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Abstract

We present a technique for estimating the marking of a Petri net based on the observation

of transition labels. In particular, the main contribution of the paper consists in deriving a

methodology that can handle the case of nondeterministic transitions, i.e., transitions that

share the same label. Under some technical assumptions, the set of markings consistent with

an observation can be represented by a linear system with a fixed structure that does not

depend on the length of the observed word.
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1 Introduction

This paper deals with the problem of estimating the marking of a Place/Transition (P/T) net

based on the observation of transition firings. The problem of estimating the state of a dynamic

system is a fundamental issue in system theory and the construction of state observers for time-

driven systems is treated in most linear systems textbooks. Although less popular in the case
∗Technical report. To appear also as: A. Giua, C. Seatzu, J. Jlvez, ”Marking estimation of Petri nets with pairs

of nondeterministic transitions,” Asian Journal of Control, special issue on ”Control of Discrete Event Systems”,

2004.
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of discrete–event systems, the issue of state estimation under partial state observation has been

discussed in the literature. For systems represented as finite automata, Ramadge [12] was the

first to show how an observer could be designed for a partially observed system. Caines et al. [2]

showed how it is possible to use the information contained in the past sequence of observations

(given as a sequence of observation states and control inputs) to compute the set of consistent

states, while in [3] the observer output is used to steer the state of the plant to a desired

terminal state. A similar approach was also used by Kumar et al. [7] when defining observer

based dynamic controllers in the framework of supervisory predicate control problems. Özveren

and Willsky [10] proposed an approach for building observers that allows one to reconstruct the

state of finite automata after a word of bounded length has been observed, showing that an

observer may have an exponential number of states.

Let us define the set of states consistent with the observed behavior as the states in which

the system may actually be given the observation. There are two main drawbacks in the above

mentioned automata based approaches to the design of a discrete event observer. Firstly, the set

of consistent states must explicitly be enumerated. Secondly, to compute the set of consistent

states at step k it is not usually sufficient to know the new observation and the set of consistent

states at step k − 1, but it is necessary to recompute this set as a function of all previous

observations.

Looking for more efficient approaches that do not require the enumeration of this set, we

explored the possibility of using Petri nets as discrete event models [5, 6]. We showed that under

the following three assumptions: (A1’) the net structure is known; (A2’) the initial marking is

not known or is only known to belong to an initial macromarking, i.e., a given linear convex

set; (A3’) all transition firings can be observed; it is possible to represent the set of consistent

markings (i.e., the states of the Petri net) as the solution of a linear system that has a fixed

structure which only depends on two parameters (the estimate and the bound) that can be

recursively computed. Note that other authors [8] have also discussed the problem of estimating

the marking of a Petri net using a mix of transition firing and place observations.

In this paper we further extend the approach of [5, 6] relaxing what we felt was its major

limitation, i.e., the assumption (A3’) that all transition firings can be observed. Given an

alphabet of symbols E, we assume that a labeling function L : T → E assigns to each transition

t a label L(t) ∈ E. The labeling function we consider may assign to two or more transitions the

same label, i.e., using a common Petri net terminology, it is called a λ-free labeling.

When t fires, only its label L(t) is observed and this may introduce nondeterminism in the

observer, in the sense that the observed word is not sufficient to reconstruct the transition firing

and thus the actual marking. Note, however, that in this paper we restrict assumption (A2’)
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assuming that the initial marking is perfectly known. In effect, this may not be strictly necessary

but we need it in this paper to simplify the results we present.

The above mentioned framework naturally applies to all those cases in which the structure of

the considered plant is perfectly known and we can also evaluate (measure) its initial config-

uration. As the system evolves, it is not always convenient (or even possible) to measure the

actual configuration of the plant. In fact, it is often the case that the actual configuration can

only be reconstructed on the basis of the observation of some events, i.e., on the basis of the

output of some sensors. To reduce the number of sensors within the plant, it also commonly

occurs that the same sensor is used to measure different types of events, thus obviously loosing

some information. As an example, in a manufacturing environment, if the same sensor is used

to evaluate the status of an unreliable machine that may process different parts, on the basis of

the observation of the output of the sensor we can only evaluate if the machine is operational or

not, but in the case that it is operational, we cannot evaluate which kind of part it is working.

In a first part of the paper, we show a rather simple result: using the net state equation it is

possible to represent the set of consistent markings as the solution of a linear system that can

be recursively computed, but whose structure, unfortunately, is not fixed: it grows linearly with

the length of the observed word. A similar approach that uses a logical formalism rather than

linear programming was also presented by Benasser [1]. This author has studied the possibility

of defining the set of markings reached firing a “partially specified” step of transitions using

logical formulas, without having to enumerate this set.

In a second part of the paper, we propose a different approach that, under some technical

assumptions, allows us to characterize the set of consistent markings as the solution of a different

linear system with a fixed structure that depends on some parameters (the upper bounds u’s)

that can recursively be computed. In particular, we consider some restrictions on the structure

of the labeling function.

• Firstly, we assume that the same label cannot be assigned to more than two transitions.

• Secondly, we assume that nondeterministic transitions (i.e., transitions whose label is also

associated to other transitions) should also be contact free, i.e., if t and t′ are nondeter-

ministic transitions the set of input and output places of t cannot intersect the set of input

and output places of t′.

In all fairness, we admit that these two restrictions may limit in some cases the generality of

the approach. However, we also believe that this paper is showing a new original framework for

observers design based on linear algebra. The results obtained so far look promising and may

pave the way for future extensions.
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We summarize the main advantages of the proposed approach with respect to other solutions

previously presented in the literature as follows.

1. The proposed linear algebraic characterization of the set of consistent markings does not

require the exhaustive enumeration of the consistent states, as in the case of the automata

based approaches.

2. The proposed linear algebraic characterization consists of a finite number of constraints,

not depending on the length of the observed word. This is not the case in other approaches

such as that one of Benasser [1].

3. We have extended our previous results in [6] relaxing the assumption that all events may

be observed.

The paper is structured as follows. In Section 2 some background on Petri nets is provided. In

Section 3 the considered problem is formally stated and an introductory example is presented.

The first characterization of the set of consistent markings, involving a number of constraints

that increases as the length of the observed word increases, is given in Section 4. The main

significant contribution of the paper is presented in Section 5 where a numerical example is also

presented. In Section 6 conclusions are finally drawn and the goal of the future research is also

discussed.

2 Background on Petri nets

In this section we recall the formalism used in the paper. For more details on Petri nets we

address to [9].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre– and

post– incidence functions that specify the arcs; C = Post − Pre is the incidence matrix. The

preset and postset of a node X ∈ P ∪ T are denoted •X and X• while •X• =• X ∪X•.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative

integer number of tokens, represented by black dots. We denote M(p) the marking of place p.

A P/T system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =

M + C(· , t). We write M [σ〉 to denote that the sequence of transitions σ is enabled at M , and
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we write M [σ〉 M ′ to denote that the firing of σ yields M ′. Note that in this paper we always

assume that two or more transitions cannot simultaneously fire (non-concurrency hypothesis).

A marking M is reachable in 〈N,M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .

The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted

R(N,M0).

A labeling function L : T → E assigns to each transition t ∈ T a symbol from a given alphabet

E. Note that the same label e ∈ E may be associated to more than one transition while no

transition may be labeled with the empty string λ1. Using the notation of [4] and [11] we say

that this labeling function is λ-free.

Definition 1 A Petri net system 〈N,M0〉 with λ-free labeling function L : T → E is determin-

istic if for all markings M ∈ R(N,M0) and for any two transitions t, t′ ∈ T :

t 6= t′, L(t) = L(t′), M [t〉 =⇒ ¬M [t′〉,

i.e., if two transitions are labeled with the same symbol they cannot simultaneously be enabled at

M . ¥

From the above definition it is clear that determinism is a behavioral property because it not

only depends on the structure of the net, but on the initial marking as well. However, since in

this paper we make no assumption on the initial marking, we also need to introduce a structural

definition of determinism.

Definition 2 A Petri net N with λ-free labeling function L : T → E is structurally determin-

istic if for any two transitions t, t′ ∈ T :

t 6= t′ =⇒ L(t) 6= L(t′),

i.e., two different transitions cannot be labeled with the same symbol. ¥

Note that if a Petri net N is structurally deterministic, then the net system 〈N, M0〉 is deter-

ministic for all initial marking M0.

In this paper we consider Petri nets that are not structurally deterministic. We say that a

transition t is nondeterministic if its label is also associated to other transitions, otherwise a

transition t is said to be deterministic. We also denote T d the set of deterministic transitions

and Tn the set of nondeterministic transitions. Clearly, T = T d∪Tn. For simplicity of notation,
1In the Petri net literature the empty string is denoted λ, while in the formal language literature it is denoted

ε. In this paper we denote the empty string ε but, for consistency with the Petri net literature, we still use the

term λ-free for the labeling function.
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we assume that the transition enumeration is such that Tn = {tj | j = 1, · · · , nn} and T d =

{tj | j = nn + 1, · · · , n}, where nn = |Tn|. Analogously, we say that an event e is deterministic

if there exists only one transition t such that L(t) = e, otherwise we say that the event e is

nondeterministic. Therefore, with no ambiguity on the notation, we may write E = Ed ∪ En.

We denote as Te the set of transitions labeled e, i.e, Te = {t ∈ T | L(t) = e}. Moreover, we

denote as ~se ∈ {0, 1}n the characteristic vector of Te, i.e., ~se(i) = 1 if L(ti) = e, and ~se(i) = 0

otherwise.

We denote as w the word of events associated to the sequence σ, i.e., w = L(σ). Moreover, we

denote as σ0 the sequence of null length and w0 the empty word. Finally, we use the notation

wi 4 w to denote the generic prefix of w of length i ≤ k, where k is the length of w. In particular,

for i = 0, we have by definition the empty word, w0 = ε.

3 Problem statement

In this paper we deal with the problem of estimating the marking of a net system 〈N, M0〉 whose

marking cannot be directly observed. The following properties of the system will be assumed.

(A1) The structure of the net N is known.

(A2) The initial marking M0 is known.

(A3) Labels associated to transition firings can be observed.

After the word w has been observed, we define the set C(w) of w-consistent markings as the

set of all markings in which the system may be given the observed behavior.

Definition 3 Given an observed word w, the set of w-consistent markings is C(w) = {M ∈
Nm | ∃ a sequence of transitions σ : M0[σ〉M and L(σ) = w}. ¥

Our goal is that of providing a systematic and efficient procedure to estimate the set of

markings that are consistent with an observed word.

Clearly, C(w0) = M0 and C(w) is a singleton if for all e in w, Te is a singleton. On the contrary,

the degree of nondeterminism may increase as the cardinality of Te increases.

Finally, let us observe through a simple example, that the cardinality of the set of consistent

markings may either increase or decrease as the length of the observed word increases.
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p1 t1 p2 t6 p3 p4t3

 a  d  b

p5 t2 p6 t7 p7 p8t4

 a  e  b

t5

 c

 2

Figure 1: Petri net system that can only be partially observed

Example 4 Let us consider the Petri net system in Figure 1 where T d = {t5, t6, t7} and Tn =

{t1, t2, t3, t4}. More precisely, Ta = {t1, t2}, Tb = {t3, t4}, Tc = {t5}, Td = {t6}, and Te = {t7}.

Clearly when no event has been observed,

C(ε) = {[1 0 1 0 1 0 1 1]T }.

Let us first assume that the event b is observed. Given the initial marking M0, either t3 or t4

may have been fired, thus

C(b) = {[1 0 0 1 1 0 1 1]T , [1 0 1 0 1 0 0 2]T }.

Now, let a be the next observed event. Label a is associated to transitions t1 and t2 and both

transitions are enabled at both markings in C(b). Therefore,

C(ba) = {[0 1 0 1 1 0 1 1]T , [1 0 0 1 0 1 1 1]T ,

[0 1 1 0 1 0 0 2]T , [1 0 1 0 0 1 0 2]T }.

Now, if the deterministic event d is observed, we may be sure that neither [1 0 0 1 0 1 1 1]T

nor [1 0 1 0 0 1 0 2]T in C(ba) may have been reached because none of these markings enables

t6. Thus, the set of markings consistent with w = bad is

C(bad) = {[0 0 1 1 1 0 1 1]T , [0 0 2 0 1 0 0 2]T }.

If b is observed again, both transitions t3 and t4 may have fired from the first marking in

C(bad), while only transition t3 may have fired from the second marking. Thus

C(badb) = {[0 0 0 2 1 0 1 1]T , [0 0 1 1 1 0 0 2]T }.

Finally, if we observe the deterministic event c we can conclude that only the first marking in

C(badb) is compatible with the last observation, thus the actual marking of the net is completely

reconstructed and

C(badbc) = {[1 0 0 0 2 0 1 0]T }.
¥
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4 Computation of the set of consistent markings

We first present a recursive algorithm strictly based on the definition of the set of consistent

markings C(w), then we provide an algebraic characterization of C(w).

Algorithm 5

1. Let C(w0) = M0.

2. Let i = 0.

3. Wait until a new event e is observed.

4. Let i = i + 1.

5. Let wi = wi−1e.

6. Let C(wi) = ∅.
7. For all M ∈ C(wi−1) do

For all t such that M [t〉 and L(t) = e

compute M ′ = M + C(·, t) and let C(wi) = C(wi) ∪M ′.

8. Goto 3. ¥

Clearly, the main disadvantage of the above iterative algorithm is that to compute the set of

markings that are consistent with an observed word w of cardinality k, we preliminary need

to compute the set of markings that are consistent with all prefixes wi 4 w, i = 1, · · · , k − 1.

Furthermore each set C(wi) must be explicitly enumerated.

A better solution that does not require to enumerate the sets C(wi) consists in using a linear

algebraic characterization of the set of consistent markings.

Proposition 6 Let 〈N, M0〉 be a net system and w = e1, · · · , ek be an observed word. The set

of w-consistent markings is given by:

C(w) = {M (k) ∈ Nm | (for all i = 1, · · · k)
~1T · ~σ(i) = 1 (a)

~sei · ~σ(i) = 1 (b)

M (i−1) ≥ Pre · ~σ(i) (c)

M (i) = M (i−1) + C · ~σ(i) (d)

~σ(i) ∈ {0, 1}n} (e)

where M (0) = M0 and ~1 is the n-dimensional column vector of 1’s.

Proof: It follows from the definition of the set of consistent markings. In fact, for any observed

event ei, we introduce an unknown vector ~σ(i) of zeros and ones (constraint (e)) representing

the firing vector associated to the observed event. Then, the first constraint (a) imposes that
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when the event ei is observed, only one transition has fired and the second constraint (b) states

that the label of that transition should be equal to the observed event. Moreover, if a transition

has fired, then it should be enabled by at least one marking in the set C(wi−1) (inequality (c))

and its firing brings to a new marking that is given by constraint (d). ¤

Example 7 Let us consider again the net system depicted in Figure 1. Let us assume that the

observed event is b. By virtue of Proposition 6 we may write:

C(b) = {M (1) ∈ N8 | ~1T · ~σ(1) = 1 (a1)

σ(3)(1) + σ(4)(1) = 1 (b1)

M (0) ≥ Pre · ~σ(1) (c1)

M (1) = M (0) + C · ~σ(1) (d1)

~σ(1) = {0, 1}7} (e1)

(1)

where M (0) is the initial marking.

Now, let a be the next observed event. Once again, using Proposition 6 we may conclude that

the set of markings consistent with the observed word w = ba is:

C(ba) = {M (2) ∈ N8 | ~1T · ~σ(1) = 1 (a1)

σ(3)(1) + σ(4)(1) = 1 (b1)

M (0) ≥ Pre · ~σ(1) (c1)

M (1) = M (0) + C · ~σ(1) (d1)

~σ(1) = {0, 1}7 (e1)
~1T · ~σ(1) = 1 (a2)

σ(1)(2) + σ(2)(2) = 1 (b2)

M (1) ≥ Pre · ~σ(2) (c2)

M (2) = M (1) + C · ~σ(2) (d2)

~σ(2) = {0, 1}7} (e2)

(2)

¥

This example clearly shows that, even if Proposition 6 enables us to directly describe the set

of consistent markings without iterating on the sets of markings that are consistent with the

prefixes of the observed word, it still presents a significant drawback. In fact, both the number of

unknowns and the number of constraints increase as the length of the observed word increases.

The main goal of this paper is that of investigating whether it is possible to define the set of

w-consistent markings using a fixed (even if large) number of constraints.

A general solution to this problem has not been determined yet. But the wide variety of

scenarios we dealt with, enables us to conclude that this possibility is mainly related to the
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degree of contact of nondeterministic transitions. Moreover, it also depends on the number of

transitions with the same label.

In the next section we present the first step of our research on this topic, consisting in the

derivation of some restrictive assumptions under which it is possible to formally prove that the

set of consistent markings may be expressed with a fixed number of constraints.

5 The contact-free case

In this section we assume that the following two conditions are verified:

(A4) for each label e ∈ E there are at most two transitions such that L(t) = e, or equivalently,

|Te| ≤ 2;

(A5) nondeterministic transitions are contact free, i.e., for any two nondeterministic transitions

ti and tj , it holds that •t•i ∩ •t•j = ∅.

Note that, given assumption (A4), we always assume that the transition enumeration is such

that L(tr) = L(tr+1) for r = 1, 3, 5, · · ·nn − 1.

In the following we formally prove that under the above assumptions, a fixed number of

constraints, not depending on the length of the observed word w, may be used to describe the

set of w consistent markings. In particular, we formally prove that:

C(w) = {M ∈ Nm | M = M0 + C~σ,

σ(r) ≤ ur r = 1, 2, · · ·nn (a)

σ(r) + σ(r + 1) = nr r = 1, 3, 5, · · ·nn − 1 (b)

σ(q) = nq q = nn + 1, · · · , n (c)

~σ ∈ Nn} (d)

(3)

is the set of w consistent markings where the upper bounds ur’s are appropriately computed

and nr (nq) denotes the number of times a nondeterministic (deterministic) event L(tr) (L(tq))

has been observed.

Note that any vector ~σ satisfying constraints (a) to (d) of eq. (3) represents an admissible

firing vector associated to a sequence of transitions σ that may have fired and whose labeling is

equal to the observed word w, i.e., L(σ) = w.

For any couple of nondeterministic transitions tr and tr+1 we have 3 constraints: for each

transition we need an upper bound on the number of times it may have fired, plus an additional
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constraint keeping into account the total number of times the corresponding nondeterministic

event L(tr) = L(tr+1) has been observed (nr). On the contrary, for each deterministic transition

tq we only need one constraint, because we exactly know how many times it has fired. In fact, in

such a case nq is equal to the number of times the deterministic event L(tq) has been observed.

Looking at hypothesis (A4) and (A5) we may conclude that for each couple of nondeterministic

transitions, the nets we are dealing with contain ”nondeterministic” subnets whose structure is

like that one shown in fig. 2, where weights associated to arcs are not required to be ordinary.

Now, let us present a simple algorithm that enables us to compute the upper bounds ur’s used

in equation (3).

Algorithm 8 (Upper bounds computation)

1. Let ur = 0 for all r = 1, · · · , nn.

2. Let nq = 0 for all q = nn + 1, · · · , n.

3. Wait until an event e is observed.

4. If e ∈ Ed, then

let tq be such that tq ∈ T d and L(tq) = e

nq = nq + 1

if tq ∈ (•Tn)•, then

for every r ∈ {1, . . . , nn} such that tr ∈ (•tq)•, do

for all p ∈• tr,

M+(p) =
∑

tq∈•p∩T d nq · Post(p, tq)

M−(p) =
∑

tq∈p•∩T d nq · Pre(p, tq)

endfor

zin
r =

⌊
min
p∈•tr

{
M0(p) + M+(p)−M−(p)

Pre(p, tr)

}⌋

ur = min(ur, z
in
r )

endfor

endif

if tq ∈ (Tn•)•, then

for every r ∈ {1, . . . , nn} such that tr ∈• (•tq), do

for all p ∈ t •r ,

M+(p) =
∑

t∈•p∩T d nq · Post(p, tq)

M−(p) =
∑

t∈p•∩T d nq · Pre(p, tq)

endfor

zout
r =

⌊
min
p∈t •r

{
M−(p)−M0(p)−M+(p)

Post(p, tr)

}⌋
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Figure 2: The generic couple of nondeterministic transitions tr and tr+1.

ur̄ = min(ur̄, nr − zout
r ) where r̄ = r + 1 if r is odd,

else r̄ = r − 1

endfor

endif

5. If e ∈ En then

for every r such that L(tr) = e do

for all p ∈• tr,

M+(p) =
∑

tq∈•p∩T d nq · Post(p, tq)

M−(p) =
∑

tq∈p•∩T d nq · Pre(p, tq)

endfor

zin
r =

⌊
min
p∈•tr

{
M0(p) + M+(p)−M−(p)

Pre(p, tr)

}⌋

ur = min(ur + 1, zin
r )

endfor

endif

6. Goto 3. ¥

The main idea behind this algorithm is that of evaluating the upper bounds ur’s on the base

of the knowledge of two parameters associated to nondeterministic transitions. The first one is

zin
r that represents the enabling degree of transition tr assuming that it has never fired. This

parameter is used to update the upper bound ur when one of the following two cases occur.

• If a deterministic transition tq fires and tq ∈ (•tr)• (see tnn+1, tnn+2 and tnn+3 in fig. 2),

the value of zin
r may decrease because we know for sure that some token(s) in P in

r were

still available to enable tq. Thus, by definition of zin
r , we may conclude that tr may have

fired at most zin
r times.
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• A nondeterministic event e is observed and tr is a transition whose label is e. In such a

case, the value of zin
r keeps the same and by definition of zin

r we may conclude that tr may

have fired at most zin
r times.

The second parameter used to compute the upper bounds is zout
r . It is a measure of the number

of tokens that have been removed from the output places to tr by firing deterministic transitions

exiting P out
r (see tnn+4, tnn+5 and tnn+6 in fig. 2). In particular, the value of zout

r is equal to

the minimum number of times transition tr has to be fired to fulfill the token demands of the

transitions exiting P out
r . Consequently, it enables us to evaluate which is the maximum number

of times transition tr+1 may have fired, namely ur+1. Analogously, the value of zout
r+1 enables us

to update the upper bound ur.

Therefore the upper bounds associated to nondeterministic transitions may be updated when

three different cases occur. This is clearly stated via the following simple example.

Example 9 Let us consider the ordinary Petri net system in Figure 3. There are only two

nondeterministic transitions whose label is a.

The upper bounds u1 and u2 may be updated as a consequence of three different types of

observed events.

1. Let us assume that the first observed event is a. Clearly, the upper bounds should be both

updated to u1 = u2 = 1 being zin
1 = zin

2 = 2 and the initial bounds equal to zero. We are

in the case of step 5 of Algorithm 8.

2. If the event a is observed again, we are once again in the case of step 5 of Algorithm 8.

In particular, the upper bounds are both updated to u1 = u2 = 2 being zin
1 = zin

2 = 2 and

the previous bounds equal to one.

Now, let us assume that L(t3) is observed, thus n3 = 1 and zin
1 = 1. This means that for

sure t1 has fired at most one time, otherwise t3 would have not been enabled. Thus the

upper bound of t1 is updated to u1 = 1. We are in the first if case of step 4 of Algorithm 8

being t3 an output transition to one input place of t1.

3. Now, let us assume that L(t8) is observed, thus w = aa L(t3) L(t8). This implies that t1

should have fired at least once, and consequently t2 should have fired at most once. In

fact, in such a case n8 = 1, zout
1 = 1 and consequently u2 = 1. We are in the second if case

of step 4 of Algorithm 8. ¥

Lemma 10 Let us consider a Petri net system 〈N, M0〉 and let L : T → E be its labeling

function. Assume that (A4) and (A5) are satisfied. Let C(w) be defined as in equation (3) where
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Figure 3: The Petri net system considered in example 9.

the upper bounds ur’s are computed using Algorithm 8. Assume that a label a is observed and

there is a transition tr labeled L(tr) = a with bound ur such that it is disabled at any marking

in C(w). Then the new bound u′r computed by Algorithm 8 fulfills ur = u′r.

Proof: First, notice that if transition tr is disabled at any marking in C(w) then all solutions

of equation (3) verify σr = zin
r where zin

r is computed by Algorithm 8. In fact, σr cannot be

greater than zin
r and being less would mean that there is a marking in C(w) in which tr is

enabled. Furthermore σr = ur since if σr < ur then there would exist another solution for

equation (3), let’s say σ′′r , such that σ′′r > σr, meaning that tr was enabled at the consistent

marking given by σr. Therefore we have zin
r = ur and since step 5 of Algorithm 8 computes u′r

as u′r = min(ur + 1, zin
r ), we have u′r = zin

r = ur. ¤

Proposition 11 Let us consider a Petri net system 〈N, M0〉 and let L : T → E be its labeling

function. Let us assume that assumptions (A4) and (A5) are satisfied and let w be an observed

word of events. Then all markings in the set C(w) defined as in equation (3) are consistent with

the observed word w, when the upper bounds ur’s are computed using Algorithm 8.

Proof: We prove this by induction on the length of the observed word.

When no event is observed, i.e., when w = w0 is the empty word, using equation (3) we have

that C(w0) = {M0}, thus the statement of the proposition holds.

Moreover, when a word wk−1 of length k − 1 is observed, we assume that all markings in

C(wk−1) are consistent with wk−1, where C(wk−1) is defined as in equation (3) and the bounds

are computed using Algorithm 8.

Now, let e be a newly observed event, and let w = wk = wk−1e. We have to prove that all

markings in C(w) are consistent with the observed word w.

For simplicity of presentation in the following we assume that there exists only one couple

of nondeterministic transitions, thus nn = 2 and nd = n − 2. We call a their label, i.e.,

L(t1) = L(t2) = a. Note that such an assumption does not affect the validity of the proof

14



thanks to the contact freeness hypothesis (A5).

We partition the set of transitions as follows (see fig. 2):

T = T ∪ T in ∪ T out ∪ Ta (4)

where Ta = {t1, t2}; P in
1 (P out

1 ) and P in
2 (P out

2 ) are the set of input (output) places to transitions

t1 and t2 respectively. T in is the set of input and output transitions to P in
1 and P in

2 , apart from

t1 and t2; T out is the set of input and output transitions to P out
1 and P out

2 , apart from t1 and t2;

finally, T is the set of deterministic transitions that are not contained in the previous sets.

Moreover, we define the following two sets2:

S =





σ1 ≤ u1

σ2 ≤ u2

σ1 + σ2 = na

σ1, σ2 ∈ N

S ′ =





σ1 ≤ u′1
σ2 ≤ u′2
σ1 + σ2 = n′a
σ1, σ2 ∈ N

(5)

where S (S ′) consists of the subset of constraints of equation (3) only involving the nondeter-

ministic transitions t1 and t2, when the observed word is wk−1 (w). Clearly, these sets contain

the only equations that are related to the nondeterministic part of the net, thus only an error

on their definition may produce an error on the definition of the set of consistent markings.

Therefore, the next step of the induction is proved if we demonstrate that each solution of S ′
originates from a solution of S when the bounds are updated using Algorithm 8, i.e.,

• if the observed event is deterministic, i.e., e 6= a, then S ′ ⊆ S;

• if the observed event is nondeterministic, i.e., e = a, then given a solution ~σ = (σ1, σ2) ∈ S,

if t1 (resp., t2) is enabled from the marking corresponding to ~σ, then ~σ′ = (σ1 +1, σ2) ∈ S ′
(resp., (σ1, σ2 + 1) ∈ S ′).

Now, when an event e is observed, four different cases may occur.

1. A transition t ∈ T has fired. In such a case S ′ ≡ S and the statement of the proposition

holds.

2. A transition t ∈ T in has fired.

– a. If t ∈ •(P in
1 ) ∪ •(P in

2 ), no bound is updated thus S ′ ≡ S.

– b. If t ∈ (P in
1 )• ∪ (P in

2 )• the upper bounds may either stay the same or may be even

smaller thus S ′ ⊆ S.
2Slightly abusing the notation, we denote with S and S ′ both the set of constraints given by (5) and their

respective solutions (σ1, σ2).
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3. A transition t ∈ T out has fired.

– a. If t ∈ •(P out
1 ) ∪ •(P out

2 ), no bound is updated thus S ′ ≡ S.

– b. If t ∈ (P out
1 )• ∪ (P out

2 )• the upper bounds may either stay the same or may be even

smaller thus S ′ ⊆ S.

4. A transition t ∈ Ta has fired.

Let us denote T e
a the set of transitions whose label is a and that are enabled by at least

one marking in C(wk−1). Two different cases may occur: (1) T e
a is a singleton, i.e., either

T e
a = {t1} or T e

a = {t2}. (2) T e
a = {t1, t2}.

(1) With no loss of generality we may assume T e
a = {t1}. In such a case the generic

solution (σ′1, σ′2) of S ′ may always be written as σ′1 = σ̃1 + 1, σ′2 = σ̃2. In fact, if this

was not possible, then σ′1 = 0 and σ′2 = n′a = na + 1 > na ≥ u2 = u′2, where the last

equality follows from lemma 10. Therefore, we would obtain σ′2 > u′2, that leads to a

contradiction.

Now, we want to prove that (σ̃1, σ̃2) is a solution of S. By simply substituting

(σ′1, σ′2) in (5) where S ′ is defined, and taking into account that n′a = na +1, u′2 = u2

and u′1 = u1 + 1, we can trivially verify that (σ̃1, σ̃2) ∈ S.

(2) Let us now consider the case in which T e
a = {t1, t2}. We first observe that for at least

one transition ti ∈ T e
a , σ′i > σmin

i , where σmin
i , i = 1, 2, is the minimum value of σi for

any (σ1, σ2) ∈ S. In fact, if this was not true, then for all solutions (σ1, σ2) ∈ S, and

(σ′1, σ′2) ∈ S ′ it holds that n′a = σ′1 + σ′2 = σmin
1 + σmin

2 ≤ σ1 + σ2 = na contradicting

n′a = na + 1 > na.

Now, with no loss of generality we assume that σ′1 > σmin
1 ≥ 0. Then, we may write

σ̃1 = σ′1 − 1 and σ̃2 = σ′2. We show that (σ̃1, σ̃2) ∈ S.

The only constraint that is not trivially verified is σ̃2 ≤ u2. In fact, σ′2 ≤ u′2 →
σ̃2 ≤ u′2. However, we show that if σ′2 = u′2 = u2 + 1 then σ′1 = n′a − u′2 = na +

1 − u2 − 1 = na − u2. By assumption σ′1 > σmin
1 , thus σ′1 > na − u2 that leads to a

contradiction. ¤

Proposition 12 Let us consider a net system 〈N,M0〉 and let L : T → E be its labeling

function. Let us assume that assumptions (A4) and (A5) are satisfied and let w be an observed

word of events. Then all markings that are consistent with the observed word w are contained

in C(w), when C(w) is defined as in equation (3) and the upper bounds ur’s are computed using

Algorithm 8.
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Proof: We prove this by induction on the length of the observed word. Clearly, when no event

is observed the only consistent marking is the initial one, thus the statement of the proposition

holds. Moreover, we assume that it also holds when a word wk−1 is observed, i.e., we assume

that there exists no marking that is consistent with wk−1 and that is not contained in C(wk−1).

To complete the proof, we must demonstrate that when a new event e is observed, i.e., when

the current word is w = wk = wk−1e, all markings that are consistent with w are contained

in C(w). As in the case of the previous proposition, thanks to the contact freeness assumption

(A5), we may assume that there exists only one couple of nondeterministic transitions, namely

t1 and t2. Therefore, we may restrict our attention to the sets S and S ′ defined in equation

(5). Now, the next step of the induction is proved if we demonstrate that, from each solution

(σ1, σ2) ∈ S corresponding to a marking in C(wk−1) enabling a transition labeled e, we get a

solution (σ′1, σ′2) ∈ S ′ that is a consistent marking associated to the observation of e.

We refer again to the partition of T introduced via equation (4) and we consider four different

cases.

1. A transition t ∈ T fires. Being S ′ ≡ S, the statement of the proposition is trivially verified.

2. A transition t ∈ T in fires. In such a case, S ′ ⊆ S and we must prove that when updating

the bounds we are not neglecting markings that are consistent with w. However, by looking

at Algorithm 8 we may observe that S ′ ⊂ S if and only if ∃r ∈ {1, 2} such that t ∈ (•tr)•

and zin
r < ur (first if case of step 4 of Algorithm 8). But this is correct because if we allow

u′r to be greater than zin
r , the non–negativity constraints would be violated.

3. A transition t ∈ T out fires. This case is similar to the previous one. In fact, S ′ ⊆ S.

In particular, S ′ ⊂ S if and only if ∃r ∈ {1, 2} such that t ∈ (t•r)• and nr − zout
r < ur̄,

where r̄ is defined as in step 4 of Algorithm 8. But this is correct, because zout
r denotes by

definition the number of times transition tr has fired for sure. If we allow ur̄ to be greater

than nr − zout
r (or equivalently ur to be smaller than zout

r ), the non–negativity constraints

are violated.

4. A transition t ∈ T a fires. We must prove that, given a solution ~σ = (σ1, σ2) ∈ S, if t1

(resp., t2) is enabled from the marking corresponding to ~σ, then ~σ′ = (σ1 + 1, σ2) ∈ S ′
(resp., (σ1, σ2 + 1) ∈ S ′).
With no loss of generality we may assume that t1 is enabled from the marking corre-

sponding to ~σ. This implies that for that ~σ it holds that σ1 < zin
r being by defini-

tion zin
r the enabling degree of transition tr assuming that tr has never fired. Thus,

σ1 < zin
r , σ1 ≤ ur =⇒ σ′1 = σ1 + 1 ≤ min(ur + 1, zin

r ) = u′1.
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Moreover, σ′1−1+σ′2 = na → σ′1+σ′2 = n′a. Therefore, we may conclude that (σ′1, σ
′
2) ∈ S ′.

¤

Theorem 13 Let us consider a net system 〈N, M0〉 and let L : T → E be its labeling function.

Let us assume that assumptions (A4) and (A5) are satisfied and let w be an observed word of

events. Then the set C(w) defined by equation (3) contains all and only those markings that are

consistent with the observed word w, when the upper bounds ur’s are computed using Algorithm 8.

Proof: It follows from Propositions 11 and 12. ¤

Example 14 Let us consider again the Petri net system in Figure 1. Let us first observe that

assumptions (A4) and (A5) are verified. Therefore, by virtue of Theorem 13, the set of consistent

markings can be described in terms of equation (3) where the upper bounds are computed using

Algorithm 8.

All bounds are initially set to zero, thus the set of markings consistent with the empty word is

C(ε) = {M ∈ N8 |M = M0 + C~σ,

σ(t1), σ(t2), σ(t3), σ(t4) ≤ 0 (a)

σ(t1) + σ(t2) = 0 (b1)

σ(t3) + σ(t4) = 1 (b2)

σ(t5) = σ(t6) = σ(t7) = 0 (c)

~σ ∈ N7} (d)

(6)

and the only admissible firing vector is ~σ = ~0, i.e., the only consistent marking is the initial one.

Now, assume that the nondeterministic event b is observed. In such a case both zin
3 and zin

4

are set to one (see step 5 of Algorithm 8), thus u3 and u4 are updated to one. On the contrary,

all the other bounds keep equal to zero. Therefore,

C(b) = {M ∈ N8 |M = M0 + C~σ,

σ(t1) ≤ 0 (a1)

σ(t2) ≤ 0 (a2)

σ(t3) ≤ 1 (a3)

σ(t4) ≤ 1 (a4)

σ(t1) + σ(t2) = 0 (b1)

σ(t3) + σ(t4) = 1 (b2)

σ(t5) = σ(t6) = σ(t7) = 0 (c)

~σ ∈ N7} (d)

(7)
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It is easy to verify that in this case there are two admissible firing vectors, namely, ~σ1 =

[0 0 1 0 0 0 0]T (corresponding to the firing of t3) and ~σ2 = [0 0 0 1 0 0 0]T (corresponding to

the firing of t4). In terms of consistent markings, this means that

C(b) = {[1 0 0 1 1 0 1 1]T , [1 0 1 0 1 0 0 2]T }.

Similarly, if the nondeterministic event a is observed, we get u1 = u2 = 1 and the set of

consistent markings can be written as

C(ba) = {M ∈ N8 |M = M0 + C~σ,

σ(t1) ≤ 1 (a1)

σ(t2) ≤ 1 (a2)

σ(t3) ≤ 1 (a3)

σ(t4) ≤ 1 (a4)

σ(t1) + σ(t2) = 1 (b1)

σ(t3) + σ(t4) = 1 (b2)

σ(t5) = σ(t6) = σ(t7) = 0 (c)

~σ ∈ N7} (d)

(8)

This implies that there are four admissible firing vectors, namely, ~σ1 = [1 0 1 0 0 0 0]T , ~σ2 =

[1 0 0 1 0 0 0]T , ~σ3 = [0 1 1 0 0 0 0]T , and ~σ4 = [0 1 0 1 0 0 0]T . In terms of consistent markings

this means that
C(ba) = {[0 1 0 1 1 0 1 1]T , [1 0 0 1 0 1 1 1]T ,

[0 1 1 0 1 0 0 2]T , [1 0 1 0 0 1 0 2]T }.

Now, if the deterministic event d is observed, we have that zout
1 = 1 and consequently the

upper bound associated to t2 is set to u2 = 0. The set of consistent markings is thus

C(bad) = {M ∈ N8 |M = M0 + C~σ,

σ(t1) ≤ 1 (a1)

σ(t2) ≤ 0 (a2)

σ(t3) ≤ 1 (a3)

σ(t4) ≤ 1 (a4)

σ(t1) + σ(t2) = 1 (b1)

σ(t3) + σ(t4) = 1 (b2)

σ(t6) = 1 (c1)

σ(t5) = σ(t7) = 0 (c2)

~σ ∈ N7} (d)

(9)
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ω zin
1 zin

2 zin
3 zin

4 zout
1 zout

2 zout
3 zout

4 u1 u2 u3 u4

b 1 1 1 1 0 0 0 0 0 0 1 1

ba 1 1 1 1 0 0 0 0 1 1 1 1

bad 1 1 1 1 1 0 0 0 1 0 1 1

badb 1 1 2 1 1 0 0 0 1 0 2 1

badbc 1 1 2 1 1 0 2 0 1 0 2 0

Table 1: The numerical results of example 14.

Finally, if we assume that the whole observed word is w = badbc, we obtain the results briefly

summarized in table 1. This means that after the observation of c the marking is perfectly

known because there exists one admissible firing vector, namely ~σ = [1 0 2 0 1 1 0]T .

Clearly these results are coincident with those presented in Section 3. ¥

As a final remark, we want to stress the fact that the contact-freeness assumption is an

essential requirement for the soundness of our approach. To make this point clear, we present

the following very simple example.

Example 15 Let us consider the Petri net system in Figure 4 whose initial marking is M0 =

[2 2]T . It is immediate to observe that the two nondeterministic transitions are not contact-free.

Assume that the event a is observed. Using Algorithm 8, we obtain that

C(a) = {M ∈ N2 |M = M0 + C~σ,

σ(t1) ≤ 1 (a1)

σ(t2) ≤ 1 (a2)

σ(t1) + σ(t2) = 1 (b)

σ(t3) = 0 (c)

~σ ∈ N3} (d)

(10)

Now, assume that the event a is observed again. In such a case the above set is updated to

C(aa) = {M ∈ N2 |M = M0 + C~σ,

σ(t1) ≤ 1 (a1)

σ(t2) ≤ 2 (a2)

σ(t1) + σ(t2) = 2 (b)

σ(t3) = 0 (c)

~σ ∈ N2} (d)

(11)
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Figure 4: The Petri net system considered in example 15.

Finally, assume that the deterministic transition t3 fires, thus

C(aab) = {M ∈ N2 |M = M0 + C~σ,

σ(t1) ≤ 1 (a1)

σ(t2) ≤ 2 (a2)

σ(t1) + σ(t2) = 2 (b)

σ(t3) = 1 (c)

~σ ∈ N2} (d)

(12)

The marking M = [1 1]T obtained by firing ~σ = [1 1 1]T at the initial marking is assumed to

be consistent with the actual observation, while it is a spurious solution. In fact, ~σ = [1 1 1]T

is not an admissible firing vector at M0.

In such a case the only marking that is consistent with the word w = aab is M = [1 0]T

because the only admissible firing vector is ~σ′ = [0 2 1]T .

This clearly shows that in this case, where the contact-freeness assumption is not satisfied,

the proposed characterization of the set of consistent markings, when the upper bounds are

computed using Algorithm 8, is no more valid. ¥

6 Conclusions

We have presented a marking estimation procedure that can be applied to labeled Petri nets.

Under some assumptions, we proved that the markings consistent with an observed sequence

can be described by a constraint set of linear inequalites: this set has a fixed structure that does

not change as the length of the observed sequence increases.

We plan to extend our results in several ways.

Firstly, we believe it may be possible to modify the structure of the constraint set to also take

into account the case that the initial marking is not known.
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Secondly, it may also be possible to relax the assumption that at most two transitions may

share the same label.

Finally, we plan to extend this approach to arbitrary labeling functions, i.e., functions L :

T → E ∪{ε} that may assign to one or more transitions the empty string ε. Transitions labeled

by ε are called silent (or unobservable) because their firing cannot be detected.
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