism of the net originates from the presence of transitions that share the same label and that may
be simultaneously enabled from a reachable marking. The nondeterminism due to the presence of silent
transitions is not considered here. We studied this problem in [7].

We first observe that an analogous determinization procedure as that used in the case of automata,
cannot be used in the Petri net (PN) framework. In fact, a nondeterministic PN cannot be converted
into an equivalent deterministic PN, because of the following strict inclusions [4]

Ldet ( L ( Lλ

where

• Ldet is the set of deterministic PN languages.

• L is the set of λ-free PN languages, namely, languages accepted by nets where no transition is
labeled with the empty string. The nondeterminism here is associated to undistinguishable events
because two transitions may share the same label.
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• Lλ is the set of arbitrary PN languages where a transition may also be labeled with the empty string.
The nondeterminism here is associated both to silent events and to undistinguishable events.

If one considers the restricted class of bounded PN (i.e., nets with a finite state space), it is possible to
use the above results on automata theory to compute a state observer based on partial event observation.
More precisely, we can first construct the reachability graph of the Petri net system, that under the
assumption of arbitrary labeling is a NFA G. Then we construct the DFA G′ equivalent to the NFA G.
Note however that the resulting observer G′ is an automaton, not a Petri net, thus all advantages that
may derive from initially modeling the DES with a Petri net vanish.

In this paper we propose a different approach to build a state observer that does not require the con-
struction of the reachability graph, and thus works for both bounded and unbounded PN. We extend
the results proposed in [8] to derive an efficient technique for characterizing the set of markings that are
consistent with the actual observation w, namely C(w).

In particular, we make the following four assumptions: (A1) the net structure is known, (A2) the initial
marking is known, (A3) the label function is λ-free and labels associated to transitions may be observed,
(A4) the nondeterministic transitions are contact-free, i.e., if t and t′ are nondeterministic transitions the
set of input and output places of t cannot intersect the set of input and output places of t′.

Under these assumptions, we show that the set of consistent markings can be written as the solution of a
linear system with a fixed structure that depends on some parameters that can be recursively computed.
The main advantage of the proposed approach is that we need not exhaustively enumerate all consistent
markings.

Let us finally observe that a similar approach that uses a logical formalism rather than linear program-
ming was also presented by Benasser [1]. This author has studied the possibility of defining the set of
markings reached firing a “partially specified” step of transitions using logical formulas, without having
to enumerate this set. Other authors [10] have also discussed the problem of estimating the marking of
a Petri net using a mix of transition firings and place observations. Finally, Zhang and Holloway [15]
used a Controlled Petri Net model for forbidden state avoidance under partial event observation with the
assumption that the initial marking be known.

2 Background on Petri nets

In this section we recall the formalism used in the paper. For more details on Petri nets we address to
[11].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m places; T
is a set of n transitions; Pre : P × T =⇒ N and Post : P × T =⇒ N are the pre– and post– incidence
functions that specify the arcs; C = Post−Pre is the incidence matrix. The preset and postset of a node
X ∈ P ∪ T are denoted •X and X• while •X• =• X ∪X•.

A marking is a vector M : P =⇒ N that assigns to each place of a P/T net a non–negative integer
number of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T system or
net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ = M + C(· , t).
We write M [ς〉 to denote that the sequence of transitions ς = tj1 · · · tjk

is enabled at M , and we write
M [ς〉 M ′ to denote that the firing of ς yields M ′. We also denote σ : T =⇒ N the firing vector
associated to a sequence ς, i.e., σ(t) = k if the transition t is contained k times in ς.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence ς such that M0 [ς〉 M . The set of
all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted R(N, M0). Finally,
we denote PR(N, M0) the potentially reachable set, i.e., the set of all markings M ∈ Nm for which there

3



exists a vector σ ∈ Nn that satisfies the state equation M = M0 + C · σ, i.e., PR(N,M0) = {M ∈ Nm |
∃σ ∈ Nn : M = M0 + C · σ}. It holds that R(N, M0) ⊆ PR(N,M0).

Given a set of places P ′ ⊆ P , we denote M ↑P ′ the projection (i.e., restriction) of M to P ′.

A labeling function L : T → E assigns to each transition t ∈ T a symbol from a given alphabet E. Note
that the same label e ∈ E may be associated to more than one transition while no transition may be
labeled with the empty string ε. Using the notation of [13] and [4] we say that this labeling function is
λ-free1.
Definition 1. A Petri net system 〈N, M0〉 with λ-free labeling function L : T → E is deterministic if
for all markings M ∈ R(N, M0) and for any two transitions t, t′ ∈ T :

t 6= t′, L(t) = L(t′), M [t〉 =⇒ ¬M [t′〉,

i.e., if two transitions are labeled with the same symbol they cannot simultaneously be enabled at M . ¥

From the above definition it is clear that determinism is a behavioral property because it not only depends
on the structure of the net, but on the reachable set (i.e., on the initial marking) as well. However, it is
also possible to introduce a structural definition of determinism.
Definition 2. A Petri net N with λ-free labeling function L : T → E is structurally deterministic if for
any two transitions t, t′ ∈ T :

t 6= t′ =⇒ L(t) 6= L(t′),

i.e., two different transitions cannot be labeled with the same symbol. ¥

Note that if a Petri net N is structurally deterministic, then the net system 〈N, M0〉 is deterministic for
all initial marking M0.

In this paper we consider Petri nets that are not structurally deterministic. We say that a transition t is
nondeterministic if its label is also associated to other transitions, otherwise a transition t is said to be
deterministic. We also denote T d the set of deterministic transitions and Tn the set of nondeterministic
transitions. Clearly, T = T d ∪ Tn.

Analogously, we say that an event e is nondeterministic if there exists more than one transition t such
that L(t) = e, otherwise we say that the event e is deterministic. Therefore, with no ambiguity on the
notation, we may write E = Ed ∪ En.

Note that the labeling function restricted to T d is an isomorphism and thus, with no loss of generality
we can assume Ed = T d.

We denote as Te the set of transitions labeled e, i.e,

Te = {t ∈ T | L(t) = e}.

The restriction of the incidence matrix C to Te (Tn) is denoted Ce (Cn) and the restriction of the firing
vector σ to Te is denoted σe.

Finally, to each set of nondeterministic transitions Te we associate the set Te containing all possible
subsets of transitions, apart from itself and the empty set, i.e.,

Te = {τ ⊆ Te | τ 6= ∅, τ 6= Te} = 2Te \ {∅, Te}.

Clearly, |Te| = 2ne − 2 where ne denotes the number of nondeterministic transitions labeled e.

We denote as w the word of events associated to the sequence ς, i.e., w = L(ς).

1In the Petri net literature the empty string is denoted λ, while in the formal language literature it is denoted ε. In this
paper we denote the empty string ε but, for consistency with the Petri net literature, we still use the term λ-free for a non
erasing labeling function L : T → E.
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3 Problem statement

In this paper we deal with the problem of estimating the marking of a net system 〈N, M0〉 whose marking
cannot be directly observed. The following properties of the system will be assumed.

(A1) The structure of the net N is known.

(A2) The initial marking M0 is known.

(A3) The label function is λ-free and labels associated to transition firings can be observed.

After the word w has been observed, we define the set C(w) of w-consistent markings as the set of all
markings in which the system may be given the observed behavior.
Definition 3. Given an observed word w, the set of w-consistent markings is C(w) = {M ∈ Nm | ∃
a sequence of transitions ς : M0[ς〉M and L(ς) = w}. ¥

The set of consistent markings can be obviously described, on the basis of its definition, with an exhaustive
enumeration of all markings.
Algorithm 4. [8]
1. Let w0 = ε and C(w0) = M0.
2. Let i = 0.
3. Wait until a new event e is observed.
4. Let i = i + 1.
5. Let wi = wi−1e.
6. Let C(wi) = ∅.
7. For all M ∈ C(wi−1) do

For all t such that M [t〉 and L(t) = e
compute M ′ = M + C(·, t) and let C(wi) = C(wi) ∪M ′.

8. Goto 3. ¥

Clearly, the main disadvantage of the above iterative algorithm is that to compute the set of markings
that are consistent with an observed word w of cardinality k, we preliminary need to compute the set of
markings that are consistent with all prefixes wi 4 w, i = 1, · · · , k− 1. Furthermore each set C(wi) must
be explicitly enumerated.

Note that the cardinality of the set of consistent markings may either increase or decrease as the length
of the observed word increases.
Example 5. Let us consider the Petri net system in Figure 1 where Tn = Ta = {t1, t2, t3} and T d =
{t4, t5, t6, t7}.
Clearly, when no event has been observed,

C(ε) = {[0 1 0 1 0 2 0]T }.

Let us first assume that the event a is observed. Given the initial marking M0, all nondeterministic
transitions may have fired, thus

C(a) = {[1 0 0 1 0 2 0]T ,
[0 1 1 0 0 2 0]T ,
[0 1 0 1 0 1 1]T }.

Now, assume that the event a is observed again, i.e., w = aa. Given the initial marking, we know for
sure that both transitions t1 and t2 may have fired at most once, while transition t3 may have fired twice.
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Figure 1: A Petri net system that can only be partially observed

Therefore,
C(aa) = {[1 0 1 0 0 2 0]T ,

[0 1 1 0 0 1 1]T ,
[0 1 0 1 0 0 2]T ,
[1 0 0 1 0 1 1]T }.

Now, if the deterministic transition t7 fires we can conclude that no previous observation of a was due to
the firing of t2 because the firing of t2 would have disabled t7. Therefore, the only sequences that may
have fired are ς1 = t1t3t7, ς2 = t3t1t7, ς3 = t3t3t7. Consequently,

C(aat7) = {[1 1 0 0 0 1 1]T , [0 2 0 0 0 0 2]T }
Assume that the deterministic transition t5 fires. The firing of t5 is enabled at both markings in C(aat7),
thus

C(aat7t5) = {[1 1 0 0 1 1 0]T , [0 2 0 0 1 0 1]T }.
Finally, if t5 is observed again we can conclude that only the second marking in C(aat7t5) is compatible
with the last observation, thus the actual marking of the net is completely reconstructed and

C(aat7t5t5) = {[2 0 0 0 0 0 2]T }.
Note that this also implies that we have completely reconstructed the sequence of transitions that has
actually fired, i.e., ς = t3t3t7t5t5. ¥

4 The contact-free case

As already discussed in the Introduction, the problem of defining the set of w-consistent markings using
a fixed number of constraints has been already investigated in [8] where we formally proved that a linear
algebraic characterization of C(w) can be given, with a fixed number of constraints, when the following
two conditions are verified.

(A4) Nondeterministic transitions are contact-free, i.e., for any two nondeterministic transitions ti and
tj , it holds that •t•i ∩ •t•j = ∅ and •ti ∩ t•i = ∅.

(A5) For each label e ∈ E there are at most two transitions such that L(t) = e, or equivalently, |Te| ≤ 2.

In this paper we discuss how it is possible to extend the results in [8] when the assumption (A5) is removed.
More precisely, we show that, under the assumptions (A1) to (A4), a fixed number of constraints, not
depending on the length of the observed word w, may be used to describe the set of w-consistent markings.
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4.1 Computation of the set of consistent markings

Let us first introduce the following notation.
Definition 6. Given a marking M and a transition t ∈ T , we define

z(M, t) = min
p∈•t

{⌊
M(p)

Pre(p, t)

⌋}

the enabling degree of transition t at M .

Given a set of transitions τ ⊆ T , we also define

z(M, τ) =
∑
t∈τ

z(M, t).

Finally, given a vector σ ∈ Nn, we denote as

σ(τ) =
∑
t∈τ

σ(t).

¥
Remark 7. Note that if all transitions in τ are conflict free2, then z(M, τ) represents the number of
times transitions in τ may simultaneously fire at M . ¥
Theorem 8. Let us consider a labeled Petri net system 〈N, M0〉 and let L : T → E be its labeling
function. Let assumptions (A1) to (A4) be verified. Then, for all words w ∈ E∗ the set of w-consistent
markings C(w) is equal to

C(w) = M(w)def= {M ∈ Nm |M = Mb,w +
∑

e∈En

Ceσe; σe ∈ Se(w)} (1)

where
Se(w)def= {σ ∈ Nne | (∀τ ∈ Te) σ(τ) ≤ uw(τ),

σ(Te) = uw(Te)},
(2)

is the set of w-consistent nondeterministic firing vectors and the upper bounds uw(τ) and uw(Te), as well
as the marking Mb,w, are computed using the recursive Algorithm 9.

Proof. See Appendix.

Therefore, the number of constraints used to describe the set Se(w) is equal to 2ne − 1, regardless of the
length of the observed word w.

Now, before examining in detail the steps of the algorithm, let us discuss the physical meaning of all the
parameters characterizing the above set (1).

Let us firstly observe that the firing of a nondeterministic transition t may be reconstructed when a
deterministic transition td is observed and the firing of t is strictly necessary to enable td. Therefore,
using Algorithm 9, we define the basis marking Mb,w as the marking that we reach from the initial one
by firing all the observed deterministic transitions, and all those nondeterministic transitions that have
been reconstructed.

Moreover, for each nondeterministic event e, the upper bound uw(Te) denotes how many times the event
e has been observed in w without being reconstructed.

Finally, the upper bound uw(τ) relative to a given subset τ ⊂ Te, imposes a limit on the maximum
number of times all transitions in τ may have fired, given the actual observation w, and taking into
account that a certain number of nondeterministic transitions labeled e may have been reconstructed.

2 Two transitions ti and tj are conflict free if they do not share input places, namely •ti ∩• tj = ∅.
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Algorithm 9 (Upper bounds and basis marking computation).
1. Let w = ε and Mb,w = M0.
2. Let uw(τ) = 0 for all e ∈ En and for all τ ∈ Te.
3. Let uw(Te) = 0 for all e ∈ En.
4. Wait until an event e is observed.
5. Let flag = 0.
6. If e ∈ Ed, then

let t = L−1(e),
if •t ∩ (•Tn•) = ∅, then (Case A)

Mb,we = Mb,w + C(·, t)
endif
if Pt

def= •t ∩ (Tn•) 6= ∅, then (Case B)
σα = ~0 (a vector of dimension |Tn| × 1)
flag = 1
Tup

def=Tn ∩• Pt

for all t̂ ∈ Tup, then

let σα(t̂) = max
p∈Pt : Post(p,t̂)6=0

{
0,

⌈
Pre(p, t)−Mb,w(p)

Post(p, t̂)

⌉}

endfor
for all τ∈ ⋃

e∈En 2Te \ ∅ : τ ∩ Tup 6= ∅, then
uwe(τ) = uw(τ)−

∑
t∈τ

σα(t)

endfor
Mb,we = Mb,w + C(·, t) + Cnσα

endif
if •t ∩ (•Tn) 6= ∅, then (Case C)

if flag = 0, then
Mb,we = Mb,w + C(·, t)

endif
let Tr(t) = {t̂ ∈ Tn | •t ∩• t̂ 6= ∅}
for all t̂ ∈ Tr(t), then

uwe({t̂}) = min{uw({t̂}), z(Mb,we, t̂)}
for all τ ∈ TL(t̂) such that t̂ ∈ τ with τ 6= {t̂}, then

uwe(τ) = min{uw(τ), uwe({t̂}) + uw(τ \ {t̂})}
endfor

endfor
endif

else (Case D)
for all τ ∈ Te, then

uwe(τ) = min{uw(τ) + 1, z(Mb,w, τ)}
endfor
uwe(Te) = uw(Te) + 1
Mb,we = Mb,w

endif
7. w = we
8. Goto 4.

¥

Figure 2: The algorithm for the upper bounds and the basis marking computation.
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Figure 3: The generic substructure of a more complex Petri net that satisfies the contact-free assumption.

Now, let us discuss in detail all cases in Algorithm 9. Consider the labeled Petri net in Figure 3 that
represents the generic substructure of a more complex Petri net that satisfies the contact-free assumption
(A4). Let us assume that in this subnet the only nondeterministic transitions are those labeled a. Let w
be the actual observed word of events and let Mb,w be the marking shown in Figure 3. Finally assume
|w|a ≥ 1.

• A deterministic transition t such that •t ∩ (•Tn•) = ∅ fires. (Case A)

Assume that t4 fires. In such a case we only update the basis marking taking into account that
the deterministic transition t4 has fired, but we deduce no information on the number of times the
nondeterministic transitions have eventually fired. The same holds if we observe t5 or t6.

• A deterministic transition t such that •t ∩ (Tn•) = Pt 6= ∅ fires. (Case B)

Assume that the firing of t7 is observed. In such a case we know for sure that each place p ∈• t7
(namely, p2 and p8) contains a number of tokens that is greater or equal than Pre(p, t7). Now,
given the basis marking Mb,w, if for some place p ∈• t7, Mb,w(p) < Pre(p, t7), we know for sure
that the nondeterministic transition •p has fired and we can also evaluate (see Algorithm 9) how
many times it has fired. We consequently update the basis marking and the upper bounds relative
to all subsets containing •p.

As an example, in the case at hand, we can conclude that one of the previous observations of a was
due to the firing of t1. Therefore, the basis marking Mb,w is updated to Mb,we = Mb,w + C(·, t1) +
C(·, t7).

• A deterministic transition t such that •t ∩ (•Tn) 6= ∅ fires. (Case C)

Assume that t8 fires. In such a case it may occur that the upper bounds associated to subsets
of nondeterministic transitions may decrease. In fact, if t8 fires, we know for sure that if p is an
input place of t8, then it should contain a number of tokens that is greater or equal to Pre(p, t8).
Therefore, if there is some nondeterministic transition exiting p, we know for sure that the maximum
number of times it may have fired must ensure that in p there are at least Pre(p, t8) tokens.

As an example, if in the actual case the upper bound associated to τ = {t2} was 1, we reduce it to
zero. Then, we update all the other uw(τ)’s relative to subsets τ containing t2, as well as uw(Ta).

• A nondeterministic event is observed. (Case D)

Assume that the nondeterministic event a is observed. In such a case we update the upper bounds
uwa(τ) relative to those subsets τ ∈ Ta whose enabling degree at the current basis marking Mb,w

is greater than the bound uw(τ). Furthermore, we always increment of one the value of the bound
of Ta, i.e., uwa(Ta) = uw(Ta) + 1, that takes into account how many times the event a has been
observed without being reconstructed.
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Let us finally observe that there may be transitions such as t9 in Figure 3, for which cases B and C
simultaneously occur. In such a situation we impose that both cases B and C are taken into account.
More precisely, we first consider that •t8 ∩ (Tn•) = {p4} 6= ∅ (case B) and then we consider that
•t8 ∩ (•Tn) = {p5} 6= ∅. Therefore, if t9 fires we may first increment the upper bounds associated to
subsets containing t2 and then we eventually reduce the upper bounds associated to subsets containing
t3. Clearly, as a consequence, it may occur that the upper bounds associated to subsets τ containing
both transitions may keep unaltered. Note that, the binary variable flag has been introduced so as to
be sure that the basis marking is not updated twice by the firing of the observed transition t.

4.2 Computational complexity

Let us now discuss the computational complexity of Algorithm 9.
Proposition 10. When an event e is observed and Algorithm 9 is used to update the basis marking
and the upper bounds, the computational complexity, defined as the number of operations required, is of
order

O
(
|Tn| ·

∑

e∈En

2ne−1

)
.

Proof. It is immediate to verify that the worst case in terms of computational complexity holds when
cases B and C occur simultaneously. As already discussed above, in such a case we first consider case B,
and then we consider case C.

The worst-case number of operations required by case B depends on how many times each of the two
consecutive for cycles is executed, i.e.,

|Tn|︸︷︷︸
first for cycle

+
∑

e∈En

2ne − |En|
︸ ︷︷ ︸
second for cycle

.

The worst-case number of operations required by case C depends on how many times each of the two
nested for cycles is executed, i.e.,

|Tn|︸︷︷︸
first for cycle

·
∑

e∈En

2ne−1

︸ ︷︷ ︸
second for cycle

.

Because |Tn| ≥ 2, the latter expression has greater order than the first, thus proving the statement.

4.3 Discussion

In this section we discuss some relevant topics.

4.3.1 Requirement of bounds for each set in Te

If we assume that no more than two transitions, say te,1 and te,2, may have the same label (i.e., under
assumption (A5)) the set Te = {{te,1}, {te,2}} contains only singleton sets, for all e ∈ En. In such a case
we formally proved in [8] that we can characterize the set of w-consistent markings by simply computing
the upper bounds on the maximum number of times each nondeterministic transition may have fired.
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Figure 4: An example showing that singletons in Ta are not enough to describe C(w).

On the contrary, if we remove assumption (A5), the upper bounds associated to the only singleton sets
are no longer enough. This can be immediately proved by looking at the following simple example.
Example 11. Let us consider the labeled Petri net system in Figure 4. When no event is observed we
set Mε = M0, uε(τ) = 0 for all τ ∈ Ta, and uε(Ta) = 0.

In the following we denote as τi1 ··· ik
the subset of Ta of cardinality k, containing transitions ti1 , · · · , tik

.

Assume w = a. The only nondeterministic transitions that are enabled at Mε are t1 and t2, thus, in
accordance to Algorithm 9, we set to 1 the upper bounds relative to all subsets τ containing at least
one transition among t1 or t2, namely ua(τ1), ua(τ2), ua(τ12), ua(τ13), ua(τ14), ua(τ23), ua(τ24), ua(τ123),
ua(τ124), ua(τ234), as well as ua(Ta). On the contrary the upper bounds relative to all the other subsets
are kept equal to zero. Finally, the basis marking keeps the same.

Now, let us assume that the sequence of events t7t8a is further observed. The observation of the determin-
istic transitions t7 and t8 only implies that the basis marking is updated to Mb,w = Made = [1 1 1 1]T .
When the last event a is observed, i.e., w = adea, the upper bounds are set to uw(τ1) = uw(τ2) =
uw(τ3) = uw(τ4) = 1, uw(τ12) = uw(τ13) = uw(τ14) = uw(τ23) = uw(τ24) = 2, uw(τ34) = 1, uw(τ123) =
uw(τ124) = uw(τ134) = uw(τ234) = 2, uw(Ta) = 2.

Note that if the upper bounds relative to the only singleton sets would have been considered, the spurious
solution M = M0 obtainable by firing the sequence of transitions ς = t7t8t3t4 for which σ(3) = σ(4) = 1,
would have been considered consistent with the actual observation. On the contrary, using the proposed
algebraic characterization this solution is rejected thanks to the constraint σ(3)+σ(4) ≤ uw(τ34) = 1 that
keeps track of the fact that only the second observation of a may be due to the firing of either transition
t3 or t4. ¥

4.3.2 Requirement of the contact-free assumption

When the nondeterministic transitions are not conflict free, Remark 7 does not hold anymore. In this
case one may think that it may be possible to modify Algorithm 9 for the computation of the bounds so
that Equations (1) and (2) still hold.

Unfortunately this is not possible: next example shows that the set of w-consistent nondeterministic firing
vectors may be non convex if the contact-freeness assumption is relaxed, hence it cannot be represented
by the set (2).
Example 12. Let us consider the Petri net system in Figure 5 whose initial marking is equal to M0 =
[2 0 0]T . Assume that the word w = aaaa is observed. In this case the only admissible firing vectors are

~σ1 = [2 0 2 0]T , ~σ2 = [0 2 0 2]T .

11
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Figure 5: A net where the nondeterministic transitions are not contact-free (see Example 12).

On the contrary, the vector ~σ = [1 1 1 1]T that is a linear combination of ~σ1 and ~σ2 is not an admissible
firing vector, thus proving that the set of w-consistent nondeterministic firing vectors is not convex. ¥

4.3.3 Uncertainty about the initial marking

The procedure we have presented in Algorithm 9 is based on the computation of the basis marking Mb,w

for all words w ∈ E∗. This is only possibile if the initial marking is known.

Note however that even if the initial marking is only known to belong to a given set, the proposed
characterization of C(w) can still be used provided that one of the following two cases occur.

• The initial marking belongs to a set M0 that is described by constraints of the form (1) and (2).

In this case we can still apply our approach. In fact, it is sufficient to take Mb,ε equal to the basis
marking that defines M0, and the upper bounds uε equal to the upper bounds defining M0 instead
of initializing them to zero.

• The initial marking belongs to a finite set M0 = {M1
0 , . . . , Mk

0 } with k < +∞.

In such a case the set of consistent markings can be given as the union of a finite number of sets
of consistent markings Ci(w) of the form (1), each one computed initializing the basis marking to
a different marking in M0.

Note however that the number of these sets (that is initially equal to k) may decrease as the length
of the observed word increases. In fact, for each observed word w and new observed event e, if
there exists no marking in Ci(w) enabling a transition with label e, then we can restrict the set of
admissible initial markings to M0 \ {M i

0}.

4.4 A final example

Let us consider again the Petri net system in Figure 1 whose initial marking is M0 = [0 1 0 1 0 2 0]T .
Initially, when no event is observed the basis marking is the initial marking and all the upper bounds are
set to zero. As a new event is observed, the algorithm updates the basis marking and the upper bounds
as listed in Table 4.4. Data in the table are then used to construct the set of admissible markings as
described in Theorem 8.
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w Mb,w uw(τ1) uw(τ2) uw(τ3) uw(τ12) uw(τ13) uw(τ23) uw(Ta)

ε [0 1 0 1 0 2 0]T 0 0 0 0 0 0 0

a [0 1 0 1 0 2 0]T 1 1 1 1 1 1 1

aa [0 1 0 1 0 2 0]T 1 1 2 2 2 2 2

aat7 [0 2 0 0 0 2 0]T 1 0 2 1 2 2 2

aat7t5 [0 2 0 0 1 1 0]T 1 0 1 1 1 1 1

aat7t5t5 [0 2 0 0 2 0 0]T 0 0 0 0 0 0 0

aat7t5t5a [0 2 0 0 2 0 0]T 1 0 0 1 1 0 1

aat7t5t5aa [0 2 0 0 2 0 0]T 2 0 0 2 2 0 2

aat7t5t5aat6 [1 0 1 0 2 0 0]T 0 0 0 0 0 0 0

aat7t5t5aat6t4 [0 1 0 1 1 1 0]T 0 0 0 0 0 0 0

Table 1: The results of the example in Section 4.4.

Let us show for instance how to use the table to compute the set C(a). It holds that

Sa(a) = {σ ∈ Nna | σ1 ≤ ua(τ1) = 1,
σ2 ≤ ua(τ2) = 1,
σ3 ≤ ua(τ3) = 1,
σ1 + σ2 ≤ ua(τ12) = 1,
σ1 + σ3 ≤ ua(τ13) = 1,
σ2 + σ3 ≤ ua(τ23) = 1,
σ1 + σ2 + σ3 = ua(Ta) = 1}

The solutions of this integer inequality system are:

σ1 = [0 0 1]T ,
σ2 = [0 1 0]T ,
σ3 = [1 0 0]T ,

which substituted in
M = Ma + Caσi, i = 1, 2, 3

provide the set of admissible markings:

C(a) = {[1 0 0 1 0 2 0]T ,
[0 1 1 0 0 2 0]T ,
[0 1 0 1 0 1 1]T }.

Note that the evaluation of the set of admissible markings is fast enough to be performed real time,
which is an essential feature for real applications. Now we repeat the procedure for all the other events
to obtain:

C(aa) = {[1 0 1 0 0 2 0]T , [0 1 1 0 0 1 1]T ,
[0 1 0 1 0 0 2]T , [1 0 0 1 0 1 1]T }

C(aat7) = {[1 1 0 0 0 1 1]T , [0 2 0 0 0 0 2]T }
C(aat7t5) = {[1 1 0 0 1 1 0]T , [0 2 0 0 1 0 1]T }
C(aat7t5t5) = {[0 2 0 0 2 0 0]T }
C(aat7t5t5a) = {[1 1 0 0 2 0 0]T }
C(aat7t5t5aa) = {[2 0 0 0 2 0 0]T }

.

Finally, since the net is bounded, it is possible to compute the sets of admissible markings by following
the procedure mentioned in the introduction. Figure 6 shows the DFA (33 states and 69 transitions)
obtained from the non deterministic reachability graph (42 states and 99 transitions) of the net.
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5 Conclusions

In this paper we have presented a marking estimation procedure that can be applied to λ-free labeled
Petri nets. Under the assumption that all nondeterministic transitions are contact-free, we prove that
the set of markings consistent with an observed word can be described by a constraint set of linear
inequalities: this set has a fixed structure that does not change as the length of the observed sequence
increases.

We plan to extend our results in several ways.

Firstly, we plan to remove the contact-free assumption, allowing the subnet composed of the nondeter-
ministic transitions to have a more general structure. Note however that, as discussed in Section 4, when
the contact-freeness assumption is removed, the form of the linear algebraic characterization cannot be
the same, because the set of consistent nondeterministic firing vectors may be a non convex set.

Then, we believe it may be possible to modify the structure of the constraint set to also take into account
the case in which only a partial information on the initial marking (not in the forms considered in
Subsection 4.3.3) is known.

Appendix

Preliminary results

We first present two technical results.
Lemma 13. The upper bounds computed using Algorithm 9 are such that for all a ∈ En and for all
τ ∈ Ta:

uw(τ) ≤ z(Mb,w, τ).

Proof. We prove this by induction on the length of w. Assume that there exists only one nondeterministic
event a, thus Tn ≡ Ta. Note that this does not affect the validity of the proof thanks to the contact-
freeness assumption A4.

(Basis step) The result obviously holds for w = ε, since in this case ∀τ ∈ Ta it holds 0 = uε(τ) ≤
z(Mb,ε, τ).

(Inductive step) We show that if for a given w, uw(τ) ≤ z(Mb,w, τ), then ∀ e ∈ E: uwe(τ) ≤ z(Mb,we, τ)

We consider the four cases of Algorithm 9.

Case A. In this case bounds u’s and enabling degrees z’s are not modified and the result follows by
induction.

Case B. In this case for all τ it holds

uwe(τ) = uw(τ)−
∑
t∈τ

σα(t); and z(Mb,we, τ) = z(Mb,w, τ)−
∑
t∈τ

σα(t),

and the result follows by induction.

Case C. When case C applies, we can update the values of the bounds u’s and enabling degrees z’s
considering a transition t̂ ∈ Tr(t) at a time.
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(a) It holds uwe(t̂) = min{uw(t̂), z(Mb,we, t̂)} ≤ z(Mb,we, t̂).

(b) Assume t̂ 6∈ τ . Then uwe(τ) = uw(τ) and z(Mb,we, τ) = z(Mb,w, τ) and the result follows by
induction.

(c) Assume that t̂ ∈ τ and τ ∈ {t̂}. Then by definition it holds that

uwe(τ) = min
{
uw(τ), uwe(t̂) + uw(τ \ {t̂})} ≤ uwe(t̂) + uw(τ \ {t̂})

≤ z(Mb,we, t̂) + z(Mb,w, τ \ {t̂}) = z(Mb,we, t̂) + z(Mb,we, τ \ {t̂})

= z(Mb,we, τ)

where the second inequality follows from the inductive step.

Case D. By definition, uwe(τ) = min{uw(τ), z(Mb,w, τ)} ≤ z(Mb,w, τ) = z(Mb,we, τ).

Corollary 14. When a nondeterministic event e ∈ En is observed, the upper bounds computed using
Algorithm 9 (case D) are such that for all e ∈ En and for all τ ⊆ Te:

uw(τ) ≤ uwe(τ) ≤ uw(τ) + 1.

Proof. By definition, in case D of the algorithm the bounds are updated as follows:

uwe(τ) = min{uw(τ) + 1, z(Mb,w, τ)}.

Thus the second inequality is obvious, while the first one can be proved observing that

uwe(τ) = min{uw(τ) + 1, z(Mb,w, τ)} ≥ min{uw(τ), z(Mb,w, τ)} = uw(τ)

where the last equality follows from the previous lemma.

Main result: proof of Theorem 8

We prove this by induction on the length of the observed word.

(Basis step) When no event is observed, i.e., w = ε, using equation (1) we have that M(ε) = {M0}, thus
the statement of the proposition holds.

(Inductive step) Assume that M(w) = C(w) for a given word w.

Let e be a newly observed event. We have to prove that M(we) = C(we).

For simplicity of presentation in the following we assume that there exists only one nondeterministic
event a, thus Tn ≡ Ta. Note that such an assumption does not affect the validity of the proof thanks to
the contact-freeness hypothesis.

In the following Sa(w), M(w), C(w), uw(τ), Mb,w and z(Mb,w, τ) are simply denoted S, M, C, u(τ), Mb

and z(τ) respectively, while the corresponding elements associated to we are denoted S ′, M′, C′, u′(τ),
M ′

b and z′(τ).
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Part 1: we show that M′ ⊆ C′

When a deterministic event t is observed (cases A, B, and C of Algorithm 9), the statement is proved if
we show that for all M ′ ∈M′ the predecessor marking M

def= M ′ −C(·, t) is such that M ∈ C = M, and
M enables t.

Equivalently, we will prove that

(∀σ′ ∈ S ′) M ′ def= M ′
b + Caσ′ =⇒

(∃σ ∈ S) M
def= M ′

b + Caσ′ − C(·, t) = Mb + Caσ and M ≥ Pre(·, t).

We discuss the three cases separately.

Case A. In such a case S = S ′, therefore if we take σ = σ′ we also have σ ∈ S. Moreover, being
M ′

b = Mb + C(·, t), then M
def= M ′

b + Caσ′ − C(·, t) = Mb + Caσ. Finally, to prove that M ≥
Pre(·, t), it is sufficient to observe that the firing of t yield M ′ def= M ′

b + Caσ′ ≥ Post(·, t) =⇒
Mb + Post(·, t) − Pre(·, t) + Caσ′ ≥ Post(·, t) =⇒ M = Mb + Caσ ≥ Pre(·, t), thus proving the
statement.

Case B. In this case there is no a priori inclusion relationship among S and S ′. If we take σ = σ′ + σα

(where σα is specified in Algorithm 9) then σ ∈ S. In fact by construction, for all τ ⊆ Ta,

σ′(τ) ≤ u′(τ) = u(τ)−
∑
t∈τ

σα(t) =⇒ σ(τ) = σ′(τ) +
∑
t∈τ

σα(t) ≤ u(τ).

Therefore, being M ′
b = Mb + C(·, t) + Caσα =⇒ M

def= M ′
b + Caσ′ − C(·, t) = Mb + Caσ. To

prove that M ≥ Pre(·, t), we observe that the firing of t yield M ′ def= M ′
b + Caσ′ ≥ Post(·, t) =⇒

Mb + Caσα + Post(·, t)−Pre(·, t) + Caσ′ ≥ Post(·, t) =⇒ M = Mb + Caσ ≥ Pre(·, t), thus proving
the statement.

Case C. In such a case S ′ ⊆ S, therefore given a σ′ ∈ S ′, we can always choose σ = σ′ and σ ∈ S.
Moreover, being M ′

b = Mb + C(·, t) =⇒ M
def= M ′

b + Caσ′ − C(·, t) = Mb + Caσ. Finally, to prove

that M ≥ Pre(·, t), as in the previous items, we observe that the firing of t yield M ′ def= M ′
b+Caσ′ ≥

Post(·, t) =⇒ Mb + Post(·, t) − Pre(·, t) + Caσ ≥ Post(·, t) =⇒ M = Mb + Caσ ≥ Pre(·, t), thus
proving the statement.

When the nondeterministic event a is observed (case D of Algorithm 9), the statement is proved if we
show that for all M ′ ∈M′, among the predecessor markings of M ′

P(M ′) def= {M ∈ Nm | (∃t ∈ Ta) M [t〉M ′},
there exists one marking M ∈ P(M ′) such that M ∈ C = M, and M enables t.

Case D. We prove this by induction on the cardinality of the set |Ta|, i.e., by induction on the number
of nondeterministic transitions.

(Base step) When |Ta| = 2, the result holds because we have shown in [8] that M′ = C′ 3.
3Note that in [8] we considered a slightly different linear algebraic characterization of the set of consistent markings. In

fact, in [8] we do not define the basis marking, and the admissible firing vectors are assumed to be firable at the initial

marking M0. The components of the admissible firing vectors associated to deterministic transitions are exactly known,

while an upper bound is given on the maximum number of times each nondeterministic transition may have fired. Finally,

we also know how may times each nondeterministic event has been observed.

Using the notation of [8], if we assume that when the observed word is w, M0
def
= Mb and nq

def
= 0 for all tq ∈ T d, then

the two linear characterizations are coincident. In fact, for all nondeterministic transition t, zin
r (t) is equal by definition to

the enabling degree z(t) at the actual basis marking Mb.
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(Inductive step) Assume now that for |Ta| = n− 1 it holds that M′ ⊆ C′.
We prove the result holds also when |Ta| = n.

In fact, given a σ′ ∈ S ′, or equivalently a marking M ′ def= M ′
b + Caσ′ ∈M′, let us define the set

T+ = {t ∈ Ta | σ′(t) = u′(t) = u(t) + 1}
of the nondeterministic transitions that according to the chosen σ′ have fired a number of times
greater than their firing bound u at the previous step.

It is immediate to show by contradiction that Ta 6= T+. In fact, assume Ta = T+: then4

u′(Ta) ≥ σ′(Ta) =
∑

t∈Ta

σ′(t) =
∑

t∈Ta

u′(t) = |Ta|+
∑

t∈Ta

u(t) ≥ |Ta|+ u(Ta) = n + u(Ta),

thus contradicting the fact that u′(Ta) = u(Ta) + 1.

Assume t̃ is a nondeterministic transition that does not belong to T+ and let ñ = σ′(t̃) ≤ u(t̃).
We will show that among all possible predecessors of M ′ there exists a consistent marking M ∈ C
that can be reached from the basis marking Mb firing transition t̃ exactly ñ times. Since M and
M ′ correspond to firing vectors σ ∈ S and σ′ ∈ S ′ with σ(t̃) = σ′(t̃), then ∃ t̂ ∈ Ta \ {t̃} such that
M [ t̂ 〉 M ′.

To show this we define two new constraint sets S̃ and S̃ ′ obtained, resp., from S and S ′ substituting
σ(t̃) = σ′(t̃) = ñ.

• Note that while S contains 2n − 2 inequality constraints, S̃ contains 2n−1 − 2 inequality
constraints: in fact the inequality ñ ≤ u(t̃) is trivially verified and can be removed, while for
any other non empty τ ⊆ Ta \ {t̃} we have that the two inequalities

σ(τ) ≤ u(τ)
σ(τ) + ñ ≤ u(τ ∪ {t̃})

can be compacted into a single inequality

σ(τ) ≤ ũ(τ) def= min
{
u(τ), u(τ ∪ {t̃})− ñ

}
.

The same reasoning applies to the set S̃ ′ whose 2n−1 − 2 inequalities take the from

σ′(τ) ≤ ũ′(τ) def= min
{
u′(τ), u′(τ ∪ {t̃})− ñ

}
.

Finally, the equality constraint of S̃ and S̃ ′ are, respectively

σ(Ta \ {t̃}) = ũ(Ta \ {t̃}) = u(Ta)− ñ; σ(Ta \ {t̃}) = ũ′(Ta \ {t̃}) = u′(Ta)− ñ.

• Let us define M̃b = Mb + ñC(·, t̃) and M̃ ′
b = M ′

b + ñC(·, t̃). We can also denote z̃(τ) =∑
t∈τ z(M̃b, t): obviously, by assumption A4, if t̃ 6∈ τ it also holds that z̃(τ) =

∑
t∈τ z(Mb, t) =

z(τ).

• We now want to show that the new bounds of the set S̃ ′ are related to the bounds of the set
S̃ as prescribed by Algorithm 9, i.e., we need to show that

ũ′(τ) = min {ũ(τ) + 1, z̃(τ)} (3)

where the LHS is

ũ′(τ) = min
{
u′(τ), u′(τ ∪ {t̃})− ñ

}
= min

{
min {u(τ) + 1, z(τ)} , u′(τ ∪ {t̃})− ñ

}
= min

{
u(τ) + 1, z(τ), u′(τ ∪ {t̃})− ñ

}
,

4Here we are using the fact that
∑

t∈Ta
u(t) ≥ u(Ta), otherwise C = M = ∅.
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and the RHS is

min {ũ(τ) + 1, z̃(τ)} = min
{
min

{
u(τ), u(τ ∪ {t̃})− ñ

}
+ 1, z̃(τ)

}
= min

{
u(τ) + 1, z(τ), u(τ ∪ {t̃})− ñ + 1

}
.

Recalling Corollary 14, one can immediately see that Equation (3) may only be violated if the
LHS and RHS minima occur, respectively, at u′(τ ∪ {t̃})− ñ and at u(τ ∪ {t̃})− ñ + 1, and it
holds

u′(τ ∪ {t̃}) = u(τ ∪ {t̃}) < u(τ ∪ {t̃}) + 1.

However, this would imply that

min
{
u(τ ∪ {t̃}) + 1, z(τ ∪ {t̃})} = u′(τ ∪ {t̃}) = u(τ ∪ {t̃}) =⇒
z(τ ∪ {t̃}) = z(τ) + z(t̃) = u(τ ∪ {t̃}) =⇒
z(τ) = u(τ ∪ {t̃})− z(t̃).

But this leads to a contradiction, because we assumed that the RHS minimum occurs at
u(τ ∪ {t̃})− ñ + 1, hence

z(τ) ≥ u(τ ∪ {t̃})− ñ + 1 ≥ u(τ ∪ {t̃})− z(t̃) + 1,

being ñ ≤ u(t̃) ≤ z(t̃) by Lemma 13.
• If we consider the set

M̃ = {Mm ∈ N | M = M̃b + C̃aσ̃, σ̃ ∈ S̃} ⊆ M = C
where C̃a is the restriction of the incidence matrix to Ta \ {t̃}, by the assumption at the
inductive step (set S̃ ′ contains n − 1 variables) it follows that for any choice of σ̃′ ∈ S̃ ′ the
marking M̃ ′ = M̃ ′

b + C̃aσ̃′ is such that there exists a M̃ ∈ M̃ enabling a transition t̂ ∈ Ta \ {t̃}
and such that M̃ [t̂〉M̃ ′. If, in particular, we choose σ̃′ such that σ̃′(t) = σ′(t) ∀ t ∈ Ta \ {t̃} we
have that M ′ = M̃ ′, and this concludes the proof.

Part 2: we show that M′ ⊇ C′

When a deterministic event t is observed, the statement is proved if we demonstrate that

(∀σ ∈ S) if M
def= Mb + Caσ ≥ Pre(·, t) =⇒

(∃σ′ ∈ S ′) M ′ def= M + C(·, t) = M ′
b + Caσ′.

We discuss separately the four cases of Algorithm 9.

Case A. Let σ ∈ S be such that M
def= Mb + Caσ ≥ Pre(·, t). Because S = S ′, if we take σ′ = σ then

σ′ ∈ S ′. Finally, M [t〉M ′ where

M ′ = Mb + C(·, t) + Caσ = M ′
b + Caσ = M ′

b + Caσ′.

Case B. Let σ ∈ S be such that M
def= Mb+Caσ ≥ Pre(·, t). Because M [t〉 then σ ≥ σα (by Algorithm 9).

We can thus take σ′ = σ − σα and observe that σ′ ∈ S ′ because for all τ ∈ Ta,

σ′(τ) = σ(τ)− σα(τ) ≤ u(τ)−
∑
t∈τ

σα(t) = u′(τ),

while
σ′(Ta) = σ(Ta)− σα(Ta) = u(Ta)−

∑

t∈Ta

σα(t) = u′(Ta).

Finally, M [t〉M ′ where

M ′ = Mb + C(·, t) + Caσ = M ′
b − Caσα + Caσ = M ′

b + Caσ′.
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Case C. Given a σ ∈ S such that M
def= Mb + Caσ ≥ Pre(·, t). Because M [t〉 then for all t̂ ∈ Tr(t) it

holds σ(t̂) ≤ z′(t̂).

Let us take σ′ = σ and observe that for all τ ∈ Ta it holds σ′(τ) ≤ u′(τ). To show this, we can
update the values of u(τ) considering a transition t̂ ∈ Ta at a time.

(a) Assume τ = {t̂}. It holds σ(t̂) ≤ u(t̂) and σ(t̂) ≤ z′(t̂) then σ′(τ) = σ(τ) ≤ min{u(t̂), z′(t̂)} =
u′(t̂).

(b) Assume τ ∈ Ta and t̂ 6∈ τ . Then σ′(τ) = σ(τ) ≤ u(τ) = u′(τ).

(c) Assume τ ∈ Ta \ {t̂} and t̂ ∈ τ . Then by definition it holds that σ(τ) ≤ u(τ) and σ(τ) =
σ(t̂) + σ(τ \ {t̂}) ≤ u′(t̂) + u(τ \ {t̂}) hence

σ′(τ) = σ(τ) ≤ min
{
u(τ), u′(t̂) + u(τ \ {t̂})} = u′(τ).

Furthermore, for this choice of σ′ the equality constraint is verified as well, because σ′(Ta) =
σ(Ta) = u(Ta) = u′(Ta). This shows that σ′ ∈ S ′.
Finally it holds M [t〉M ′ where

M ′ = Mb + C(·, t) + Caσ = M ′
b + Caσ = M ′

b + Caσ′.

Case D. Given a σ ∈ S let M
def= Mb + Caσ. If M [t̂〉 with t̂ ∈ Ta, then σ(t̂) < z(t̂). This also implies

that for all non empty τ ⊆ Ta such that t̂ ∈ τ it holds: u′(τ) = u(τ) + 1.

Let us take σ′ such that σ′(t̂) = σ(t̂) + 1 and σ′(t) = σ(t) if t 6= t̂. We show that σ′ ∈ S ′. In fact:

(a) Assume τ ∈ Ta and t̂ 6∈ τ . Then σ′(τ) = σ(τ) ≤ u(τ) ≤ u′(τ) (where the last inequality follows
from Corollary 14.

(b) Assume τ ∈ Ta and t̂ ∈ τ . Then σ′(τ) = σ(τ) + 1 ≤ u(τ) + 1 = u′(τ).

(c) Assume τ = Ta. Then σ′(Ta) = σ(Ta) + 1 = u(Ta) + 1 = u′(Ta).

Finally it holds M [t〉M ′ where

M ′ = Mb + C(·, t̂) + Caσ = M ′
b + C(·, t̂) + Caσ = M ′

b + Caσ′.
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[12] Özveren, C.M., Willsky, A.S. (1990). ”Observability of discrete event dynamic systems,” IEEE Trans.
on Automatic Control, Vol. 35, No. 7, pp. 797-806.

[13] Peterson, J.L. (1981). Petri net theory and the modeling of systems, Prentice-Hall, 1981.

[14] Ramadge, P.J. (1986). ”Observability of discrete-event systems,” 25th Int. Conf. on Decision and
Control, Athens, Greece, pp. 1108-1112.

[15] Zhang, L., Holloway, L.E. (1995). ”Forbidden state avoidance in controlled Petri nets under partial
observation,” 33rd Allerton Conference, Monticello, Illinois, pp. 146–155.

21


