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Abstract

We consider the optimal control of switched linear autonomous systems whose switching
sequence is determined by a controlled automaton and where the objective is to minimize a
quadratic performance index over an infinite time horizon. The quantities to be optimized
are the sequence of switching times and the sequence of modes (or ”locations”), under the
following constraints: the sequence of modes has a finite length; the discrete dynamics of the
automaton restricts the possible switches from a given location to an adjacent location, with
a cost associated to each switch; the time interval between two consecutive switching times is
greater than a fixed quantity. We first show how a state-feedback solution can be computed
off-line through a numerical procedure. Then we show how the proposed procedure can be
extended to the case of an infinite number of switches.

Finally, we apply this procedure to the design of a semiactive suspension system. In
particular, a hybrid model of a quarter-car semiactive suspension system has been considered,
where each linear dynamics corresponds to a given value of the damping coefficient f .

1 Introduction

In this paper we focus our attention on a particular class of hybrid systems, namely switched
systems. The main feature of switched systems is that they may switch between many operating
modes, where each mode is governed by its own characteristic dynamical law [1]. In particular,
we consider switched linear systems composed by autonomous dynamics and we also take into
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account some physical constraints of practical relevance. We first assume that an upper bound on
the maximum number N of available switches is imposed. Then we show how, under reasonable
assumptions, the proposed procedure can be extended to the case of N = ∞ and successfully
apply this approach to the design of a semiactive suspension system.

1.1 The optimal control problem

The problem of determining optimal control laws for switched systems has been widely inves-
tigated in the last years and many results can be found in the control and computer science
literature. For continuous-time hybrid systems (this is the class considered in this paper) most
of the literature is focused on the study of necessary conditions for a trajectory to be opti-
mal [19, 23], and on the computation of optimal/suboptimal solutions by means of dynamic
programming or the maximum principle [5, 12, 15, 20, 25]. Optimal control of discrete-time
hybrid systems is tackled in [2].

In [9] we considered the case of switched linear systems composed of stable autonomous dy-
namics, with pre-assigned switching sequence (thus the only decision variables are the switching
times). We proved that the optimal control law is a state-feedback and there exists a numerically
viable procedure to compute the switching tables Ck showing the points of the state space where
the next optimal switch should occur when k switches of a sequence of length N are still avail-
able. In [4] we generalized this optimization problem by taking both the switching times and the
switching sequence as decision variables. The approach we proposed in [4] is still based on the
construction of “switching tables”. Using a simple procedure inspired by dynamic programming,
we have shown how it is possible to avoid the exponential growth of the computational cost as
the length of the switching sequence is increased.

In this paper we build on the results presented in [4] and extend the state-feedback control tech-
nique based on the construction of “switching tables” to also deal with constraints of practical
relevance [3].

Constraint 1. The switching sequence is subject to logical constraints of the type: if ik =
i then ik+1 ∈ succ(i), where ik is the index denoting the active dynamics at step k. This means
that from dynamics i not all other dynamics can be reached with a simple switch, but only
those whose index belongs to a given set, the set of successors of i, namely succ(i). This may be
described by an automaton where to each state is associated a dynamics, and to each transition
a switch.

Constraint 2. Once entered in a location i we cannot leave it before a time δmin(i) has elapsed.
This is a common constraint in many real applications: δmin may be the time necessary to
control an actuator, or it may be the scan time of a PLC that triggers the switches.

Note that if the automaton describing the allowed mode switches is strongly connected, then
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from each state it may be possible to reach all other states with a sequence of one or more
transitions. Without constraint 2 more than one transition may be executed in zero time, thus
practically making constraint 1 meaningless.

The main advantages of the proposed procedure may be briefly summarized as follows:
— it is guaranteed to find the optimal solution under the given constraints;
— it has a computational complexity of the order O(rn−1Ns2) (if a switch may occur at no
cost) or O(rnNs2) (if a cost is associated to a switch), where n is the dimension of the state
space, r is the number of samples in each direction, N is the length of the switching sequence
and s is the number of possible operating modes;
— it provides a “global” closed-loop solution, i.e., the tables may be used to determine the
optimal state feedback law for all initial states.

Another important contribution of this paper is that we also study the case of an infinite number
of switches. We show in detail that we can still compute a feedback control law using appropriate
switching tables. These tables are computed with the procedure proposed for a finite value of
N , provided that N is a large enough number.

1.2 The semiactive suspension design

A semiactive suspension [11, 13, 16, 21] consists of a spring and a damper but, unlike a passive
suspension, the value of the damper coefficient f can be controlled and updated. In some types
of suspensions, but this case is not considered here, it may also be possible to control the elastic
constant λs of the spring.

A semiactive suspension is a valid engineering solution — when it can reasonably approximate
the performance of the active control — because it requires a low power controller that can
be easily realized at a lower cost than that of a fully active one [7, 14]. Note, however, that a
semiactive system clearly lacks other important secondary advantages of the fully active one,
namely the ability to resist downward static forces due to passenger and baggage loads and to
control the altitude of the vehicle.

The optimal control technique known as LQR [18] is probably the simplest way to design an
active law for suspension systems and such an idea has been initially proposed by Thompson
[24]. In such a case the objective is that of minimizing a given performance index, that consists
of a quadratic cost. The control input is the value u(t) of the force generated by the suspension.
The optimal law takes the form of a state feedback law with constant gains, i.e., u(t) = −Kx(t),
where x(t) is the state of the system.

In this paper we design a semiactive suspension system, assuming that the damping coefficient
f(t) may take any value within a finite set F = {f1, f2, · · · , fs} where f1 < f2 < · · · < fs. The
resulting model is a hybrid system where a different location corresponds to each value of f .
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The control input is now the discrete switch: we appropriately change the value of f , switching
from a location to another one, with the objective of minimizing a given performance index,
that consists of a quadratic cost. Even in this case, the optimal law takes the form of a state
feedback law: in fact in the paper it is shown that the optimal switch can be triggered by only
looking at the current state x(t).

As in [8] we assume that the time required to update the damping coefficient is δmin. Further-
more, within this time it is only possible to pass to adjacent values of f , i.e., if f(t) = fi then
f(t + δmin) ∈ {fi−1, fi, fi+1}.

The results of some numerical simulations show that the proposed semiactive suspension system
always provides a good approximation of a fully active suspension system, while producing
significant improvements with respect to purely passive suspensions.

The paper is structured as follows. In Section 2 we present the hybrid automata model that
describes the class of switching systems we consider in this paper. In Section 3 we state the
optimization problem we will solve. In Section 4 we show how the approach presented in [4]
may be extended to take into account the presence of the new constraints. The computational
complexity of the approach is presented in Section 5. In Section 6 we discuss how the proposed
approach can be efficiently used in the case of an infinite number of switches. Finally, in Section 7
we show in detail how the procedure can be applied to design a semiactive suspension system.

2 The hybrid automata model

A hybrid automaton (HA) consists of a classic automaton extended with a continuous state x ∈
Rn that may continuously evolve in time with arbitrary dynamics or have discontinuous jumps
at the occurrence of a discrete event [17]. In this paper we focus our attention on a particular
class of HA, that we call switched linear systems. We consider a structure H = (L, act, E,M)
defined as follows.

— L is a finite set of locations.

— act : L → Diff Eq is a function that associates to each location li ∈ L a linear differential
equation of the form ẋ = acti(x) = Aix.

— E ⊂ L× L is the set of edges. An edge e = (li, lj) is an edge from location li to lj , i 6= j.

— M : E → Rn×n associates to each edge e ∈ E a constant matrix in Rn×n. When the discrete
state switches from li to lj at time τ , the continuous state x is set to x(τ+) = Mi,jx(τ−) 1.

1Note that we consider a linear state jump. This framework is powerful enough to model several interesting

cases: projection, stretching/contraction of the norm, change of coordinates and, obviously, state continuity,
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The state of the HA is the pair (l, x) where l ∈ L is the discrete location and x ∈ Rn is the
continuous state. The hybrid automaton starts from some initial state (li0 , x0). The trajectory
evolves with the location remaining constant and the continuous state x evolving according to
the act function at that location. When at time τ a switch is made to location li1 the continuous
state is initialized to a new value x(τ+) = Mi0,i1x(τ−). The new state is the pair (li1 , x(τ+)).
The continuous state now moves with the new differential equation.

The classic definition of HA [17] is more general than the one considered here because: an
invariant set may be associated to each location; the activity set may be a differential inclusion
rather than a linear differential equation; guards are associated to transitions; the jump relation
may be arbitrary and not necessarily defined by a matrix M .

3 Optimal Control Problem

In this paper we deal with the problem of designing an optimal control policy for a hybrid
automaton H = (L, act, E, M) as defined in the previous section. Let s = |L| be the number of
discrete locations and S , {1, 2, · · · , s} be a finite set of integers, each one associated with a
discrete location. The index i identifies the location li and consequently the linear dynamics Ai.
We assume that a positive semi-definite matrix Qi is associated to each discrete location li ∈ L

and a cost Hi,j is associated to a switch from li to lj .

Let us define the set succ(i) = {j ∈ S : (li, lj) ∈ E} which denotes the indices associated to
the locations reachable from li, and δmin(i) which is the minimum permanence time in li.

For such a class of hybrid systems we want to solve the following optimal control problem

V ∗
N , min

I,T
{F (I, T )

,
∫∞
0 x′(t)Qi(t)x(t)dt +

∑N
k=1 hk(τk)

}

s.t. ẋ(t) = Ai(t)x(t), x(0) = x0, i(0) = i0

i(t) = ik for τk ≤ t < τk+1, k = 0, . . . , N

τ0 = 0, τN+1 = +∞
τk+1 ≥ τk + δmin(ik), k = 0, . . . , N

ik ∈ succ(ik−1), k = 1, . . . , N

x(τ+
k ) = Mik−1,ikx(τ−k ), k = 1, . . . , N

hk(τk) = Hik−1,ik if τk < +∞,

hk(τk) = 0 if τk = +∞, k = 1, . . . , N

(1)

The initial state x0 and the initial location i0 are given.

The control variables are T , {τ1, . . . , τN} and I , {i1, . . . , iN}, where T is the set of switching

obtained by using M = I (the identity matrix).
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times and I is the sequence of indices associated with discrete locations. We assume that the
maximum number N of allowed switches is fixed a priori.

The cost F (I, T ) consists of two components: a quadratic cost that depends on the time evolution
(the integral) and a cost that depends on the switches (the sum). Note that τk < +∞ means
that the k−th switch occurs after a finite amount of time, while τk = +∞ means that the k−th
switch does not occur: in the latter case hk(τk) = 0 thus its cost is not considered.

We denote i∗(t) = i∗k for τ∗k ≤ t < τ∗k+1 the switching trajectory solving (1), and I∗, T ∗ the
corresponding optimal sequences.

In order to make the problem solvable with finite cost V ∗
N , we assume the following:

Assumption 1 There exists at least one index i ∈ S such that Ai is strictly Hurwitz and N is
such that the location li may be reached from i0 in k ≤ N steps.

Let us define δk = τk+1 − τk. The optimal control problem (1) may also be rewritten as:

min
I,T

{
N∑

k=0

x′kQ̄ik(δk)xk +
N∑

k=1

hk(τk)

}

s.t. xk+1 = Mik,ik+1
Āik(δk)xk, k = 0, . . . , N − 1

x0 = x(0), i0 = i(0)
ik ∈ succ(ik−1), k = 1, · · · , N

δk ≥ δmin(ik), k = 0, · · · , N

(2)

where
Āi(δk) , eAiδk , (3)

Q̄i(δk) ,
(∫ τk+1

τk

eA′i(t−τk)Qie
Ai(t−τk)dt

)

=
(∫ δk

0
eA′itQie

Aitdt

)
,

(4)

thus Q̄i(δk) can be obtained by simple integration and linear algebra. When Ai is asymptotically
stable it is possible to write Q̄i(δk) = Zi − Ā′i(δk)ZiĀi(δk), where Zi is the unique solution of
the Lyapunov equation A′iZi + ZiAi = −Qi [10].

4 State-Feedback Control Law

In this section we show that the optimal control law for the optimization problem described in
the previous section takes the form of a state-feedback, i.e., it is only necessary to look at the
current system state x in order to determine if a switch from location lik−1

to lik , or equivalently
from linear dynamics Aik−1

to Aik , should occur.
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In particular, for a given mode i ∈ S when k switches are still available, it is possible to construct
a table Ci

k that partitions the state space Rn into si regions Rj ’s, where si = |succ(i)| + 1.
Whenever iN−k = i we use table Ci

k to determine if a switch should occur: as soon as the state
reaches a point in the region Rj for a certain j ∈ succ(i) we will switch to mode iN−k+1 = j; on
the contrary, no switch will occur while the system’s state belongs to Ri.

This is an important result because it is well known that a state-feedback control law has many
advantages over an open-loop control law, including that the computation of the control law can
be done off-line as opposed to being performed on-line. On-line computations are burdensome,
especially if a disturbance acting on the system may cause the system state to deviate from its
expected value.

To prove this result, we show constructively how the tables Ci
k can be computed using a dynamic

programming argument. We first show how the tables Ci
1 (i ∈ S) for the last switch can be

determined. Then, we show by induction how the tables Ci
k can be computed once the tables

Ci
k−1 are known.

For sake of brevity, we only give in the rest of this section a short description of the procedure.
The complete derivation can be found in [10, 4].

4.1 Computation of the Tables for the Last Switch

Let us assume that iN−1 = i, i.e., after N − 1 switches the current system dynamics is that
corresponding to matrix Ai, and the current state vector is y with ||y|| = 1. We show how to
compute the table Ci

1.

The optimal remaining cost starting from y will consist of two terms: a term due to the time-
driven evolution, plus (if the N−th switch occurs and iN = j) the switching cost Hi,j .

— Let us first consider the case in which no switch occurs. The remaining cost starting from y

is only due to the time-driven evolution and is

F ∗
0 (y, i) = y′Q̄i(+∞)y. (5)

— If the system evolves with dynamics Ai for a time % and then a switch to Aj (j ∈ succ(i))
occurs, the remaining cost starting from y only due to the time-driven evolution (disregarding
the switching cost) is

T1(y, i, %, j) = y′Q̄i(%)y + y′Ā′i(%)M ′
i,jQ̄j(+∞)Mi,jĀi(%)y. (6)

Note that T1 assumes that we can switch after a time interval % = 0, i.e., the constraint about
the minimum sojourn time in li has already been fulfilled.
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Let us now consider any other vector x such that x = λy, with λ ∈ R. We can compute for this
new vector the equivalent of (5) and (6), i.e.,

F ∗
0 (x, i) = λ2F ∗

0 (y, i). (7)

We discuss separately two cases.

— If all switching costs are null, the optimal remaining cost starting from x and allowing at
most one switch is

F ∗
1 (x, i) = λ2 min

j∈{succ(i),i}
min
%≥0

{T1(y, i, %, j)}. (8)

In general the argument that minimizes (8) may be not unique. To uniquely choose one optimal
argument, we impose the following lexicographic ordering. Let (%, j) and (%′, j′) be two different
optimal arguments of (8): we say that (%, j) ≺ (%′, j′) if % > %′ or, in case of % = %′, j < j′.
We always chose the optimal argument (%, j) such that (%, j) ≺ (%′, j′) for all other optimal
arguments (%′, j′).

If we denote (%∗(x, i), j∗(x, i)) the optimal argument of (8), obviously, being x = λy it also holds
that

(%∗(x, i), j∗(x, i)) = (%∗(y, i), j∗(y, i)).

Thus, the optimal switch from mode i to mode j∗(y, i) should occur after a delay %∗(y, i).

We can say that a vector x = λy belongs to Rj (j ∈ succ(i)) if and only if j = j∗(y, i) and
%∗(y, i) = 0, because in this case the optimal remaining cost can be obtained switching to mode
j with no delay.

Finally, Ri = Rn \∪j∈succ(i)Rj . Since the value of %∗(x, i) does not depend on λ, it immediately
follows that these regions are homogeneous2, i.e., if x ∈ Rj then λx ∈ Rj , for all real numbers
λ. This property may be exploited in the construction of the table since it is only necessary to
compute F ∗

1 (y, i) and %∗(y, i) for all vectors y that belong to the unitary semi-sphere.

— Assume that not all Hi,j (this is the cost of switching from mode i to mode j) are null and let
us define Hi,i = 0. Taking into account the switching cost, the optimal remaining cost starting
from x and allowing at most one switch is

F ∗
1 (x, i) = min

j∈{succ(i),i}
min
%≥0

{λ2T1(y, i, %, j) + Hi,j}. (9)

The couple that minimizes the above equation is (%∗(x, i), j∗(x, i)), uniquely determined using
the previous lexicographic ordering. Thus the optimal switch should occur after a delay %∗(x, i).

We can say that a vector x belongs to Rj (j ∈ succ(i)) if and only if j = j∗(x, i) and %∗(x, i) = 0.
Finally, Ri = Rn \ ∪j∈succ(i)Rj . In this case it is not sufficient to compute F ∗

1 (y, i) and %∗(y, i)
for all vectors y that belong to the unitary semi-sphere but we need to grid all the state space.

2A term also used to define the special form of these regions is conic.
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4.2 Computation of the Tables for the Intermediate Switches

We now generalize the previous approach to determine the tables Ci
k, for k = 2, . . . , N .

Assume that: (a) we have already computed the tables Ci
k−1 for all i ∈ S; (b) for each vector

x and each mode i ∈ S we know the optimal cost F ∗
k−1(x, i) for the remaining time-driven

evolution that starts from x with dynamics Ai and allows k − 1 more switches.

With the same argument of the previous subsection we can write that

F ∗
k (x, i) = min

j∈{succ(i),i}
min
%≥0

{Tk(x, i, %, j) + Hi,j}, (10)

where

Tk(x, i, %, j) = x′Q̄i(%)x + x′j(%)Q̄j(δmin(j))xj(%) + F ∗
k−1(Āj(δmin(j))xj(%), j) (11)

and xj(%) = Mi,jĀi(%)x. Each member of the sum that defines Tk(x, i, %, j) has the following
physical meaning: the first one is the cost of the evolution in the current location li for a time
%, the second one is the cost of the minimum permanence δmin(j) in the successive location lj ,
the third one is the optimal remaining cost from point Āj(δmin(j))xj(%) to infinity and its value
has been determined at the previous step of the algorithm. We are thus able to compute the
table Ci

k, as we did before: if all switching costs are null it is sufficient to sample only along the
unitary semi-sphere, otherwise it is necessary to grid all the state space.

4.3 Computation of the Table for the Initial Mode

An additional degree of freedom that one may want to exploit is that of choosing the initial
location, i.e., we assume that only the initial continuous state x(0) = x0 is given.

To decide the optimal initial location li0 we may use the knowledge of the costs F ∗
N (·, i) that are

evaluated during the construction of the tables Ci
N , i ∈ S. We define the cost

F ∗
N+1(x) = min

i∈S
{x′Q̄i(δmin(i))x + F ∗

N (Āi(δmin(i))x, i)},

where the argument of the minimization is the optimal global cost over the infinite time horizon
starting from point x and constrained to location li for at least a δmin(i) amount of time.
Thus we construct a new table CN+1 showing a partition of the state space Rn into s regions
R1,R2, . . . ,Rs.

Each region in this table is defined as follows:

Ri = {x | F ∗
N (x, i) = F ∗

N+1(x)}

i.e., if the initial state belongs to region Ri we must choose i0 = i to minimize the total cost.
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5 Computational Complexity

We discuss here the computational complexity involved in the construction of the tables following
the approach sketched in the previous section.

If the state space is Rn and we take r samples along each direction, then the computational
complexity for constructing each table using the algorithm given by Giua et al. [9, 10] is O(rn−1)
if all switching costs are null, because the table contains two regions that can be determined by
solving a one-parameter optimization problem for each vector y on the unitary semi-sphere. On
the contrary, if not all switching costs are null the complexity is O(rn) because it is necessary
to grid all the state space.

For sake of simplicity, let us consider a problem formulation in which all switching costs are
null. The complexity of solving the optimal control problem for a pre-assigned sequence of
length N + 1 is O(Nrn−1), because for each switch a new table must be determined.

Using the algorithm given in the previous section, for each switch it is necessary to compute
s tables, one for each discrete location. Furthermore the complexity of computing the tables
Ci

k is equal to O((si − 1)rn−1). In fact each table contains si regions that can be determined
solving si−1 one-parameter optimization problems for each vector y on the unitary semi-sphere.
Thus the complexity of solving the optimal control problem (1) for a sequence of length N is
O(Nrn−1

∑s
i=1(si − 1)) ≤ O(Nrn−1s2), because si ≤ s.

Finally, if not all switching costs are null, following the same argument one can immediately
show that the complexity is O(Nrns2). In any case, the complexity is quadratic in the number
of possible locations.

If we solve by brute force an optimal control problem of the form (1) by investigating all ad-
missible switching sequences (they are (s − 1)N in the worst case) the complexity becomes
O(Nrn−1sN ) or O(NrnsN ) depending on the presence of switching costs.

6 An infinite number of switches

In this section we discuss how, under appropriate assumptions, the above procedure can be
efficiently extended to the case of N = ∞. In particular, we consider an optimal control problem
of the form (1) where

(i) for all i ∈ S, the linear dynamics Ai is stable;

(ii) no cost is associated to switches, i.e., Hi,j = 0 for all i, j ∈ S;

(iii) the state x is continuous, i.e., Mi,j = In for all i, j ∈ S, where In denotes the n-th order
identity matrix.
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(iv) for all i ∈ S, Qi > 0.

Let us preliminary state an obvious monotonicity result.

Property 1 Let N, N ′ ∈ N. If N < N ′ and the switched system evolves along an optimal
trajectory, then for any initial state (x0, i0),

+∞ > V ∗
N (x0, i0) ≥ V ∗

N ′(x0, i0).

Proof: We first observe that by assumption (i) V ∗
N (x0, i0) is finite for any N ≥ 1. Now, we

prove the second inequality by contradiction. Assume that V ∗
N ′(x0, i0) > V ∗

N (x0, i0). Then it
is obvious that the same evolution that generates V ∗

N (x0, i0) is also admissible for (1) when a
larger value N ′ of switches is allowed. This leads to a contradiction. ¤

Proposition 1 For any initial state (x0, i0), x0 6= 0, and ∀ ε′ > 0, ∃ N̄ = N̄(x0, i0) such that
for all N > N̄ , V ∗

N (x0, i0)− V ∗
N̄

(x0, i0) < ε′.

Proof: We first observe that by assumptions (iii) and (iv) V ∗
N (x0, i0) is lower bounded by a

strictly positive number. Then, the result trivially follows from the monotonicity property above
and the fact that V ∗

N is lower bounded. ¤

Proposition 2 For any initial state (x0, i0), x0 6= 0, and ∀ ε > 0, ∃ N̄ such that for all N > N̄ ,

V ∗
N (x0, i0)− V ∗

N̄
(x0, i0)

V ∗
N (x0, i0)

< ε.

Proof: Under the assumption (ii) the optimal costs are quadratic functions of x0, i.e., if
x0 = λy0, then V ∗

N (λy0, i0) = λ2V ∗
N (y0, i0) and V ∗

N̄
(λy0, i0) = λ2V ∗

N̄
(y0, i0). Moreover, by

Proposition 1 ∀ (y0, i0) and ∀ ε′ > 0, ∃ N̄(y0, i0) such that ∀ N > N̄(y0, i0), V ∗
N (y0, i0) −

V ∗
N̄

(y0, i0) < ε′. Hence if we define

N̄ = max
i0∈S, y0 : ||y0||=1

N̄(y0, i0)

it holds that

V ∗
N (x0, i0)− V ∗

N̄
(x0, i0)

V ∗
N (x0, i0)

=
λ2[V ∗

N (y0, i0)− V ∗
N̄

(y0, i0)]
λ2V ∗

N (y0, i0)
≤ ε′

min
y0 :||y0||=1

V ∗
N (y0, i0)

= ε.

¤

According to the above result, one may use a given relative tolerance ε to approximate two cost
values, i.e.,

V ∗
N (x, i)− V ∗

N ′ (x, i)
V ∗

N (x, i)
< ε =⇒ V ∗

N (x, i) ∼= V ∗
N ′ (x, i).

Hence, we can now prove the main result of this section.
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Theorem 1 Given a fixed relative tolerance ε, if N̄ is chosen as in Proposition 2 then for all
N > N̄ + 1 it holds that Ci

N = Ci
N̄+1

.

Proof: By definition V ∗
k (x0, i0) = F ∗

k (x0, i0) for all k ≥ 1, hence from equations (10) and (11)
it follows that

V ∗
N (x0, i0) = min

j∈{succ(i0),i0}
min
%≥0

{
x′0Q̄i0(%)x0 + x′(%)Q̄j(δmin(j))x(%) + V ∗

N−1(Āj(δmin(j))x(%), j)
}

where x(%) = Āi0(%)x0. Now, being by assumption N − 1 > N̄ , by virtue of Proposition 2 we
may approximate

V ∗
N−1(Āj(δmin(j))x(%), j) ∼= V ∗̄

N (Āj(δmin(j))x(%), j)

thus

V ∗
N (x0, i0) ∼= min

j∈{succ(i0),i0}
min
%≥0

{
x′0Q̄i0(%)x0 + x′(%)Q̄j(δmin(j))x(%) + V ∗̄

N (Āj(δmin(j))x(%), j)
}

= V ∗̄
N+1

(x0, i0).

Therefore, the optimal arguments (%∗, j∗) used to compute Ci
N and Ci

N̄+1
are the same. ¤

The above result allows one to compute with a finite procedure the optimal tables for a switching
law when N goes to infinity. In such a case, in fact, it holds that

Ci
∞ = lim

N→∞
Ci

N = Ci
N̄+1.

Hence, we only need to use the tables Ci∞, i ∈ S for all switches.

To construct the tables Ci∞ the value of N̄ is needed. We do not provide so far any analytical
way to compute N̄ , therefore our approach consists in constructing tables until a convergence
criterion is met.

Finally, we recall that under the assumptions (i) to (iv), the system, optimally controlled with
an infinite number of switches, is stable as proved in [10].

7 Semiactive suspension design

In this section we show how the proposed methodology can be successfully applied to the design
of a semiactive suspension system.

7.1 Dynamical models of the suspension system

We consider a quarter car suspension system and derive two different dynamical models. The
first one is a two-degrees of freedom fourth order dynamical model that takes into account the
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dynamics of the tire. The second one is a one-degree of freedom second order dynamical model
that neglects the effect of the tire.

While the second order model allows one to study the filtering properties of the suspension in
terms of passenger comfort, it does not describe the interaction of the tire with the suspended
mass and the ground, and thus it cannot be used to evaluate other important features such as
road holding and rideability.

From a tutorial point of view, however, the reduced order model is extremely useful, because it
is possible to give a geometrical representation of the optimal switching regions, thus providing
a more intuitive explanation of the proposed approach. This is the main reason that led us to
consider both models.

7.1.1 The fourth order dynamical model

Let us now consider the completely active suspension system of a quarter car with two degrees
of freedom schematized in Figure 1.a. We used the following notation:

— Mw is the equivalent unsprung mass consisting of the wheel and its moving parts;

— Ms is the sprung mass, i.e., the part of the whole body mass and the load mass pertaining
to only one wheel;

— λt is the elastic constant of the tire, whose damping characteristics have been neglected.
Note that this is in line with almost all researchers who have investigated synthesis of
active suspensions for motor vehicles as the tire damping is minimal;

— x1(t) is the deformation of the suspension with respect to (wrt) the static equilibrium
configuration, taken as positive when elongating;

— x2(t) is the vertical absolute velocity of the sprung mass Ms;

— x3(t) is the deformation of the tire wrt the static equilibrium configuration, taken as
positive when elongating;

— x4(t) is the vertical absolute velocity of the unsprung mass Mw;

— u(t) is the control force produced by the actuator.

It is readily shown that the state variable mathematical model of the system under study is
given by [7]

ẋ(t) = Ax(t) + Bu(t) (12)
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Figure 1: Scheme of the two degrees-of-freedom suspension: (a) active suspension; (b) semiactive suspen-
sion. Scheme of the one degree-of-freedom suspension: (c) active suspension; (d) semiactive suspension.

where x(t) = [x1(t), x2(t), x3(t), x4(t)]T is the state, and the constant matrices A and B have
the following structure:

A =




0 1 0 −1
0 0 0 0
0 0 0 1
0 0 −λt/Mw 0




, B =




0
1/Ms

0
−1/Mw




.

Now, let us consider Figure 1.b that represents a conventional semiactive suspension composed
of a spring and a damper with adaptive characteristic coefficient f = f(t).

The effect of this suspension is equivalent to that of a control force

us(t) = −
[

λs f(t) 0 −f(t)
]
x(t). (13)

Note that, as f may vary, us(t) is both a function of f(t) and of x(t). It is immediate to verify
that the state variable mathematical model of the semiactive suspension is still given by equation
(12) where u(t) is replaced by us(t). Therefore, in such a case the system dynamics is regulated
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by the following state equation:

ẋ(t) = Ax(t) =




0 1 0 −1
−λs/Ms −f(t)/Ms 0 f(t)/Ms

0 0 0 1
λs/Mw f(t)/Mw −λt/Mw −f(t)/Mw




x(t). (14)

7.1.2 The second order dynamical model

If the dynamics of the tire is completely neglected, the suspension system of a quarter car can
be schematized as shown in Figures 1.c and d. More precisely, figure c provides the scheme
of a completely active suspension system, while figure d provides the scheme of a semiactive
suspension system, where the physical meaning of all variables is the same as in the two-degrees
of freedom case.

The state variable mathematical model of the active system is still given by a linear equation
of the form (12), where the state is x(t) = [x1(t), x2(t)]T , and the constant matrices A and B

have the following structure:

A =

[
0 1
0 0

]
, B =

[
0

1/Ms

]
.

The effect of the semiactive suspension is equivalent to that of a control force

us(t) = −
[

λs f(t)
]
x(t). (15)

Thus, the system dynamics of a semiactive suspension is regulated by the following state equa-
tion:

ẋ(t) = Ax(t) =

[
0 1

−λs/Ms −f(t)/Ms

]
x(t). (16)

7.2 Semiactive suspension design

Now, let us discuss in detail how the proposed methodology can be successfully used to design
a semiactive suspension system.

As already said in the Introduction, we assume that the value of the damping coefficient f may
take values within a finite set F = {f1, f2, · · · , fs} where f1 < f2 < · · · , fs. We select the value
of f in F so as to minimize a given performance index, consisting of a quadratic cost depending
on the time evolution.

Moreover, we assume that:

(A1) the state is measurable;
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(A2) whenever f is updated, its value remains the same within a given time interval δmin, that
does not depend on the current value of f ;

(A3) if at time t the damping coefficient is updated to f(t) = fi ∈ F , and at least one more
switch is available, then at time t + δmin the value of f may either remain the same or it
may switch to an ”adjacent” value, namely,

f(t + δmin) ∈





{fi, fi+1} i = 1
{fi−1, fi, fi+1} i = 2, · · · , s− 1
{fi−1, fi} i = s

(17)

Note that in a first approximation, assumption (A2) enables us to take into account the fact
that the damping coefficient f cannot be updated at an arbitrarily high frequency. Clearly, the
amplitude of the time interval δmin depends on the particular physical damper. As an example,
in the case of a solenoid valve damper [8, 22], under the above assumption (A2) an admissible
value is δmin = 7 ms [8]. If the assumption (A3) is removed, and we assume that the value of
f may arbitrarily change from any value to any other one, a larger δmin should be considered,
e.g., δmin = 30 ms [8].

Under the assumptions (A1) to (A3), the considered optimal control problem can be written as:

V ∗
N , min

I,T
{F (I, T ) ,

∫ ∞

0
x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t), x(0) = x0, i(0) = i0

i(t) = ik for τk ≤ t < τk+1, k = 0, . . . , N

τ0 = 0, τN+1 = +∞
τk+1 ≥ τk + δmin, k = 0, . . . , N

ik ∈ succ(ik−1), k = 1, . . . , N

x(τ+
k ) = x(τ−k ), k = 1, . . . , N

(18)

where matrices Ai(t) are uniquely defined given the value of f according to equations (14) or
(16), depending on the considered dynamical model. More precisely, to each value of f in F it
corresponds a matrix A(f(t)) that specifies the discrete state (location) of the hybrid system.

Note that the optimal control problem (18) is a particular case of (1) where no cost is associated
to switches, the state x is continuous, and the minimum permanence time in discrete locations
is the same for all locations.

Moreover, given the assumption (A3), the automaton showing all the allowed switches takes the
structure of a birth-death process and is shown in Figure 2.

In the following we present the results of some numerical simulations carried out on both the
second order and the fourth order dynamical system. In particular, we first assume that a finite
number N of switches is available, then we remove such an assumption, thus allowing the system
to perform an infinite number of switches.
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 l1  l2  ls-1
 ls

Figure 2: The hybrid automaton that defines the mode switching.

7.3 Application example

The proposed procedure has been applied to the quarter car suspension shown in Figure 1, with
values of the parameters taken from [11], namely, Mw = 28.58 Kg, Ms = 288.90 Kg, λs = 14345
N/m, and λt = 155900 N/m.

We assume that the damping coefficient f may take values within the finite set F [ Ns/m] =
{800, 1500, 2300, 3000}, while the minimum permanence time is equal to δmin = 7 ms.

7.4 Simulations on the second order model

We first present the results of some numerical simulations carried out on the second order
dynamical model of the suspension system.

A different weighting matrix is associated to each discrete location, or equivalently to each value
of f . In particular, we assume that

Qi(t) = Q(f(t)) = diag{1, 0}+ 0.8 · 10−9 · [λs f(t)]T · [λs f(t)].

In such a way, by virtue of equation (15), we can perform a significant comparison, in terms of
performance index, among the proposed semiactive suspension and an active suspension system,
considered as a target, and obtained by solving an LQR problem where Q = diag{1, 0} and
R = 0.8 · 10−9. Note that the numerical values of the weighting matrices Q and R are the same
as those already considered in [11].

Simulation 1: N = 6.

We first assume that a finite number N = 6 of switches is available. We evaluate off-line the N×s

switching tables. A state space discretization of r = 100 points along the unitary semisphere
and a minimum local search over three time constants were considered sufficiently fine.

We assume that the initial state is x0 = [0.1 0]T and i0 = 1.

The state trajectory that minimizes the performance index is depicted in Figure 3, where the
circle indicates the initial state and the squares indicate the values of the state at the switching
times. We found out T ∗(s) = {0.096, 0.1370, 0.222, 0.473, 0.482, 0.646}, I∗ = {1, 2, 3, 4, 3, 2, 3},
and J∗ = 1.419 · 10−3.
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Figure 3: The results of Simulation 1: the state trajectory.

Figure 4 shows, among the 24 tables constructed, only the 6 ones used by the controller during
the evolution of the system. The system initially evolves in location l1. When the minimum
permanence time δmin has elapsed, the controller must keep checking the color in table C1

6 (see
Figure 4) corresponding to the current state x. According to this color the controller decides
whether to remain in l1 or to switch to the adjacent location l2. In this case, no switch occurs
until a time τ1 = 0.096 s has elapsed, when the continuous state reaches the cyan area relative
to location l2. Now the controller will wait for the minimum permanence time and then consider
table C2

5 . The same procedure is repeated until all the available switches are performed.

Note that, given the structure of the automaton, while the switching tables associated to discrete
locations l2 and l3 may have up to 3 colors, the tables associated to locations l1 and l4 may have
at most two different colors.

To better appreciate the performance of the proposed semiactive suspension it is necessary to
look at the time evolution of the sprung mass displacement. This curve is reported in Figure 5.a
where we can also visualize the evolution of the fully active suspension considered as a target,
and that of a completely passive suspension obtained using a value of f = 1918 Ns/m [6].

In Figure 5.b we have reported the different values of the damping coefficient f during the
simulation.

In Table 1 we compare the values of the quadratic performance index obtained using the active
suspension (considered as a target), the semiactive suspension in the case of N = 6 (i0 = 1 in
all cases), and the passive suspension system obtained using f = 1918 Ns/m.

The results of Table 1, together with the results of other numerical simulations that have not
been reported here for sake of brevity, enable us to conclude that the proposed semiactive
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Figure 4: Tables used by the controller to compute the state evolution in Figure 3.
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Figure 5: The results of Simulation 1: (a) the time evolution of the sprung mass displacement; (b) the
different values of f used by the semiactive suspension.
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x0 semiactive (N = 6) semiactive (N = ∞) active passive

[0.100 0.000]T 1.419 · 10−3 1.419 · 10−3 1.278 · 10−3 1.546 · 10−3

[0.045 0.090]T 3.960 · 10−4 3.959 · 10−4 3.294 · 10−4 4.189 · 10−4

[−0.015 0.100]T 1.493 · 10−5 1.492 · 10−5 1.437 · 10−5 1.905 · 10−5

[−0.057 0.080]T 3.719 · 10−4 3.717 · 10−4 3.506 · 10−4 4.114 · 10−4

Table 1: Different values of the performance index in the case of some numerical simulations carried out
on the second order model.
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Figure 6: The first 6 switching tables for location l3 and N = 8.

suspension exhibits a behaviour that is intermediate between that of the passive suspension and
the considered active one, even if a small number of switches is allowed.

Simulation 2: N = ∞.

As already discussed in Section 6, for a sufficiently large value of N , the tables relative to the
first switches always converge to the same one, only depending on the discrete location l ∈ L.

As an example, assume N = 8 and consider the discrete location l3. The tables relative to
the first 6 switches, namely C3

k , k = 3, · · · , 8, are reported in Figure 6. We may observe that,
as the number of available switches increases, i.e., k goes from 3 to 8, the tables converge. In
particular, in this case the tables relative to the first two switches, namely C3

8 and C3
7 , are the

same. Now, if we consider a larger value of N , e.g. N = 9 (10), and look at the tables relative
to location l3, we may observe that C3

9 (C3
10) tables coincide with C3

8 and C3
7 . Using the notation

introduced in Section 6, we denote these tables as C3∞.

Analogous considerations may be repeated for all the other discrete locations.
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Figure 7: The results of Simulation 2: the state trajectory.

Now, let us consider the optimal control problem (18) with no bound on the maximum number
of available switches.

By virtue of the above convergence properties, this problem can be solved by using only the
tables Ci∞, for i ∈ S, as described in Section 6. These tables are not reported here for sake of
brevity.

Assume that the initial state is still equal to x0 = [0.1 0]T and i0 = 1.

The state trajectory that minimizes the performance index is reported in Figure 7 where the
circle indicates the initial state and the squares indicate the values of the state at the switching
times. It can be easily observed that this trajectory is practically coincident with that in Figure 3.
This clearly occurs because after the first 6 switches, the system has practically reached the
origin. As a consequence, the optimal value of the performance index J∗ is practically the same,
as it can be read in Table 1.

In Figure 8.a we have reported the sprung mass displacement of the semiactive suspension
together with that of the fully active suspension considered as a target, and that of a completely
passive suspension [6]. In Figure 8.b we can see the different values of the damping coefficient
f during the numerical simulation. Note that the periodicity of the switching sequence is a
consequence of the particular example (second order system, rotating dynamics), but it is not a
general result.
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Figure 8: The results of Simulation 2: (a) the time evolution of the sprung mass displacement; (b) the
different values of f used by the semiactive suspension.

7.5 Simulations on the fourth order model

Now, let us present the results of some numerical simulations carried out on the fourth order
dynamical model of the suspension system.

As in the previous case, a different weighting matrix is associated to each discrete location, or
equivalently to each value of f . In particular, we assume that

Qi(t) = Q(f(t)) = diag{1, 0, 10, 0}+ 0.8 · 10−9 · [λs f(t) 0 − f(t)]T · [λs f(t) 0 − f(t)].

In such a way, by virtue of equation (13), we can perform a significant comparison, in terms of
performance index, among the proposed semiactive suspension and an active suspension system,
considered as a target, and obtained by solving an LQR problem where Q = diag{1, 0, 10, 0}
and R = 0.8 · 10−9 [11].

Now, let us consider the most realistic case of N = ∞.

As already explained above, we first compute the N×s switching tables for a ”sufficiently” large
value of N until we observe that there exists a k < N such that for all i ∈ S, Ci

k = Ci
k+1 = · · · =

Ci
N . In this case we took N = 6 and we observed that the convergence occurs for k = 5. Thus,

we can reasonably assume Ci∞ = Ci
6, i = 1, · · · , 4.

These switching tables are not reported here because a significant graphical representation is
not possible3.

3See the appendix for a brief description of the algorithm that allowed the numerical construction of the tables
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Figure 9: The results of the simulation carried out on the fourth order model: (a) the time evolution of
the sprung mass displacement (x1 + x3); (b) the unsprung mass displacement x3; (c) the different values
of f used by the semiactive suspension.

Assume that the initial state is x0 = [0.1 0 0.01 0]T and i0 = 1.

In Figures 9.a and b we have reported the sprung mass and the unsprung mass displacement
of the semiactive suspension together with that of the fully active suspension considered as a
target, and that of a completely passive suspension [6]. In particular, by looking at plot (a)
that shows the most significant variable, we can conclude that the semiactive system guarantees
better performance than the passive one. In fact, in such a case, the behaviour of the semiactive
suspension system in terms of the sprung mass displacement, is quite similar to that obtained
using the purely active system. Finally, in Figure 9.c we can see the different values of the
damping coefficient f during the numerical simulation.

A comparison among the semiactive, the active and the passive suspension in terms of perfor-
mance index is given in Table 2. Note that in this table we have also reported the results of other
numerical simulations carried out for different values of the initial state x0. We may conclude

in R4.
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x0 semiactive active passive

x0 = [0.100 0 0.010 0]T 1.775 · 10−3 1.591 · 10−3 1.829 · 10−3

x0 = [−0.050 0.300 − 0.005 0.010]T 2.423 · 10−4 2.374 · 10−4 2.976 · 10−4

x0 = [0.050 0.300 0.005 0.010]T 1.011 · 10−3 8.200 · 10−4 1.052 · 10−3

x0 = [0.010 − 0.300 0.010 0.100]T 1.678 · 10−4 1.164 · 10−4 2.175 · 10−4

x0 = [0 0.400 0.010 0.300]T 3.513 · 10−4 3.109 · 10−4 4.312 · 10−4

x0 = [−0.080 − 0.100 0.012 0.400]T 1.144 · 10−3 8.903 · 10−4 1.151 · 10−3

Table 2: The results of the numerical simulations carried out on the fourth order model.

that the proposed semiactive suspension provides an intermediate performance between that of
the passive suspension and that of the purely active one.

8 Conclusions

We have considered a special class of autonomous linear switched systems where: a) the allowed
mode switches are described by an automaton where to each state is associated a dynamics, and
to each transition a switch; b) the interval between two consecutive switching times is bounded
from below. For this class we have shown that it is possible to extend the results presented
in [4] based on the construction of “switching tables” to solve an optimal control problem with
a state-feedback. We have also shown how the same approach can be used to deal with the case
of an infinite number of available switches.

The proposed approach has been applied to design a semiactive suspension system for road
vehicles. A hybrid model of the quarter-car semiactive suspension system has been considered,
where each linear dynamics corresponds to a given value of the damping coefficient f . The
results of some numerical simulations are presented and the comparison with both passive and
active suspensions is also shown.

Appendix

In this appendix we will show some basic steps that allowed us to apply the procedure of the
tables construction in R4, used to carry out the simulations described in section 7.5.

The main computational effort is the discretization of the state space. However the structure
of the problem, i.e., quadratic performance index with infinite time horizon and null switching
costs, lead us to switch conveniently to polar coordinates. Moreover the computation is carried
out only on the unitary ”hyper” semi-sphere, thus reducing to a third order discretization.

Let us first construct the relation between polar and cartesian system in Rn. The n polar
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coordinates are composed of 1 radius ρ and n − 1 angles. Given a point x = [x1, x2, · · · , xn],
clearly ρn = ‖x‖. Indicate with θn the angle formed by vector x and the ”hyper” plane xn = 0;

assign xn = ρnsin(θn). Now consider the equation of the ”hyper” sphere
n∑

i=1

‖xi‖2 = ρ2
n, that,

according to the previous assignments, becomes:

n−1∑

i=1

‖xi‖2 = ρ2
n(1− sin2(θn)) = ρ2

n−1 (19)

where ρn−1 = ρncos(θn). We now proceed in the same manner considering the ”hyper” sphere
of equation (19), in Rn−1. This can be repeated until the space is reduced to R2. We obtain the
set: 




xn = ρnsin(θn)
xn−1 = ρn−1sin(θn−1)
...
x3 = ρ3sin(θ3)
x2 = ρ2sin(θ2)
x1 = ρ2cos(θ2)

where ρi = ρi+1cos(θi) for i = n−1 · · · 2. To describe Rn, variables must range in: ρn ∈ [0, +∞),
θ3, · · · θn ∈ [−π

2 , π
2 ] and θ2 ∈ [0, 2π).

In our particular problem n = 4 and to describe the unitary ”hyper” semi-sphere we could
restrict ρ4 = 1 and θ4 ∈ [0, π

2 ], by virtue of the properties mentioned above. To get rid of
indexes let us call θ4 = ξ, θ3 = ϕ and θ2 = ϑ.

Note that a uniform discretization for each angle brings to areas with high density of points
(think of the grid on the earth surface at the poles) but we needed an equally spaced grid. We
gave the following criteria, namely of constant arc length:

1. define nominal values of discretization Nϑ, Nϕ, Nξ; since ϑ ∈ [0, 2π), ϕ ∈ [−π
2 , π

2 ]
and ξ ∈ [0, π

2 ] we choose Nϑ = 2Nϕ = 4Nξ proportional to the respective range of each
variable;

2. discretize ξ uniformly, i.e., ξi = i π
2Nξ

, i = 0, · · · , Nξ;

3. denoted by round(·) a function that approximates to the closest integer, for every ξi define
N̄ϕ = round(Nϕcos(ξi)) and discretize ϕ uniformly, i.e., ϕj = −π

2 +j π
N̄ϕ

, j = 0, · · · , N̄ϕ−1;

4. for every ξi and ϕj define N̄ϑ = round(Nϑcos(ξi)cos(ϕj)) and discretize ϑ uniformly, i.e.,
ϑk = k 2π

N̄ϑ
, k = 0, · · · , N̄ϑ − 1;

With such criteria we obtained a grid of N ' NξNϕNϑ

3 . The algorithm of the tables construction
is based on the calculation of a cost function J in each point of this grid. To contain the
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level of discretization and to guarantee a significant accuracy on J , an interpolation criteria is
required. When a point x isn’t in the grid, we use the cost values in the H ≤ 8 points of the
grid around x, namely x1, · · · , xH . Thus, defined di = ‖x− xi‖−1, i = 1 · · ·H we approximate

J(x) =
∑H

1 diJ(xi)∑H
1 di

.

The trade-off value Nξ = 15 was chosen, giving a discretization of 8581 points. Running in
MATLAB environment on a pentium III 450 MHz the computational time per region is about
60 hours. Note that these burdensome calculations are performed off-line.
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