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Abstract

In this paper we discuss the problem of estimating the marking of a Place/Transition

net based on event observation. We assume that the net structure is known while the

initial marking is totally or partially unknown.

We give algorithms to compute a marking estimate that is a lower bound of the actual

marking. The special structure of Petri nets allows us to use a simple linear algebraic

formalism for estimate and error computation.

The error between actual marking and estimate is a monotonically non-increasing

function of the observed word length, and words that lead to null error are said complete.

We define several observability properties related to the existence of complete words, and

show how they can be proved. To prove some of them we also introduce a useful tool, the

observer coverability graph, i.e., the usual coverability graph of a Place/Transition net

augmented with a vector that keeps track of the estimation error on each place of the net.

Finally, we show how the estimate generated by the observer may be used to design a

state feedback controller for forbidden marking specifications.
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1 Introduction

This paper deals with the problem of estimating the marking of a Place/Transition (P/T) net

based on the observation of transition firings and presents a set of analytical tools to determine

several observability properties. An observer constructed following this approach can also be

used in a state feedback control loop, as discussed in the final part of the paper.

This framework provides a useful paradigm that can be applied to different settings, from

discrete event control, to failure diagnosis and error recovery. The assumption that only event

occurrences, i.e., transition firings, may be observed — while the plant state, i.e., the marking,

cannot — is common in discrete event control. The assumption that the state of the plant is

not known (or is only partially known) is natural during error recovery. Consider for instance

the case of a plant remotely controlled: if the communication fails the state may evolve and

when the communication is re–established the state will be at best partially known. In a

manufacturing environment, one may consider the case in which resources (i.e., tokens) enter

unobserved, or in which we know how many resources have entered the system but not their

exact location.

When the structure and the initial marking of a P/T net is known, the knowledge of the

transition firings is sufficient to reconstruct the marking that each new firing yields. In this

work we assume that only the net structure is known and consider two cases: (a) the initial

marking is not known; (b) the initial marking is know to belong to a “macromarking”, i.e., we

know the token contents of subsets of places but not the exact token distribution. Case (b)

can in effect be seen as a generalization of case (a) but we preferred to handle the two cases

separately.

In both cases we show how it is possible to estimate the actual marking of the net based

on the observation of a word of events (i.e., transition firings) and we give algorithms for

computing the estimates and, in case (b), bounds on the error. The estimate is always a lower

bound of the actual marking. The system that computes the estimate is called an observer.

The special structure of Petri nets allows us to use a simple linear algebraic formalism for

estimate and error computation. In particular, the set of markings consistent with an observed

word, i.e., the set of markings in which the system may actually be given the observed word,
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can be easily characterized as a convex set of integers.

The error function between the actual marking and the estimate can be shown to be a

monotonically non-increasing function of the observed word length. Observed words that lead

to a null error are said to be “complete”. Complete observers are the discrete-event counterpart

of asymptotic observers for time-driven systems.

In this paper we define several observability properties and show that they are decidable.

In particular we consider two main properties. Marking observability (MO) means that there

exists at least one word that is complete, while strong marking observability (SMO) means

that all words can be completed in a finite number of steps into a complete word.

We set up a hierarchy considering the possibility that the two properties are satisfied by a

net N starting from an initial marking M0, by a net N starting from any marking M reachable

from an initial marking M0 (uniform observability) or by a net N starting from any marking

in Nm (structural observability) where m is the number of places of the net.

To prove some of these properties we introduce a useful tool, the observer coverability

graph, i.e., the usual coverability graph of a Place/Transition net augmented with a vector

that keeps track of the estimation error on each place of the net.

All the considered properties can be proven either by the use of the observer coverability

graph, or by reducing them to other decision problems (e.g., home-space properties, marking

reachability, existence of repetitive sequences) that can be checked using algorithms well known

in the literature and that will not be further discussed in this paper. Although more efficient

algorithms may exist to prove all observability properties, our main aim here is to characterize

these properties and to show that they are decidable.

Finally, we show how the estimate generated by the observer may be used to design a state

feedback controller, that ensures that the controlled system never enters a set of forbidden

states. In the discussion we assume that all events are controllable and we focus on a special

class of specifications that limit the weighted sum of markings in subset of places. Clearly,

the use of marking estimates (as opposed to the exact knowledge of the actual marking of the

plant) leads to a worse performance of the closed-loop system in the sense that to rule out the

possibility that the plant enter a forbidden marking, the controller may prevent the firing of
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transitions whose firing is perfectly legal given the actual marking of the plant.

1.1 Relevant literature

Observability is a fundamental property that has received a lot of attention in the framework

of time–driven systems, given the importance of reconstructing plant states that cannot be

measured. Although less popular in the case of discrete–event systems, the issue of state

estimation and of control under partial state observation has been discussed in the literature.

For systems represented as finite automata, Ramadge [21] was the first to show how an

observer could be designed for a partially observed system.

Caines et al. [3] showed how it is possible to use the information contained in the past

sequence of observations (given as a sequence of observation states and control inputs) to

compute the set of consistent states. In [4] the observer output is used to steer the state of

the plant to a desired terminal state. The approach of Caines is based on the construction of

an observer tree to determine the set of markings consistent with the observed behaviour: the

tree contains all consistent markings. A similar approach was also used by Kumar et al. [11]

when defining observer based dynamic controllers in the framework of supervisory predicate

control problems.

Özveren and Willsky [18] propose an approach for building observers that allows one to

reconstruct the state of finite automata after a word of bounded length has been observed,

showing that an observer may have an exponential number of states.

The main drawback of the automata based approach is the requirement that the set of

consistent markings must explicitly be enumerated. It may be useful to pinpoint that on the

contrary the procedure we present in this paper simply produces an estimate of the state,

while the special structure of a Petri net permits to determine, using linear algebraic tools,

if a given marking is consistent without the explicit enumeration of the (possibly infinite)

consistent set.

Finally, as an example in which state estimators have been used for fault diagnosis in

systems represented as finite state machines, we mention the work of Wang and Schwartz [25].

The purpose of the observer was in this framework not that of reconstructing the state of the
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system, but rather that of detecting if the system is faulty and recognizing the fault type.

Very few works dealt with observability in Petri nets. As far as we know, the first one were

[7, 9] where preliminary concepts discussed in this paper have been introduced.

Meda and Ramı́rez [15] used Interpreted Petri nets to model the system and the observer.

The main idea is to start the observer with a marking bigger than the real one and then

eliminate some tokens until the observer and system markings are equal. Interpreted Petri nets

have also been used by Ramirez–Treviño et al. in [22] where it was shown that observability

defined as in [15] is equivalent to observability in [9] and it was shown how to construct an

observer for binary Interpreted Petri nets when the observability property is verified.

The issue of controlling a plant with incomplete (state or event) measurements has also

been discussed in the discrete event control literature.

Zhang and Holloway [26] used a Controlled Petri Net model for forbidden state avoidance

under partial event observation with the assumption that the initial marking be known.

The use of state-feedback control under partial state observation has been discussed by

Li and Wonham [13, 14] and by Takai et al. [23]. In the work of these authors the partial

observation is due to a static mask, that maps the plant state space into an observation

space. The main focus was in finding necessary and sufficient conditions for the existence of

“optimal” state feedback control laws given a mask (optimal means that the resulting closed-

loop behavior is the same for the controller with mask and the controller with complete state

observation).

Unlike the above approach, the setting we deal with in this paper assumes that the mask

is induced by the computed estimate, and it changes as the plant evolves. Initially, when

the estimate is crude, it is often the case that these restrictive “optimal” conditions are not

verified. We propose a control scheme that tries to make the best use of the available estimate

to ensure the correct behaviour of the plant under control.

The notion of macromarking we use in this paper is similar to the notion of uncertain

marking , as described by Cardoso et al. [5]. These authors considered high-level nets as

models of manufacturing systems and they assumed as theoretical basis of uncertain markings

possibilistic logic. In our approach, on the contrary, we restrict our attention to purely logical
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models (P/T nets) and we assume that all possible markings have equal probability.

2 Background

In this section we provide some basic definitions that will be used in the following of the

paper. We first recall some basic terminology on Petri nets, then we provide the definition of

both linear and semi-linear sets and we recall the main results on decidability of home-space

property.

2.1 Petri nets

In this subsection we recall the Petri net formalism used in this paper. For a more compre-

hensive introduction to Petri nets see [17]. A Place/Transition net (P/T net) is a structure

N = (P, T, Pre, Post), where P is a set of m places ; T is a set of n transitions ; Pre : P×T → N

and Post : P × T → N are the pre- and post-incidence functions that specify the arcs. The

incidence matrix of the net is defined as C(p, t) = Post(p, t)− Pre(p, t).

We define p• = {t ∈ T | Pre(p, t) > 0} as the set of output transitions of place p.

A marking is a vector M : P → N that assigns to each place of a P/T net a non-negative

number of tokens, represented by black dots. A P/T system or net system 〈N, M0〉 is a net

N with an initial marking M0.

A transition t is enabled at M if M ≥ Pre(·, t) and may fire yielding the marking M ′ =

M + C(·, t). We write M [w〉 M ′ to denote that the enabled sequence of transitions w may

fire at M yielding M ′, or equivalently we use the notation M ′ = w(M) and M = w−1(M ′).

Moreover, we denote w(M0) = Mw. Finally, we denote as w0 the sequence of null length. The

set of all sequences firable in 〈N, M0〉 is denoted L(N, M0) (this is also called the prefix-closed

free language of the net). If the firing sequence w is enabled at M0, we also say that w is a

word in L(N, M0).

Let w = tα1 , tα2 , · · · , tαk
be a sequence in L(N, M0). The sequence wi = tα1 , · · · , tαi

with

i ∈ N and i ≤ k is a prefix of w of length i and we write wi 4 w.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence w such that M0 [w〉 M .
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The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is denoted

R(N, M0).

A repetitive sequence w is such that M [w〉M ′ with M ′ ≥ M . Then ∀ i ≥ 1, wi is enabled

at M . A repetitive sequence w is said to be non-stationary if M [w〉M ′ with M ′ 
 M : such a

sequence strictly increases the token count of one or more places.

Three useful elementary facts about Petri nets that will be used in the paper are the

following.

Fact 1. (i) M ≤ M ′ =⇒ L(N, M) ⊆ L(N, M ′).

(ii) If w is enabled at M and M ′ then: M −M ′ = w(M)− w(M ′).

(iii) The reachability set R(N, M0) is infinite iff there exists a non-stationary repetitive

sequence in L(N, M0).

Finally, we denote ~0m (~1m) a m× 1 vector of zeros (ones).

2.2 Home space property

Linear and semi-linear sets were firstly introduced in [19] in order to study some problems

from formal language theory.

Definition 2. We say that E ⊆ Nm is a linear set if there exists some V ∈ Nm and a finite

set {V1, · · · , Vn} ⊆ Nm such that

E = {V ′ ∈ Nm |V ′ = V +
n∑

i=1

kiVi with ki ∈ N},

V is called the base of E, and V1, · · · , Vn are called its periods.

A semi-linear set is the finite union of a family of linear sets.

A first result regarding decidability is the following.

Theorem 3 ([6]). Given a net system 〈N, M0〉 and a semi-linear set E it is decidable if

R(N, M0) ∩ E = ∅.

Finally, we introduce the definition of home space [16] and an important theorem that will

be used when proving some properties of estimates.

Definition 4 ([16]). Let HS be a set of markings. We say that HS is a home space of a P/T

net 〈N, M0〉 iff ∀M ∈ R(N, M0), ∃M ′ ∈ HS such that M ′ ∈ R(N, M). If HS is a singleton,
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we call its unique element a home state.

Thus a set of markings HS is a home space if from any reachable marking it is possible

to reach some marking in HS. Furthermore, there exist special classes of sets for which the

home state property is decidable.

Theorem 5 ([6]). The property of being a home space for finite unions of linear sets having

the same periods is decidable.

3 Marking estimation

In this section we present an algorithm for estimating the state of a net system 〈N, M0〉 whose

marking cannot be directly observed under the following assumptions.

A1) The structure of the net N = (P, T, Pre, Post) is known, while the initial marking M0

is not.

A2) The event occurrences (i.e., the transition firings) can be observed.

After the word w has been observed we define the set M(w) of w consistent markings as

the set of all markings in which the system may be given the observed behaviour.

Definition 6. Given an observed word w, the set of w consistent markings is M(w) = {M |

∃M ′ ∈ Nm, M ′[w〉M}.

Given an evolution of the net Mw0 [tα1〉Mw1 [tα2〉 · · ·, we use the following algorithm to

compute the estimate µwi
of each actual marking Mwi

based on the observation of the word

of events wi = tα1tα2 · · · tαi
.

Algorithm 7 (Marking Estimation with Event Observation).

1. Let the initial estimate be µw0 = ~0m.

2. Let i = 1.

3. Wait until tαi
fires.

4. Update the estimate µwi−1
to µ′

wi
with

µ′
wi

(p) = max{µwi−1
(p), P re(p, tαi

)}.
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5. Let µwi
= µ′

wi
+ C(·, tαi

).

6. Let i = i + 1.

7. Goto 3. �

Note that in step 4. of the algorithm we update the previously computed estimate µwi−1
,

since the firing of tαi
implies that Mwi−1

≥ Pre(·, tαi
). In the following we will always denote

the estimate computed by this algorithm after having observed the word w as µw.

The estimate computed by Algorithm 7 is a lower bound of the actual marking of the net.

Proposition 8. Let w = tα1tα2 · · · ∈ L(N, M0) be an observed string and wi its prefix of length

i. Then

∀i, µwi
≤ µ′

wi+1
≤ Mwi

.

Proof. Clearly µwi
≤ µ′

wi+1
for all i. Also tα1 is enabled at M0 ≡ Mw0 , hence Mw0 ≥

Pre(·, tα1) = µ′
w1

.

By induction, assume µwi−1
≤ µ′

wi
≤ Mwi−1

. Then µwi
= µ′

wi
+ C(·, tαi

) ≤ Mwi−1
+

C(·, tαi
) = Mwi

. Finally, tαi+1
is enabled at Mwi

, hence Mwi
≥ Pre(·, tαi+1

). This implies

that Mwi
(p)− µ′

wi+1
(p) = Mwi

(p)− µwi
(p) ≥ 0 if µ′

wi+1
(p) = µwi

(p) while Mwi
(p)− µ′

wi+1
(p) =

Mwi
(p)− Pre(p, tαi+1

) ≥ 0 if µ′
wi+1

(p) > µwi
(p).

It is possible to give an easy characterization of the set of consistent markings in terms

of estimate. Let us first consider the following lemma that states that the minimal initial

marking enabling a sequence w on a net N is w−1(µw).

Lemma 9. Let w = tα1tα2 · · · tαk
be a sequence of transitions of a net N . Then w ∈ L(N, M0)

if and only if M0 ≥ w−1(µw) ≡ µw −
∑k

i=1 C(·, tαi
).

Proof. (if) Let σi = tαi
tαi+1

· · · tαk
be the suffix of w of length k + 1 − i. We will show that

for all i, σ−1
i (µw) ≡ µw −

∑k
j=i C(·, tαj

) ≥ Pre(·, tαi
). This implies that w ∈ L(N, w−1(µw)),

hence (by fact 1.i) ∀M0 ≥ w−1(µw), w ∈ L(N, M0). Clearly, σ−1
k (µw) = µw − C(·, tαk

) =

µ′
wk

≥ Pre(·, tαk
). By induction, assume now that σ−1

i+1(µw) ≥ µ′
wi
≥ Pre(·, tαi+1

). Then,

σ−1
i (µw) = σ−1

i+1(µw)− C(·, tαi
) ≥ µ′

wi+1
− C(·, tαi

) ≥ µwi
− C(·, tαi

) = µ′
wi
≥ Pre(·, tαi

).

(only if) By contradiction. Let w ∈ L(N, M0) with M0(p) < w−1(µw)(p). Then (by

fact 1.ii) w(M0)(p) < µw(p) and this violates Proposition 8.
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This lemma leads to the following theorem.

Theorem 10. Given an observed word w ∈ L(N, M0) and the corresponding estimated mark-

ing µw computed by Algorithm 7, the set of w consistent markings is

M(w) = {M ∈ Nm | M ≥ µw}.

Proof. w ∈ L(N, M0) ⇐⇒ (by Lemma 9) M0 ≥ w−1(µw) ⇐⇒ (by fact 1.ii) Mw ≥ µw.

It is also possible to define a meaningful measure of the place estimation error, as the token

difference between a marking and its estimate in a given place.

Definition 11. Let us consider a place p ∈ P and an observed word w ∈ L(N, M0). Let Mw

and µw be the corresponding marking and its estimate. The place estimation error in p is

ep(Mw, µw) = Mw(p) − µw(p) and its update after the firing of t is ep(Mw, µ′
wt) = Mw(p) −

µ′
wt(p).

Analogously, it is possible to define a measure of the estimation error, as the token difference

between a marking and its estimate.

Definition 12. Given a marking Mw and its estimate µw, the estimation error is e(Mw, µw) =∑
p∈P ep(Mw, µw) = ~1 T

m · (Mw − µw) and its update after the firing of t is e(Mw, µ′
wt) =

~1 T
m · (Mw − µ′

wt).

Note that the place estimation error is a monotonically non-increasing function of the

observed word length.

Proposition 13. Let w = tα1tα2 · · · ∈ L(N, M0) be an observed word and wi its prefix of

length i. Then ∀i and ∀p:

ep(Mwi
, µwi

) ≥ ep(Mwi
, µ′

wi+1
) = ep(Mwi+1

, µwi+1
), (1)

and

ep(Mwi
, µ′

wi+1
) = min

{
ep(Mwi

, µwi
), Mwi

− Pre(p, tαi+1
)
}

. (2)

Proof. To prove the first statement, we observe that by proposition 8, µwi
(p) ≤ µ′

wi+1
(p) ≤

Mwi
(p), hence ep(Mwi

, µwi
) ≥ ep(Mwi

, µ′
wi+1

). Also ep(Mwi
, µ′

wi+1
) = (Mwi

(p) − µ′
wi+1

(p)) =

(Mwi
(p) + C(p, tαi+1

)− µ′
wi+1

(p)− C(p, tαi+1
)) = (Mwi+1

(p)− µwi+1
(p)) = ep(Mwi+1

, µwi+1
).
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To prove the second statement, we observe that ep(Mwi
, µ′

wi+1
) = Mwi

(p) − µ′
wi+1

(p) =

Mwi
(p)−max{µwi

(p), P re(p, tαi+1
)} = min{Mwi

(p)− µwi
(p), Mwi

(p)− Pre(p, tαi+1
)} =

min{ep(Mwi
, µwi

), Mwi
(p)− Pre(p, tαi+1

)}.

Thus, it follows that also the estimation error is a monotonically non-increasing function

of the observed word length.

Proposition 14. Let w = tα1tα2 · · · ∈ L(N, M0) be an observed word, wi the prefix of w of

length i, and µwi
and µ′

wi
the estimate and the updated estimate of Mwi

. Then ∀i:

e(Mwi
, µwi

) ≥ e(Mwi
, µ′

wi+1
) = e(Mwi+1

, µwi+1
).

Proof. It immediately follows from proposition 13.

4 Properties of estimates

It is natural to ask under which conditions the estimated marking computed by algorithm 7

converges to the actual marking. This motivated us to define the following properties.

Definition 15. Given a net system 〈N, M0〉, and a place p ∈ P , we say that a word w ∈

L(N, M0) is

• p-complete if ep(Mw, µw) = 0, i.e., if µw(p) = Mw(p);

• marking complete if w is p-complete for all p ∈ P .

Thus a marking complete word allows one to reconstruct the actual marking of the net.

Based on this, we can define these properties of a net system.

Definition 16. A net system 〈N, M0〉 is:

• marking observable (MO) if there exists a marking complete word w ∈ L(N, M0);

• strongly marking observable (SMO) in k steps if:

1. ∀w ∈ L(N, M0) such that |w| ≥ k, w is marking complete,

2. ∀w ∈ L(N, M0) such that |w| < k, either w is marking complete or ∃ t ∈ T such

that M0[wt〉.
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In the above definitions we note that the observability properties depend not only on the

net structure N , but also on the initial marking M0, that we assume is unknown. Thus,

it may seem that those properties have little significance per se. In effect, we will use the

characterization of MO and SMO to define two more general properties that have greater

significance.

Definition 17. A net system 〈N, M0〉 is:

• uniformly marking observable (uMO) if ∀M ∈ R(N, M0), 〈N, M〉 is MO;

• uniformly strongly marking observable (uSMO) in k steps if ∀M ∈ R(N, M0), 〈N, M〉

is SMO in k steps.

The property of uMO and uSMO are important if we consider the following problem: we

consider a system whose initial marking M0 is known. Due to a communication failure the

system evolves unobserved. When the communication is re-established, we can only be sure

that the actual marking belongs to the set R(N, M0). We want to know if the marking can

be reconstructed starting from any of these reachable markings.

Definition 18. A net N is:

• structurally marking observable (sMO) if it is MO for any initial marking M0 ∈ Nm;

• structurally strongly marking observable (sSMO) in k steps if 〈N, M0〉 is SMO in a

number of steps k (that depends on M0 ∈ Nm).

The properties of sMO and sSMO are even more general and only depend on the net

structure N .

The above properties are related among them as shown in the following partial order

diagram:

sSMO −→ uSMO −→ SMO

↓ ↓ ↓

sMO −→ uMO −→ MO

Here, say, sMO −→ uMO means that if a net N is sMO then 〈N, M0〉 is uMO for all initial

markings M0. By means of simple counterexamples it is possible to prove that properties not

in a partial order relationship are uncorrelated.
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t1 t2 
p1 p2 p3 

Figure 1: A net system that is not MO, but whose places are MO.

Note that sometimes, only the marking of a subset of places can be reconstructed, thus

making it necessary to introduce the following definition.

Definition 19. Given a net system 〈N, M0〉, a place p ∈ P is:

• marking observable (MO) if there exists a p-complete word w ∈ L(N, M0);

• strongly marking observable (SMO) in kp steps (where kp depends on the place p) if:

1. ∀w ∈ L(N, M0) such that |w| ≥ kp, w is p-complete;

2. ∀w ∈ L(N, M0) such that |w| < kp, either w is p-complete or ∃ t ∈ T such that

M0[wt〉.

Analogously, we can extend to a single place p all the properties of estimates previously

defined for a net (system), namely, uMO, uSMO, sMO, sSMO. For sake of brevity we omit

formal definitions. We highlight, however, the following implications.

• ∀p, p is MO ⇐= 〈N, M0〉 is MO

• ∀p, p is SMO (uMO, uSMO, sMO, sSMO) ⇐⇒

〈N, M0〉 is SMO (uMO, uSMO, sMO, sSMO).

Note that the first one only holds in one sense. In fact, even if all places are observable,

this does not imply that there exists one sequence that reconstructs the marking of all places.

Example 20. Let us consider the net system 〈N, M0〉 in figure 1. All places are MO but the

net system is not MO. In fact, if t1 fires, we reconstruct the marking of places p1 and p2, but

the net reaches a dead marking, thus making it impossible to reconstruct the marking of place

p3. Analogously, the firing of t2 enables us to reconstruct the actual marking of places p2 and

p3, but it produces a deadlock, thus not enabling the reconstruction of the marking in p1. �
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5 Observer coverability graph

In this subsection we show how to construct an observer coverability tree and the corresponding

observer coverability graph (OCG) to represent both the set of reachable markings of a net

system and the error of the estimate computed in accordance with algorithm 7. More precisely,

each node of the OCG contains a vector M covering a marking of the net and an upper bound

error vector u ∈ Nm. We will show that the OCG is useful to prove observability properties.

Algorithm 21 (Observer coverability tree).

1. Let u0 = M0. Label the initial node (M0/u0) as the root and tag it ”new”.

2. If ”new” nodes exist, select a new node (M/u) and:

2.1. If (M/u) is identical to a node labeled ”old” then tag (M/u) “old” and go to step

2.

2.2. If no transitions are enabled at M , tag (M/u) ”dead” and go to step 2.

2.3. For each transition t enabled at M do the following:

2.3.1. ∀ p ∈ P , if M(p) = ω then let M̃(p) = M(p) and ũ(p) = u(p),

else let M̃(p) = M(p) + C(p, t) and ũ(p) = min{u(p), M(p)− Pre(p, t)};

2.3.2. on the path from the root to (M/u) if there exists a marking M ≤ M̃ and

M̃ 6= M , i.e., M is covered by M̃ , then let M̃(p) = ω for each p such that

M̃(p) > M(p);

2.3.3. introduce (M̃/ũ) as a node, draw an arc with label t from (M/u) to (M̃/ũ),

and tag (M̃/ũ) ”new”.

2.4 Tag (M/u) “old” and go to step 2. �

Note that its construction follows the well known rules of a coverability tree for a P/T

net [17]. Also, we note that the error bound vector u is set to the actual error for the root

node and then it is updated as we add new nodes. Note, however, that whenever we reach a

marking whose component M(p) is ω, the error bound u(p) is not updated any more (see step

2.3.1).
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The observer coverability graph of a Petri net 〈N, M0〉 is a labeled directed graph

G = (V, E) with transition function δ : V × E → V . Its node set V is the set of all distinct

labeled nodes in the observer coverability tree, and each arc in E is labeled with a transition

t to represent a firing such that δ((M/u), t) = (M ′/u′), where (M/u) and (M ′/u′) are in V .

Note that in the OCG all tags used in the construction of the observer coverability tree are

omitted.

We will also represent the initial marking by a round corner box, while a thick box repre-

sents a marking whose estimation error bound vector is u = ~0m.

Example 22. Let us consider the net systems in figure 2 and their OCG. Since the two nets

are unbounded, in both cases ω appears. The OCG of a bounded net is shown in figure 3. �

Let us demonstrate that the OCG of a P/T net has a finite number of nodes.

Property 23. Let G be the OCG of 〈N, M0〉. The number of nodes in G is bounded by

v = v′ ·
∏

p∈P (M0(p) + 1) where v′ is the number of nodes in the usual coverability graph of

〈N, M0〉.

Proof. By virtue of algorithm 21 the initial error bound vector is equal to the initial estimate,

i.e., u0 = M0. Moreover, by proposition 14 the place estimation error is a monotonically

non-increasing function of the observed word length, thus the estimation error in the generic

place p may assume at most M0(p)+1 different values. It follows that the number of nodes in

G is limited by the number of nodes v′ in the coverability graph times
∏

p∈P (M0(p) + 1).

Apart from the well known properties that can be studied through the coverability graph

of a P/T net [17], the OCG enables us to study some more interesting properties.

Proposition 24. Let G be the OCG of 〈N, M0〉. Given w ∈ L(N, M0) consider the node

(M/u) reached on the graph executing w, i.e., let (M/u) = δ((M0/u0), w). It holds that:

(i) the place estimation error ep(Mw, µw) ∈ [`(p), u(p)] where u(p) is the component of u

corresponding to place p and

`(p) =

 u(p) if M(p) 6= ω

0 if M(p) = ω
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Figure 2: Unbounded Petri nets and their observer coverability graphs.
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Figure 3: A bounded Petri net and its observer coverability graph.

(ii) the estimation error

e(Mw, µw) ∈ [
∑
p∈P

`(p),
∑
p∈P

u(p)].

Proof. We prove this by induction on the length of w.

(i) When w ≡ w0, i.e., w is a word of null length, (M/u) = (M0/u0), and ep(Mw0 , µw0) =

M0(p)− 0 = M0(p) ≡ u0(p).

Assume that the property (i) holds for a word w′ ∈ L(N, M0) and let δ((M0/u0), w
′) =

(M ′/u′). Let t be an enabled transition at Mw′ and w = w′t: in the OCG there will be

a transition δ((M ′/u′), t) = (M/u). We can consider two cases.

If M(p) 6= ω, then Mw′ = M ′(p) 6= ω and

ep(Mw, µw) = min{ep(Mw′ , µw′), Mw′(p)− Pre(p, t)}

= min{u′(p), M ′(p)− Pre(p, t)} = u(p).

where the first equality derives from eq. (1), the second one from the induction hypoth-

esis, and the third one from step 2.3.1 of algorithm 21.
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If M(p) = ω, then

ep(Mw, µw) = min{ep(Mw′ , µw′), Mw′(p)− Pre(p, t)}

≤ ep(Mw′ , µw′) ≤ u′(p) = u(p).

where the last inequality derives from the induction hypothesis, and the last equality

from step 2.3.1 of algorithm 21.

(ii) Immediately follows from the previous item.

Example 25. Let us consider again the net system in figure 2.a and its OCG. The estimation

error relative to the node labeled with (ω/1) may be either null or unitary. If we consider

w = t1t2t2 then ep(Mw, µw) = 0, thus on the OCG we read an upper bound of the estimation

error. On the contrary, ep(Mw, µw) = 1 is the exact estimation error for all words w such that

∀w′ 4 w, |w′|t1 ≥ |w|t2 .

Now, let us consider the net system in figure 2.b. Here, every node with label M(p1) = ω

is also characterized by u(p1) = 0, i.e., the upper bound on the place estimation error in p1 is

null. Therefore, in this case in each node of the OCG we can read the actual place estimation

error in p1.

Finally, in the example in figure 3 no ω appears in G being the net bounded, thus in each

node u is the exact estimation error vector. �

6 Properties analysis

In this subsection we discuss in detail the observability problem. In particular we provide

necessary and sufficient conditions to characterize the properties defined above and we also

prove that all these properties are decidable. The OCG is a useful tool when dealing with

some analysis problems.

6.1 Word completeness

An elementary necessary and sufficient condition for completeness of a word is the following.
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Proposition 26. A word w ∈ L(N, M0) is: (i) p-complete iff M0(p) = w−1(µw)(p); (ii)

marking complete iff M0 = w−1(µw).

Proof. The word w is p-complete (resp., marking complete) if and only if Mw(p) = µw(p)

(resp., Mw = µw), i.e., if and only if M0(p) = w−1(Mw)(p) = w−1(µw)(p) (resp., M0 =

w−1(Mw) = w−1(µw)).

Example 27. Let us consider the net system in figure 3. The word w = t2 is not marking

complete because µt2 = [0 1 0]T and t−1
2 (µt2) = [1 0 0]T � M0. On the contrary, the word

w = t2t2 is marking complete because µt2t2 = [0 2 0]T and [t2t2]
−1(µt2t2) = [2 0 0]T = M0. �

Another semi–decision procedure for completeness can be given using the OCG.

Proposition 28. Let us consider a net system 〈N, M0〉 and its OCG G. Let (M/u) be the

node in G reached executing w ∈ L(N, M0), i.e., (M/u) = δ((M0/u0), w) and let us consider

a place p ∈ P .

(i) If u(p) = 0 (resp., u = ~0m), then w is p-complete (resp., marking complete).

(ii) If M(p) 6= ω and u(p) 6= 0, then w is not p-complete, hence it is not marking complete.

Proof: It follows from proposition 24.

Note that the OCG provides necessary and sufficient conditions for the completeness of a

word only in the case of bounded P/T nets, when ω does not appear in the graph. On the

contrary, it only provides two distinct sufficient or necessary conditions for the completeness

of a word in the case of unbounded nets.

Example 29. Let us consider again the bounded net system in figure 3. The OCG allows

one to say that the word w = t2 is not marking complete because its execution leads to

(1 1 0/1 0 0), while the word w = t2t2 is marking complete because its execution leads to

(0 2 0/0 0 0).

Let us consider the unbounded net system in figure 2.a. If we consider w = t1t2t2, w is

complete but this is not deducible from the OCG because its execution leads to (ω/1). �

Theorem 30. Let 〈N, M0〉 be a net system and w a word in L(N, M0). It is decidable whether

w is marking complete wrt to 〈N, M0〉.

Proof. It follows from proposition 26, because it is sufficient to determine µw using algorithm 7,
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and then compute w−1(µw).

6.2 Observability

We firstly provide a necessary and sufficient condition for marking observability.

Proposition 31. The net system 〈N, M0〉 is marking observable iff

L(N, M0) )
⋃

M0�M0

L(N, M0).

Proof. In general L(N, M0) ⊇
⋃

M0�M0
L(N, M0). We prove that the system is not observable

iff the equality holds.

In fact L(N, M0) =
⋃

M0�M0
L(N, M0) ⇐⇒ ∀w ∈ L(N, M0), ∃M0 � M0 such that w ∈

L(N, M0) ⇐⇒ (by lemma 9) ∀w ∈ L(N, M0), ∃M0 such that M0 
 M0 ≥ w−1(µw) ⇐⇒ (by

proposition 26) ∀w ∈ L(N, M0), w is not complete⇐⇒ 〈N, M0〉 is not marking observable.

Checking for language inclusion is difficult (see [20]) thus we look for simpler decision

procedures. In particular the OCG provides a simpler semi-decision (i.e., only sufficient)

condition for the marking observability.

Proposition 32. Let us consider a net system 〈N, M0〉 and its OCG G. (i) A place p is

marking observable if there exists a node in G such that u(p) = 0. (ii) The net system is

marking observable if there exists a node in G such that u = ~0m.

Proof: It follows from the definition of marking observability and from proposition 28.

On the contrary, the OCG provides necessary and sufficient conditions for strong marking

observability. Let us first demonstrate, as an intermediate result, that the repeated firing of a

repetitive sequence does not decrease the estimation error.

Lemma 33. Let 〈N, M0〉 be a net system and let us assume that there exists a firing sequence

w′ that enables a repetitive sequence w, i.e., M0[w
′〉Mw′ [w〉Mw′w with Mw′w ≥ Mw′. Then

∀ p ∈ P and ∀ i > 1, ep(Mw′wi , µw′wi) = ep(Mw′w, µw′w).

Proof. While observing a sequence w, the error may decrease only during step 4 of algorithm 7,

i.e., when we compute the updating estimate.
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Let t be the first transition in the sequence w. If t fires after w′wi, in step 4 of algorithm 7

we have

µ′
w′wit ≥ Pre(·, t).

Using proposition 13 it is easy to show that for all i ≥ 1

(Mw′wi+1 − µw′wi+1) ≤ (Mw′wi − µ′
w′wit).

thus

µw′wi+1 ≥ (Mw′wi+1 −Mw′wi) + µ′
w′wit ≥ µ′

w′wit ≥ Pre(·, t).

Therefore, µ′
w′wi+1t = µw′wi+1 , i.e., the estimate is not updated and the error remains constant

each time w is repeated after it has fired once.

Proposition 34. Let us consider a net system 〈N, M0〉, its OCG G, and a place p of N . The

place p (resp., the net system) is strongly marking observable in kp steps iff the error bound

vector is such that u(p) = 0 (resp., u = ~0m) for each node (M/u) in G such that: (a) the node

(M/u) is in a cycle; (b) the node (M/u) is dead. Moreover, if (a) and (b) are satisfied, it

is possible to compute kp as the length1 of the longest directed path that starts from the root,

contains only intermediate nodes with u(p) > 0 (resp., u 
 ~0m), and ends on a node with

u(p) = 0 (resp., u = ~0m).

Proof: We prove the property for a single place p; the proof for the net system trivially

follows.

(if) By proposition 23, the number of nodes in G is finite and equal to v. Thus any word

w of length greater or equal to v must pass through a cycle in G, hence w is p-complete by

assumption (a). Any word of length less that v that leads to a dead marking is also p-complete,

by assumption (b). This is sufficient to show that the place is SMO in kp steps with kp ≤ v.

The actual value of kp may be computed as suggested in the statement.

(only if) We show this by contradiction, proving that if any of the two conditions are

violated the place cannot be SMO. Clearly, if condition (b) is violated, the place is not strongly

marking observable by definition. Now, let assume that (a) is violated. We consider two

subcases.

1The length of a path is given by the number of edges along the path.
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(i) Assume there exists a node (M/u) along a cycle γ of G with M(p) 6= ω and u(p) > 0.

Then there exists w′ such that Mw′ = M and ep(Mw′ , µw′) = u(p) > 0. The cycle γ corresponds

to a word w such that Mw′ [w〉Mw′ , i.e., by Lemma 33 the infinite length sequence w′wi may

be fired for all i > 0 without reducing the estimation error and the place is not SMO.

(ii) Assume there exists a node (M/u) with M(p) = ω and u(p) > 0 (we do not even need

to assume it is along a cycle). Then consider the path along the observer coverability tree

that reaches (M/u) from (M0/u0) and let (M̃, ũ) be the first node we encounter along this

path with M(p) = ω. Then, at step 2.3.2 of algorithm 21, we have identified a marking M

such that M0[w
′〉M [w〉Mw′w and Mw′w ≥ Mw′ (M̃ is obtained from Mw′w by changing in ω

the components greater that the corresponding components of M). Also, ep(Mw′w, µw′w) =

ũ(p) ≥ u(p) > 0. Thus, by Lemma 33 the infinite length sequence w′wi may be fired for all

i > 0 without reducing the estimation error and the place is not SMO.

Example 35. All net systems in figures 2–3 are MO but not SMO. On the contrary, one

example of strong marking observability (in one step) can be obtained if we consider the net

in figure 3 with initial marking M0 = [1 0 0]T (see figure 4.a).

Analogously, the net systems in figure 4.c–d are MO, but only the net system in figure 4.c

is SMO (in one step). In the case of the net system in figure 4.d, there exist arbitrarily long

sequences that are enabled at the initial marking, and that are not complete. In fact, ∀ i ∈ N,

w ∈ t1(t2)
i is not complete.

These results can also be read in table 1 that summarizes all observability properties of

P/T nets in figure 4. �

Finally, let us discuss the decidability of these properties.

Theorem 36. It is decidable whether the net system 〈N, M0〉 is marking and strongly marking

observable.

Proof. Decidability of the MO property follows from propositions 31 and the fact that language

inclusion for free Petri nets languages is decidable [8, 20]. Decidability of the SMO property

follows from proposition 34, since the OCG is finite.
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Figure 4: Place/Transition nets used in the examples.

Table 1: Observability properties of the nets in figure 4.
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6.3 Uniform observability

In this section we first provide necessary and sufficient conditions for both uniform MO and

uniform SMO. Then we prove the decidability of both these properties.

Let us first demonstrate an important lemma.

Lemma 37. Let 〈N, M0〉 be a net system. A place p ∈ P is observable in 〈N, M0〉 iff at least

one element in the semi–linear set

Ap = {M ∈ Nm |M(p) = 0} ∪

(⋃
t∈p•

{M ∈ Nm |M(p) = Pre(p, t), M ≥ Pre(·, t)}

)
(3)

is reachable.

Proof. (if) Let w be a word in L(N, M0). Let us consider two subcases.

i) If Mw ∈ {M ∈ Nm |M(p) = 0}, then 0 = Mw(p) ≥ µw(p) ≥ 0, thus Mw(p) = µw(p).

ii) If Mw ∈ {M ∈ Nm |M(p) = Pre(p, t), M ≥ Pre(·, t)} where t ∈ p•, then t may fire

at Mw and since Mw(p) = Pre(p, t) the updated estimate is µ′
w(p) = Mw(p), hence

Mwt(p) = µwt(p).

(only if) We prove this by contradiction.

If no marking with M(p) = 0 is reachable, then Mw(p) > 0 ∀w ∈ L(N, M0), thus the

initial place estimation error is strictly positive. It may decrease only during step 4 of algo-

rithm 7. However, if ∀w and ∀ t ∈ p•, Mw(p) > Pre(p, t), then µ′
w(p) < Mw(p), thus the place

estimation error keeps positive.

By virtue of the previous lemma, the study of uniform marking observability reduces to

the study of m home space problems.

Proposition 38. A net system 〈N, M0〉 is uniformly marking observable iff the semi–linear

set Ap given by eq. (3) is a home space ∀ p ∈ P .

Proof. It follows from the previous lemma and the fact that a net system 〈N, M0〉 is uniformly

marking observable iff each place p ∈ P is observable in 〈N, M〉, ∀M ∈ R(N, M0), i.e., iff the

semi–linear set (3) is a home–space ∀ p ∈ P .

Let us now consider the uniform SMO property.
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Proposition 39. A net system 〈N, M0〉 is uniformly strongly marking observable only if its

reachability set is finite.

Proof. If the reachability set is not finite, then (by fact 1.iii) there exist words w′ and w such

that M0[w
′〉Mw′ [w〉Mw′w with Mw′w 
 Mw′ . This means that w ∈ L(N, Mw′) ∩ L(N, Mw′w),

and (by lemma 9) Mw′w 
 Mw′ ≥ w−1(µw), thus (by proposition 26) the word w is not marking

complete wrt 〈N, Mw′w〉. Also, we can have words of infinite length wi (for all i > 1) that

are not marking complete (by lemma 33) thus the system 〈N, Mw′w〉 is not SMO and finally

〈N, M0〉 is not uSMO.

Example 40. The net systems in figure 4.a, b and c are uMO. In fact, in the first two cases,

∀ p ∈ P the set {M ∈ Nm | M(p) = 0} is always a home space. In the third case, the set

{M ∈ Nm | M(p1) = 0} and the set {M ∈ Nm | M(p2) = Pre(p2, t2) = 1, M ≥ Pre(·, t2)}

are home spaces. On the contrary, the net system in figure 4.d is not uMO because {M ∈

Nm | M(p2) = 0}∪{M ∈ Nm | M(p2) = Pre(p2, t2) = 1, M ≥ Pre(·, t2)} is not a home space

and thus p2 is not uMO; in fact the net system 〈N, M〉 is not MO at M = [0 2]T ∈ R(N, M0).

The net systems in figure 4.a and c are uSMO. Obviously, the net system in figure 4.b is

not uSMO, being not SMO. Analogously, being the net system in figure 4.d not uMO, it is

also not uSMO. �

Theorem 41. It is decidable if a net system 〈N, M0〉 is uniformly and strongly uniformly

marking observable.

Proof. Let us first prove the decidability of uniform marking observability. Because of propo-

sition 38 it is sufficient to prove that the home-space property for the set Ap is decidable. Let

us observe that ∀ p ∈ P the semi–linear set in eq. (3) is given by the finite union of linear sets

having the same periods. In fact, if we consider a generic place pk ∈ P ,

{M ∈ Nm | M(pk) = 0} =

{∑
i6=k

ai~εi | ai ∈ N

}

{M ∈ Nm | M(pk) = Pre(pk, t), M ≥ Pre(·, t)} ={
Pre(·, t) +

∑
i6=k

bi~εi | bi ∈ N

}
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where ~εi is the i–th canonical basis vector of dimension m. Thus, the decidability of the

home-space property for Ap immediately follows by theorem 5.

Secondly, let us prove the decidability of strong uniform marking observability. Let us

observe that if the necessary requirement stated by proposition 39 is satisfied, then the reach-

ability set is finite and the uniform strong marking observability can be verified by proving the

strong marking observability — that is decidable [9] — for a finite set of initial markings.

6.4 Structural observability

In this subsection we provide necessary and sufficient conditions for both structural and strong

structural marking observability and we prove the decidability of these properties.

Proving structural observability, requires the study of the system properties for all possible

initial markings. Next two lemmas show that to prove that a place is observable for all initial

markings in Nm, just a finite subset of Nm needs to be checked.

Lemma 42. If a place p ∈ P is observable in 〈N, M〉 then it is also observable in 〈N, M〉

∀M ≥ M with M(p) = M(p).

Proof. A place p is observable in 〈N, M〉 if and only if ∃w ∈ L(N, M) such that M [w〉M ′ and

µw(p) = M ′(p). In this case ∀M ≥ M with M(p) = M(p), w ∈ L(N, M) (by fact 1.i) and

M [w〉M ′ with M ′(p) = M ′(p) = µw(p) (by fact 1.ii), i.e., p is also observable in 〈N, M〉.

Lemma 43. Let N be a Petri net and let rp = maxt∈T Pre(p, t). Let

Mp
i =

 Mp
i (p′) = 0 if p′ 6= p

Mp
i (p) = i.

(4)

A place p ∈ P is observable in 〈N, Mp
i 〉 ∀ i ∈ N, iff p is observable in 〈N, Mp

i 〉 for i =

1, · · · , rp + 1.

Proof. If p is observable in 〈N, Mp
rp+1〉 then ∃w and t ∈ p• such that Mp

rp+1[w〉M , M(p) =

Pre(p, t), i.e., the firing of the word w reduces the number of tokens in p. This implies that

for all Mp
i with i > rp + 1 the word w may also fire until we reach a marking M

′
such that

M
′ ≥ Mp

%i
and M

′
(p) = %i ≤ rp. Since p is observable in 〈N, Mp

ρi
〉, then it is also observable

in 〈N, M
′〉 by lemma 42.
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Proposition 44. A Petri net N is structurally marking observable iff ∀ p ∈ P , p is observable

in 〈N, Mp
i 〉, where Mp

i is defined as in equation (4) and i = 1, · · · , rp + 1.

Proof. By definition a Petri net N is sMO iff ∀ p ∈ P , p is observable in 〈N, M〉 ∀M ∈ Nm.

By lemma 42 and lemma 43 it is however sufficient to check that each p is observable for the

finite number of initial makings given in the statement.

Proposition 45. A Petri net N is strongly structurally marking observable iff

(a) N has no repetitive sequences;

(b) ∀ p ∈ P , ∃ t ∈ T such that

Pre(p′, t) =

 1 if p′ = p

0 if p′ 6= p
.

Proof. (if) We will prove that (a) and (b) imply that for any initial marking M0 in finite

number of steps the net looses all its tokens: this is a sufficient condition for SMO of 〈N, M0〉

by lemma 37. In fact, if no repetitive sequences exist, for any initial markings the length of all

words firable is bounded, i.e., after a finite number of firings the net reaches a dead marking.

Furthermore, if assumption (b) is verified, for each place p ∈ P there exists a transition t

whose single input is p and the corresponding arc weight is unitary, i.e., if t cannot fire then

place p must be empty. Thus the dead marking must be the zero marking.

(only if) We prove this by contradiction.

Let us first assume that (a) is violated, and let w be a repetitive sequence. Clearly, for any

M 
 w−1(µw), the word w is not marking complete wrt 〈N, M〉 (by proposition 26). Also,

we can have words of infinite length wi (for all i > 1) that are not marking complete (by

lemma 33) thus the system 〈N, M〉 is not SMO.

Secondly, we assume that (a) is verified while ∃ p ∈ P such (b) is violated. We first observe

that we can exclude the existence of transitions with no input arcs, because this would violate

condition (a). Then it is obvious that given the marking Mp
1 as in equation (4) (that contains

one token in p and zero tokens elsewhere) no transition is enabled, thus the marking of p

cannot be observed.
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Theorem 46. It is decidable if a Petri net N is structurally marking observable and struc-

turally strongly marking observable.

Proof. To prove that N is sMO it is sufficient to prove (by propositions 44) that all places

are observable in 〈N, M0〉 for a finite number of initial markings M0. The property of being

observable for a place is decidable because of theorem 3 and of the characterization given by

lemma 37.

To prove that N is sSMO it is sufficient to check by propositions 45 that no repetitive

sequences exist (and this may be checked with linear algebraic tools given the net incidence

matrix) and that the net structure satisfies condition (b) (this may be checked by inspection).

Example 47. Being sMO and sSMO structural properties of the net, the same conclusions

can be drawn for nets in figure 2.a, b and c, d, respectively.

In particular, the net in figure 4.a is sMO by proposition 44. On the contrary, it is not

sSMO. In fact, if we consider the initial marking in figure 4.b the net system is not SMO.

The net N in figure 4.c is not sMO (thus it is also not sSMO). In fact, if we consider

M0 = [0 2]T , 〈N, M0〉 is not MO. �

A final remark regards the classes of nets that are sSMO. Although this property is rather

easy to prove, the class of nets that satisfy this property is of little practical interest (they

must become empty and deadlock in a finite number of steps). The property of structural

MO, on the contrary, is more difficult to prove but is satisfied by a wider (more interesting)

class of nets.

7 Marking estimation with macromarking

In the previous sections no information was assumed on the initial marking M0 that originates

the observed transition firings. It is often the case, however, that partial information about

this marking is available.

As an example, let us assume that the net starts its evolution at a given time instant

τ− from a known marking M− (called start marking). After having evolved unobserved for
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some time, the net reaches a marking M0 (called initial marking) from which we begin the

observation of the transition firings. Now we know that M0 ∈ R(N, M−) and we could use

this information to better characterize the set of markings consistent with an observed word

w given the information on the start marking as:

M(w | M−) = {M | ∃M0 ∈ R(N, M−), M0[w〉M}.

The main problem with this is that this characterization is given in terms of Petri net

reachability (the initial marking must be reachable from the start marking) that is hard to

solve. Looking for simpler structures, we consider the case in which the knowledge of M0 can

be written as M0 ∈ V(V,~b), where V is a macromarking defined as follows.

Definition 48. Assume the set of places P can be written as the union of r + 1 subsets

P = P0∪P1∪· · ·∪Pr, where P0∩Pj = ∅ for all j > 0, while any two sets Pj and Pj′ may have

a non null intersection if j, j′ > 0. For each Pj, ~vj is its characteristic vector (i.e., vj(p) = 1

if p ∈ Pj, else vj(p) = 0). The number of tokens in P0 is unknown. Let V = [~v1, · · · , ~v2] and

~b = [b1, · · · , br]. The macromarking V(V,~b) is defined as the set {M ∈ Nm | V T M = ~b}.

Note that, as a special case, if V is a matrix of P-invariants, then by definition

R(N, M−) ⊆ {M ∈ Nm | V T M = V T M−}

where V T M− = ~b is known, thus a macromarking can also approximate the info about the

start marking M−.

We thus add to assumptions A1 and A2 given in section 3, the following assumption:

A3) the initial marking M0 belongs to the macromarking V(V,~b), i.e., it satisfies the equation

V T M0 = ~b.

Given an evolution of the net M0[tα1〉M1[tα2〉 · · ·, we use the following algorithm to compute

estimate µwi
and bound Bwi

of each actual marking Mwi
based on the observation of the word

of events wi = tα1tα2 · · · tαi
, and of the knowledge of the initial macromarking V(V,~b).

Algorithm 49. Marking Estimation with Event Observation and Initial Macromarking

1. Let the initial estimate be µw0 = ~0m.

2. Let the initial bound be Bw0 = ~b.
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3. Let i = 1.

4. Wait until tαi
fires.

5. Update the estimate µwi−1
to µ′

wi
with

µ′
wi

(p) = max{µwi−1
(p), P re(p, tαi

)}.

6. Let µwi
= µ′

wi
+ C(·, tαi

).

7. Let Bwi
= Bwi−1

− V T · (µ′
wi
− µwi−1

).

8. Let i = i + 1.

9. Goto 4. �

Note that the estimate µ computed using this algorithm is the same of the estimate com-

puted with Algorithm 7 and thus, all observability properties already discussed do not change.

What is new is the additional information given by the bounds that will be used to char-

acterize the set of consistent markings.

Theorem 50. Given an observed word w ∈ L(N, M0) with initial macromarking V(V,~b), the

corresponding estimated marking µw and bound Bw computed by Algorithm 49, the set of w

consistent markings is M(w | V,~b) = {M ∈ Nn | V T ·M = V T · µw + Bw, M ≥ µw}.

Proof. Let w0 be the empty word. Then {M ∈ Nn | V T ·M = V T · µw0 + Bw0 , M ≥ µw0} =

{M ∈ Nn | V T ·M = V T ·µw0 +~b−V T ·µw0 , M ≥ µw0} = {M ∈ Nn | V T ·M = ~b, M ≥ µw0} =

{M ∈ Nn | V T ·M = ~b} ≡ M(w0 | V,~b).

By induction, let us show that M(w | V,~b) = {M ∈ Nn | M ≥ µw, V T ·M = V T ·µw +Bw}

=⇒M(wt | V,~b) = {M ∈ Nn | M ≥ µwt, V
T ·M = V T · µwt + Bwt}.

In fact M(wt | V,~b) ≡ {M ∈ Nn | ∃M ′ ∈M(w | V,~b), M ′ ≥ Pre(·, t), M = M ′+C(·, t)} =

{M ∈ Nn | ∃M ′, V T ·M ′ = V T · µw + Bw, M ′ ≥ µw, M ′ ≥ Pre(·, t), M = M ′ + C(·, t)}.

Now, let µ′
wt be the updated estimate of Mw after t fires. Then [M ′ ≥ µw] ∧ [M ′ ≥

Pre(·, t)] ⇐⇒ M ′ ≥ µ′
wt. Furthermore, with the notation of Algorithm 49, Bw + V T · µw =

Bwt +V T ·µ′
wt, and µwt = µ′

wt +C(·, t). Hence M(wt | V,~b) = {M ∈ Nn | ∃M ′, V T ·M ′ = V T ·

µ′
wt +Bwt, M

′ ≥ µ′
wt, M = M ′ +C(·, t)} = {M ∈ Nn | V T ·M = V T ·µwt +Bwt, M ≥ µwt}.
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The previous theorem allows us to write a general optimization problem of the form

max ~c T ·M

s.t. M ∈M(w | V,~b)

as a linear integer programming problem (IPP)

max ~c T ·M

s.t. V T ·M = V T · µw + Bw

M ≥ µw.

(5)

As an example, appropriately choosing the value of ~c, such an IPP can be used to compute

the maximum over all consistent markings of the tokens in the net (if ~c = ~1), and of the tokens

in a generic place pi (if ~c = ~εi).

Note that if we do not want to solve an integer linear programming problem, it is possible

to give ranges on the estimation errors by simple inspection of B.

Theorem 51. Consider an observed word w ∈ L(N, M0) with initial macromarking V(V,~b),

the corresponding estimated marking µw and bound Bw computed by Algorithm 49, and P =

P0 ∪ P1 ∪ · · · ∪ Pr with the notation of Definition 48.

1. ∀M ∈M(w | V,~b), l ≤ e(M, µw) ≤ u where l = maxj Bw(j), and u = ~1T
r ·Bw if P0 = ∅,

else u = +∞.

2. ∀M ∈ M(w | V,~b), epi
(M, µw) ≤ upi

where upi
= min

j| pi∈Pj

Bw(j) if pi ∈ P \ P0, else

upi
= +∞.

Proof. 1. The first inequality immediately follows by definition of Bw. Moreover, V T M =

V T µw + Bw, thus V T (M − µw) = Bw and ~1T
r · V T (M − µw) = ~1T

r · Bw. If P0 = ∅, then

~1T
r · V T ≥ ~1T

m, thus e(M, µw) = ~1T
m · (M − µw) ≤ ~1T

r · V T (M − µw) = ~1T
r · Bw. On the

contrary, if P0 6= ∅, then an arbitrarily large number of tokens can be added to P0, thus

u = +∞.

2. By definition, each subset Pj such that pi ∈ Pj imposes a constraint of the form

epi
(M, µw) ≤ Bw(j) on the place estimation error. When pi belongs to more than
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one subset of places, the resulting constraints should be satisfied simultaneously, thus

providing the above statement. On the contrary, if pi ∈ P0, no limit exists on the number

of tokens that can be added to µw.

Remark 52. In the case of disjoint subsets Pj’s, l = u = ~1T
r ·Bw if P0 = ∅, else l = ~1T

r ·Bw.

¿From Theorem 51, we have the following corollary that shows how the bound Bw may be

used to prove that a word w is complete.

Corollary 53. With the notation of Algorithm 49:

1. if P0 = ∅, then w is marking complete if and only if Bw = ~0r;

2. if P0 6= ∅, then w is marking complete only if Bw = ~0r.

We conclude this section with the following observation. In Algorithm 49 by construction

we are sure that for all w it holds µw ≤ Mw. However, if we are willing to pay the extra cost of

solving m optimization problems of the form (5) at each iteration, we may be able to update

each component of µw in step 1 and step 6 of the algorithm as follows:

µ̃w(p) = min{M(p) | M ∈M(w | V,~b)}.

It is easy to show that this updated estimate is such that

µw ≤ µ̃w ≤ Mw.

8 Control using observers

In this section we show how the marking estimate constructed with the formalism discussed

in the previous section can be used by a control agent to enforce a given specification on the

plant behaviour.

We make several assumptions that are briefly discussed here.

• The specification is given as a set of forbidden markings F . The set of legal markings is

L = Nm −F .
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Figure 5: State feedback control loop with observer.

• The controller may disable transitions to prevent the plant from entering a forbidden

marking. From the knowledge of µw and Bw, the controller computes a control pattern

γ : T → {0, 1}. If γ(t) = 0 then t is disabled by the controller.

• All transitions are controllable, i.e., can be disabled by the controller.

The considered control scheme is shown in Figure 5.

Under the assumption that the initial marking M0 ∈ L, the following algorithm may be

used by the controller at each step to ensure that markings in F are not reached.

Algorithm 54. Let w be the observed word, and M(w | V,~b) = {M ∈ Nn | V T · M =

V T · µw + Bw, M ≥ µw}, where µw and Bw are computed by the observer.

for all t ∈ T

begin

γ(t) := 1;

if ∃M ∈M(w | V,~b) ∩ L such that M [t〉M ′, M ′ ∈ F

then γ(t) := 0;

end.

�

Clearly this algorithm prevents all transition firings that lead from L to F but is not

necessarily optimal, in the sense that it may also prevent transition firings that lead from

L to L. A similar algorithm was also discussed in [11] (Algorithm 5.3) to ensure predicate

invariance using state estimates computed by a dynamic observer.

In general, it may be difficult to check the condition of the if statement of the algorithm.

However, when F is a finite set the observer estimate may be used to verify this condition.
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In fact, we simply have to check whether there exists a marking M ∈ M(wt | V,~b) ∩ F such

that t−1(M) ∈ L, and this is trivial given the characterization of Theorem 50.

We also would like to consider a special case in which a control law different from the

one presented above may be suitable. Let the specification on the legal states be given by

L = {M ∈ Nm | W T ·M ≤ ~k} where W = [~w1 · · · ~wq] with ~wj ∈ Zn and ~k = [k1 · · · kq] with

kj ∈ Z. This kind of specifications, that we call generalized mutual exclusion constraints have

been considered by various authors [10, 12, 24].

Assume that the initial marking M0 of the plant does not necessarily belong to L (this

is a natural assumption when considering error recovery problems). Then, given a marking

M we may want to prevent the firing of transition t such that M [t〉M ′ when both these two

conditions are verified:

(a) there exists ~wj with ~wj ·M ′ > kj, i.e., M ′ ∈ F ;

(b) ~wj · M ′ > ~wj · M , i.e., the firing of t either leads to a violation of the constraint (if

M ∈ L) or to a ”worse” violation of the constraint (if M ∈ F).

In this case the following algorithm may be used to compute the control pattern γ at each

step.

Algorithm 55. Let w be the observed word, and M(w | V,~b) = {M ∈ Nn | V T · M =

V T · µw + Bw, M ≥ µw}, where µw and Bw are computed by the observer. Let L = {M ∈ Nn |

W T ·M ≤ ~k}.

for all t ∈ T

begin

γ(t) := 1;

j := 1;

while j ≤ q and γ(t) = 1 do

begin

∆ := ~w T
j · C(·, t);

if ∆ > 0 then

begin
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m := max {~w T
j ·M | M ∈M(wt | V,~b)};

if m > kj then γ(t) := 0;

end;

j := j + 1;

end;

end.

�

Thus a transition is disabled at M only if its firing leads to a marking M ′ such that for at

least one constraint j: ~w T
j ·M ′ > ~w T

j ·M (i.e., ∆ > 0) and there exists a consistent marking

M ′′ in M(wt | V,~b) that violates the constraint (i.e., ~w T
j ·M ′′ > kj).

The methodology developed in this paper is applied to a simple manufacturing example.

Other examples can be found in [7].

Example 56. Let us consider the net in Figure 3 with initial marking M0 = [1 1 1]T . This

system may represent a pool of three machines. Each token represents a machine that may

be in any of three states: working (token in place p1), idle (token in place p2), loading (token

in place p3). We assume that the specification on the system behavior requires that at most

two machines may be simultaneously working, i.e., the set of forbidden states is F = {M ∈

N3 | M(p1) > 2}.

The initial macromarking M(p1) + M(p2) + M(p3) = 3 captures our knowledge that there

are three machines in the pool. Their initial state is, however, unknown.

To represent the global behavior of the plant with observer under control using Algo-

rithm 55, we have represented the observer reachability graph of the controlled plant with

observer in Figure 6. The observer reachability graph has been constructed following the

same rules of Algorithm 21. We have also introduced a new label at each node so as to better

highlight the effect of the control pattern γ. Each node is now labeled (M/u/B) where M is

the real marking, u is a vector whose components, being the net bounded, coincide with the

place estimation errors, and B is the resulting bound.

Note that, given u = M − µ, the bound B can be immediately computed as B = V T u,
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thus the addition of the new label does not introduce significant variations on Algorithm 21.

Let us briefly discuss the graph in Figure 6. The initial marking is represented by a round

corner box. A dashed box represents a marking that cannot be reached because the transition

firing leading to it is disabled by the controller (the corresponding edge is dashed). A thick

box represents a marking reached by a complete word w, i.e., uw = ~0 and Bw = 0: the future

evolution from such a marking is not shown.

Note that the transition firings disabled by the controller using Algorithm 55 in reality

do not lead to forbidden markings: they are disabled because there exist markings consistent

with the observation from which these transition firings would lead to forbidden markings.

This can be easily verified by looking at the nodes within dashed boxes. In all these cases the

value of m in Algorithm 55 is equal to

m = V T · µ + B = V T · (M − u) + B = M(p1)− u(p1) + B = 3.

On the contrary, if the real marking would have been used to determine the control pattern,

such a node would have been reachable, being V T ·M ≤ 2. �

Let us finally observe that, since the controller may prevent the firing of transitions whose

firing is perfectly legal, it may also be the case that the controlled system is blocking.

A preliminary solution to this problem has been presented in [7] and consists in the in-

troduction of suitable recovery mechanisms with an ”ad hoc” reasoning. A more general

procedure to automatically recover the net from a blocking condition is given in [1]. This

approach is essentially based on a linear algebraic characterization of deadlock markings, that

reveal to be useful to derive additional information on the actual marking of the net, so as to

improve the marking estimate, thus restricting the set of w consistent markings.

9 Conclusions

In this paper we dealt with the problem of estimating the marking of a Place/Transition net

based on event observation, assuming that the net structure is known. We considered two

cases: (a) the initial marking is not known; (b) the initial marking is known to belong to a

macromarking, i.e., we know the token contents of subsets of places but not the exact token
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Figure 6: Observer reachability graph of the controlled net system in example 56.

37



location.

We defined several observability properties and showed that they are decidable. In particu-

lar we considered two main properties: marking observability and strong marking observability.

The first one means that there exists at least one word that is complete, while the second one

means that all words can be completed in a finite number of steps to a complete word.

We investigated the possibility that the two properties above are satisfied by a net N

starting from an initial marking M0, by a net N starting from any marking M reachable from

an initial marking M0 (uniform observability) or by a net N starting from any marking in Nm

(structural observability) where m is the number of places of the net.

We also introduced the observer coverability graph, i.e., the usual coverability graph of a

P/T net augmented with a vector that keeps track of the estimation error on each place of

the net. We proved that it can be a useful tool when proving some of the above properties.

We also showed that many observability properties can be proved by reducing them to other

decision problems (e.g., home–space properties, marking reachability, existence of repetitive

sequences) that can be checked using algorithms well known from the literature.

Finally, we showed how the estimate generated by the observer may be used to design a

state feedback controller, that ensures that the controlled system never enters a set of forbidden

states.

There are several ways in which this research may be extended.

Firstly, we may consider the case in which not all transition firings are observable, or there

may be transitions that do not generate distinct events. This may destroy the framework

used in this paper because in this case the marking estimate is not anymore a lower bound of

the actual marking. However, in some restricted case, e.g., when the firing of all unobservable

transitions does not change the total number of tokens, we believe it may be possible to extend

the approach used in this paper.

Secondly, we may associate a probabilistic structure to the transition firings. Then, given

an initial marking M0, we may define a function Π : N → [0, 1]: Π(k) denotes the probability

that, after having observed k event firings, we obtain a complete word. It would be interesting

to study under which conditions the limit of Π(k) goes to 1 as k goes to infinity.
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