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Abstract

In this paper we address the design of an observer–controller for a three degrees of

freedom overhead crane. We consider a linear model of the crane where the length of

the suspending rope is a time–varying parameter. The set of models given by frozen

values of the rope length can be reduced to a single time–invariant reference model using

suitable time–scalings. We construct a controller and an observer for the reference model

assigning the desired closed loop eigenvalues for the both system and estimation error.

The time–scaling relations can be used to derive a control law for the time–varying system

that implements an implicit gain–scheduling [6]. A second gain–scheduling is used to

choose suitable closed–loop eigenvalues for different values of the load and lifting/lowering

operations. Using a Lyapunov–like theorem, it is also possible to find relative upper

bounds for the rate of change of the varying parameter that ensure the stability of the

time–varying system.
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1 Introduction

The swinging of an object suspended from an overhead crane is an undesirable result of the

crane movement and serious damage could occur during the load transport. Therefore, a

satisfactory control scheme is desirable in a crane design to suppress the load swing.

Several control methodologies have been proposed in the literature [2, 4, 7, 9, 11, 5], as

well as several software tools [8]. However, in quite all these cases an unrealistic assumption

has been done. In fact, the cranes commonly considered in previous works are planar, i.e.,

it is assumed that the movement of the load lies within a plane. On the contrary, in this

paper we deal with a three degrees of freedom overhead crane and we propose the design of an

observer–controller that aims to minimize the load swinging, while moving it to the desired

position as fast as possible.

We first develop a non–linear model of the overhead crane which takes into account si-

multaneous travel and transverse motions. Then, under appropriate simplifying assumptions

(namely, small angles, constant rope velocity, force applied by the rope equal to the weight of

the load and no external force acting on the load) a linear time–varying model of the crane

is obtained, where the time–varying parameter is the length of the rope that sustains the

load. The linearized model has order eight and its dynamic can be described as two decoupled

fourth–order systems.

The main advantage of this model is that it enables us to use a simple and efficient synthesis

procedure to design both the controller and the observer, while ensuring a high modeling power.

The controller design is realized by first considering the set of frozen models given by

different constant values of the rope length. Using two suitable time–scalings, one for each sub–

system, all these models can be reduced to a single time–invariant reference model that does

not depend on the value of the rope length. Then, the pole placement technique enables us to

design a satisfactory controller for the reference model. Finally, by inverting the time–scalings,

these constant feedback gains give the corresponding time–varying gains that implement an

implicit gain–scheduling.

Note that a similar approach has been already adopted in [4] where the control problem for

the time–invariant reference model was posed as an LQR. However, pole assignment seems a

more natural way of computing the controller for the following reasons. Firstly, pole placement

allows one to directly assign the damping coefficients of the poles of the reference model that —

by a property of the time–scaling — can be shown to be the same of the damping coefficients

of the poles of all frozen models. Secondly, we are able to derive a closed form expression
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of the controller gains as a function of the desired closed loop poles, that assume the role

of design parameters. Thirdly, we observed that finding by trial and error ”good” poles —

both in terms of performance and of stability — was easier than tuning the coefficients of the

weighting matrices used in [4] to compute the LQR controller.

The physical realization of such a gain–scheduling controller requires the knowledge of all

state variables (center of mass position and velocity, load displacement with respect to the

vertical and its rate of change), of the rope length and of the load weight. In a first case we

assume that only the trolley position and the rope length can be measured by appropriate

sensors as discussed by several authors [8, 16, 17]. In a second case, we assume that the

load angle can be measured as well [8, 16, 17]. In both cases, we show how a time–varying

observer can be designed via gain–scheduling and pole–placement to provide an estimate of

the unknown state vector.

In this paper we introduce a further improvement with respect to previous works [4, 11]

where a gain–scheduling approach has been adopted: both in the observer and in the con-

troller case, a double gain–scheduling has been introduced. It consists of a variation of the

desired eigenvalues of the reference stationary system depending on the load mass and on the

lowering/lifting movement.

There are two important aspects in the approach we propose. First of all, we use the same

framework to design both observer and controller. Secondly, the state–feedback gains and the

observer gains are expressed in a parametrized form, as a symbolic function of the desired

closed–loop dynamics (i.e., the eigenvalues of the reference closed–loop system and observer),

rope length, rope velocity, trolley and load mass. As these parameters vary, the gains need

not be recomputed by reapplying the whole design procedure but can simply be obtained by

function evaluation.

We have also studied the stability of the closed–loop system with gain–scheduling. Recent

works [12, 14] present several methodologies that can be used to find upper bounds on the rate

of change of the varying parameter to ensure stability of a given parameter–varying system.

These methodologies give sufficient conditions that are usually very conservative, in the sense

that they often require rates of change of the varying parameter so small as to be practically

meaningless. These upper bounds, in fact, depend heavily on the procedure used to determine

them and are usually far from the real bounds of the system. In this paper we use the general

methodology of [4], based on a Lyapunov–like theorem [13] and show that in the applicative

case examined this approach gives sufficiently large bounds on the rope velocity to ensure

stability of the time–varying system in all nominal operating conditions. Since this procedure
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is founded on the results of numerical simulations, we also propose a test to ensure that the

computational error cannot invalidate the stability results.

The paper is structured as follows. Section 2 presents the time–varying model of the crane

and discusses the time–scalings that can be used to reduce the set of frozen models to a single

time–invariant model. Section 3 shows how a gain–scheduling control scheme can be derived

to design a time–varying controller. In Section 4 two different time–varying observers are de-

signed, depending on the available variables. In Section 5 a detailed stability analysis has been

derived. Finally, in Section 6 the results of several numerical simulations, carried out on the

non–linear model of the crane, show that the proposed approach gives acceptable performance

while ensuring the stability of the system. The derivation of the simplified equations for the

three–dimensional (3D) overhead crane is reported in the Appendix.

2 Linear time–varying model and time–scaling

A 3D overhead crane is constituted by a bridge and a trolley: the trolley moves on the bridge

rails and contains the motor and all the other mechanisms necessary for the movement of the

load; the bridge moves in the orthogonal direction thanks to appropriate wheels located on

the end truck. In this paper we will consider a 3D overhead crane, whose model is sketched

in Fig. 1. The following notation is used:

• mT , mB are the mass of the trolley and that of the bridge, respectively;

• mC = mT + mB is total mass of the crane;

• mL is the mass of the load;

• L is the length of the suspending rope;

• xT , zT denote the displacement of the trolley with respect to (wrt) a fixed coordinate

system;

• xL, zL denote the displacement of the load wrt a fixed coordinate system;

• xC = (mT xT + mLxL)/(mT + mL), zC = (mCzT + mLzL)/(mC + mL) denote the dis-

placement of the center of gravity of the overall system wrt a fixed coordinate system;

• ϕ is the angle between the suspending rope and the vertical;
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Figure 1: Model of the 3D crane.
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• θ is the angle between the oscillation plane of the load and the XY plane, taken as

positive when clockwise;

• xV = xT − xL = L sinϕ cosθ, zV = zT − zL = L cosϕ sinθ denote the displacement of

the load wrt the vertical;

• fx and fz are the control forces applied to the trolley and to the bridge, respectively;

• dx and dz are the wind forces acting on the load in the x and z direction;

• g is the gravitation constant.

If the load is heavy enough, it is possible to consider the suspending rope as a rigid rod.

Under the assumptions reported in the Appendix (namely, small angles, force applied by the

rope equal to the weight of the load and no disturbance acting on the system) we obtain the

linearized model described by equation (58) (see Appendix for a derivation). Choosing the

following state variables:

x1(t) = xV (t), x2(t) = xC(t)

x3(t) = ẋV (t), x4(t) = ẋC(t)

x5(t) = zV (t), x6(t) = zC(t)

x7(t) = żV (t), x8(t) = żC(t)

(1)

and denoting

ωx(t) ≡ ωx(L(t)) =

(
g(mT + mL)

mT L(t)

)0.5

,

ωz(t) ≡ ωz(L(t)) =

(
g(mC + mL)

mCL(t)

)0.5

,

(2)

we get from (58) the following state variable equation:{
ẋt = Atxt + Btut

yt = Ctxt

(3)

with

xt =


x1(t)

...

x8(t)

 , ut =

[
fx(t)

fz(t)

]
,
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At =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−ω2
x 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −ω2
z 0 0 0

0 0 0 0 0 0 0 0


,

Bt =



0 0

0 0

1/mT 0

1/(mT + mL) 0

0 0

0 0

0 1/mC

0 1/(mC + mL)


.

In this paper we examine two different cases. In the first one we assume as only measurable

variables the trolley displacement coordinate xT and zT . In the second one, we assume that

both the trolley position and the load position with respect to the vertical (xV and zV ) are

measurable.

Then, in the first case of interest we write

yt ≡ y′
t =

[
xT (t)

zT (t)

]
, Ct ≡ C ′

t =



mL/(mT + mL) 0

1 0

0 0

0 0

0 mL/(mC + mL)

0 1

0 0

0 0



T

, (4)
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while in the second case we write

yt ≡ y′′
t =


xV (t)

xT (t)

zV (t)

zT (t)

 ,

Ct ≡ C ′′
t =



1 mL/(mT + mL) 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 mL/(mC + mL)

0 0 0 1

0 0 0 0

0 0 0 0



T

.

(5)

The subscript t has been introduced to recall that the variables are functions of time. The

model given by (3) is time–varying because both ωx and ωz are functions of L(t). If we consider

a given constant value of both ωx and ωz, i.e., if we consider the system (3) for a frozen value

of L, we can consider the following transformations:

τx = ωxt, (6)

τz = ωzt. (7)

These transformations define a time–scaling that enable us to rewrite (1) as:

x1(t) = xV (t) = xV (τx) = x1(τx)

x2(t) = xC(t) = xC(τx) = x2(τx)

x3(t) =
dxV (t)

dt
=

dxV (τx(t))

dt
= ωx

dxV (τx)

dτx

= ωxx3(τx)

x4(t) =
dxC(t)

dt
=

dxC(τx(t))

dt
= ωx

dxC(τx)

dτx

= ωxx4(τx)

x5(t) = zV (t) = zV (τz) = x5(τz)

x6(t) = zC(t) = zC(τz) = x6(τz)

x7(t) =
dzV (t)

dt
=

dzV (τz(t))

dt
= ωz

dzV (τz)

dτz

= ωzx7(τz)

x8(t) =
dzC(t)

dt
=

dzC(τz(t))

dt
= ωz

dzC(τz)

dτz

= ωzx8(τz).

(8)

According to (8), variables xC and xV (zC and zV ) can be taken as functions of t or τx (τz),

while their derivatives are changed by the time–scaling. We can write (8) as

xt = Nxτ (9)
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where

N = diag { 1, 1, ωx, ωx, 1, 1, ωz, ωz }

xτ =
[

x1(τx) x2(τx) x3(τx) x4(τx) x5(τz) x6(τz) x7(τz) x8(τz)
]T

.
(10)

According to (8), we may also write

ẋt = ΩNẋτ (11)

where ẋτ is the derivative of xτ wrt τx for the first four components and wrt τz for the

remaining ones. It has been assumed

Ω = diag { ωx, ωx, ωx, ωx, ωz, ωz, ωz, ωz }. (12)

Using (9) and (11), it is possible to rewrite the system (3) as{
ẋτ = Aτxτ + Bτuτ

yτ = Cτxτ

(13)

with

uτ =


1

ω2
x

0

0
1

ω2
z

ut = N−1
u ut =


fx

ω2
x

fz

ω2
z

 , (14)

Aτ = N−1Ω−1AtN =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0


, (15)

Bτ = N−1Ω−1BtNu = Bt. (16)

Finally, the output vector and the output matrices are defined as

yτ ≡ y′
τ =

[
xT (τx)

zT (τz)

]
, Cτ ≡ C ′

τ = C ′
tN = C ′

t, (17)
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and

yτ ≡ y′′
τ =


xV (τx)

xT (τx)

zV (τz)

zT (τz)

 , Cτ ≡ C ′′
τ = C ′′

t N = C ′′
t , (18)

in the first and in the second case, respectively.

The representation given by (13) is time–invariant and does not depend on the frozen value

of L in (3).

As shown in [4], it is possible to express the relationship between the eigenvalues and

eigenvectors of the matrices At and Aτ . Let ∆t (∆τ ) be the diagonal matrix of the eigenvalues

of At (Aτ ); then from (15) we obtain

∆t = Ω∆τ (19)

while between the eigenvector matrices V t and V τ

V t = NV τ (20)

holds, i.e., given a matrix of eigenvectors V τ for Aτ we can compute one of the possible

matrices of eigenvectors V t for At.

Now, let us rewrite matrices At and Aτ as

At =

[
At,x 04,4

04,4 At,z

]
and

Aτ =

[
Aτ,x 04,4

04,4 Aτ,z

]
respectively, where 0p,q denotes the p× q matrix of null entries. We can observe that matrices

Aτ,x and Aτ,z have the same set of eigenvalues:

{ 0, 0, j, −j }.

Thus, from equation (19) matrices At,x and At,z have, respectively, the following set of eigen-

values:

{ 0, 0, jωx, −jωx }, { 0, 0, jωz, −jωz },

i.e., the frozen system (3) has undamped oscillations of frequency ωx and ωz. This also enables

us to state that the variables τx and τz defined by (6) and (7) are the time measured using as

unit 1/ωx = Tx/2π and 1/ωz = Tz/2π), respectively, where Tx and Tz are the periods of the

undamped oscillations of system (3).
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3 Controller design

Let us consider a linear and time–invariant system of the form (13). If the couple (Aτ , Bτ ) is

controllable [3], then a regulator can be designed by imposing the closed loop poles to system

(13), finding a control law of the form

uτ = −Kτxτ (21)

where Kτ is a constant matrix and does not depend on the value of L. The above equation

can be transformed, using (9) and (14), into a corresponding law for the frozen system (3)

that gives:

ut = −Ktxt (22)

where

Kt = NuKτN
−1. (23)

The feedback laws (21) and (22) lead to closed loop systems whose characteristic matrices are:

Āτ = Aτ −BτKτ Āt = At −BtKt. (24)

Note that also the above matrices can be rewritten as

Āt =

[
Āt,x 04,4

04,4 Āt,z

]
and

Āτ =

[
Āτ,x 04,4

04,4 Āτ,z

]
.

Equations (15), (19) and (20), written for the open loop systems, still hold for the corre-

sponding closed loop systems. The poles of the frozen closed loop system in t depend on the

value of L, and thus on ωx and ωz, but they have the same damping factor for all values of L.

For a stationary system it is easy to find a feedback control law by imposing the closed

loop eigenvalues following the procedure presented in [3]. Let us denote as

s4 + ax,3s
3 + ax,2s

2 + ax,1s + ax,0 (25)

s4 + az,3s
3 + az,2s

2 + az,1s + az,0 (26)

the open loop characteristic polynomials relative to matrices Aτ,x and Aτ,z, respectively. Then,

let

s4 + px,3s
3 + px,2s

2 + px,1s + px,0 (27)
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s4 + pz,3s
3 + pz,2s

2 + pz,1s + pz,0 (28)

be the desired closed loop characteristic polynomials relative to matrices Āτ,x and Āτ,z, re-

spectively. Therefore, the time–invariant control law is [3]:

Kτ =

[
Kτ,x 01,4

01,4 Kτ,z

]
P−1

c (29)

where

Kτ,x =
[

px,0 − ax,0 px,1 − ax,1 px,2 − ax,2 px,3 − ax,3

]
,

Kτ,z =
[

pz,0 − az,0 pz,1 − az,1 pz,2 − az,2 pz,3 − az,3

]
,

P c =



(A3
τ,x + ax,3A

2
τ,x + ax,2Aτ,x + ax,1I)Bτ,x

(A2
τ,x + ax,3Aτ,x + ax,2I)Bτ,x

(Aτ,x + ax,3I)Bτ,x

Bτ,x

(A3
τ,z + az,3A

2
τ,z + az,2Aτ,z + az,1I)Bτ,z

(A2
τ,z + az,3Aτ,z + az,2I)Bτ,z

(Aτ,z + az,3I)Bτ,z

Bτ,z



T

,

and Bτ,x and Bτ,z are the two non–null sub–matrices of Bτ , i.e.,

Bτ =

[
Bτ,x 04,1

04,1 Bτ,z

]
.

Note that P c is an equivalence transformation that brings the initial system into a controllable

canonical form [3].

Using equation (23), we get the time–varying control law:

Kt =

[
Kt,x 01,4

01,4 Kt,z

]
(30)

where

Kt,x =
[(px,2 − px,0 − 1)mT ω2

x px,0(mT + mL)ω2
x · · ·

px,3 − px,1)mT ωx px,1(mT + mL)ωx]

and

Kt,z =
[(pz,2 − pz,0 − 1)mCω2

z pz,0(mC + mL)ω2
z · · ·

pz,3 − pz,1)mCωz pz,1(mC + mL)ωz]

12



To conclude, we remark that the time–varying system (3) is controllable for all values of

the load mass. In fact, let Dc(t) be the lexicographic basis of its controllability matrix, as

defined in [3]. Then one can easily prove that

detDc(t) =
g4

m4
T m4

CL4(t)
.

This quantity does not depend on the value of the load mass and is always greater than zero:

this ensures controllability [3].

4 Observer design

Let us consider again a linear time–invariant system of the form (13). If the couple (Aτ , Cτ ) is

observable [3], then it is possible to construct a Luenberger observer for system (13) by finding

the matrix Gτ which imposes the desired closed loop poles to the reference error system:

ėτ = (Aτ −GτCτ )eτ = Eτeτ (31)

where

eτ = xτ − x̂τ

is the reference state estimate. If we denote x̂t the frozen system estimate and

et = xt − x̂t

the corresponding error, it is easy to observe that:

et = Neτ (32)

and

ėt = (At −GtCt)et = Etet = ΩNėτ (33)

where

Gt = ΩNGτ . (34)

The assignment of the eigenvalues is done as in the controller case, by first transforming

the time–invariant system into an observable canonical form.
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4.1 First observer

Now, let us consider the first case, i.e., let us assume that the only trolley position is measur-

able. The equivalence transformation is:

P ′
o =



C ′
τ,x

C ′
τ,x(Aτ,x + ax,3I)

C ′
τ,x(A

2
τ,x + ax,3Aτ,x + ax,2I)

C ′
τ,x(A

3
τ,x + ax,3A

2
τ,x + ax,2Aτ,x + ax,1I)

C ′
τ,z

C ′
τ,z(Aτ,z + az,3I)

C ′
τ,z(A

2
τ,z + az,3Aτ,z + az,2I)

C ′
τ,z(A

3
τ,z + az,3A

2
τ,z + az,2Aτ,z + az,1I)


(35)

where C ′
τ,x and C ′

τ,z are the two non–null sub–matrices of C ′
τ , i.e.,

C ′
τ =

[
C ′

τ,x 01,4

01,4 C ′
τ,z

]
,

and the coefficients ax,i, az,i are defined as above. Furthermore, let us rewrite Eτ as

Eτ ≡ E′
τ =

[
E′

τ,x 04,4

04,4 E′
τ,z

]
and let

s4 + qx,3s
3 + qx,2s

2 + qx,1s + qx,0, (36)

s4 + qz,3s
3 + qz,2s

2 + qz,1s + qz,0 (37)

be the closed loop characteristic polynomials associated to E′
τ,x and E′

τ,z, respectively. In such

a way, we get:

G′
τ = (P ′

o)
−1

[
G′

τ,x 01,4

01,4 G′
τ,z

]T

(38)

where

G′
τ,x =

[
qx,0 − ax,0 qx,1 − ax,1 qx,2 − ax,2 qx,3 − ax,3

]
,

G′
τ,z =

[
qz,0 − az,0 qz,1 − az,1 qz,2 − az,2 qz,3 − az,3

]
.

According to equation (34) the time–varying matrix defining the observer dynamic is:

G′
t =

[
G′

t,x 01,4

01,4 G′
t,z

]T

(39)
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where

G′
t,x =

[
(qx,3 − qx,1)m̃T ωx qx,1ωx (qx,2 − qx,0 − 1)m̃T ω2

x qx,0ω
2
x

]
,

G′
t,z =

[
(qz,3 − qz,1)m̃Cωz qz,1ωz (qz,2 − qz,0 − 1)m̃Cω2

z qz,0ω
2
z

]
.

and

m̃T =
mT + mL

mL

, m̃C =
mC + mL

mL

.

Thus, by choosing appropriate poles for the closed loop dynamic of the stationary error system,

i.e., of the coefficients qx,i and qz,i, a satisfactory reconstruction of the system’s state can be

obtained with the only knowledge of the trolley position.

Now, let us note that the time–varying system (3) with Ct = C ′
t becomes unobservable

when mL → 0. In fact, if we denote as D′
o(t) the lexicographic basis of its observability matrix

as defined in [3], we have

detD′
o(t) =

g4m2
L

m2
T m2

CL4(t)

that approaches zero when mL << mT mC .

We propose two different solutions to this problem. The first one consists in the assumption

that only small errors in the initial state estimate may occur. This is a realistic assumption

that can be easily satisfied for small values of the load. In fact, it is sufficient to suppose the

initial position of the centre of gravity coincident with the trolley position (that is a measurable

variable). On the contrary, the alternative discussed in the following subsection, consists in

the introduction of a new sensor to measure the rope angles ϕ and θ (or equivalently the load

displacement wrt to the vertical, i.e., xV and zV ) [8, 16, 17].

4.2 Second Observer

Now, let us consider the second case of interest, i.e., let us assume that also the load position

wrt the vertical is measurable. Even in this case the time–varying observer can be designed

by assigning the closed–loop eigenvalues to the time–invariant error system. To this purpose,

being C ′′
τ a 4 × 8 order matrix, let us decompose the open loop characteristic polynomial of

matrix Aτ as the product of the following four two–degrees polynomials:

s2 + ax,11s + ax,10

s2 + ax,21s + ax,20

s2 + az,11s + az,10

s2 + az,21s + az,20.

15



Analogously, let us decompose the characteristic polynomial of the closed–loop error system

as:
s2 + qx,11s + qx,10

s2 + qx,21s + qx,20

s2 + qz,11s + qz,10

s2 + qz,21s + qz,20.

In this case, the equivalence transformation is:

P ′′
o =



C ′′
τ,1

C ′′
τ,1(Aτ + ax,11I)

C ′′
τ,2

C ′′
τ,2(Aτ + ax,21I)

C ′′
τ,3

C ′′
τ,3(Aτ + az,11I)

C ′′
τ,4

C ′′
τ,4(Aτ + az,21I)


where C ′′

τ,i denotes the i–th row of C ′′
τ .

Thus, matrix G′′
τ , i.e., the time–invariant observer matrix is defined as [3]:

G′′
τ = (P ′′

o)
−1

[
G′′

τ,x 02,4

02,4 G′′
τ,z

]T

(40)

where

G′′
τ,x =

[
(qx,11 − ax,11) (qx,10 − ax,10) 0 0

0 0 (qx,21 − ax,21) (qx,20 − ax,20)

]
, (41)

G′′
τ,z =

[
(qz,11 − az,11) (qz,10 − az,10) 0 0

0 0 (qz,21 − az,21) (qz,20 − az,20)

]
. (42)

Finally, the time–varying matrix describing the observer dynamic is:

G′′
t =

[
G′′

t,x 02,4

02,4 G′′
t,z

]T

(43)

where

G′′
t,x =

 qx,11ωx −qx,11ωx

m̃T

(qx,10 − 1)ω2
x −(qx,10 − 1)ω2

x

m̃T

0 qx,21ωx 0 qx,20ω
2
x

 , (44)
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G′′
t,z =

 qz,11ωx −ωzqz,11

m̃C

(qz,10 − 1)ω2
z −(qz,10 − 1)ω2

z

m̃C

0 qz,21ωz 0 qz,21ωz

 . (45)

In such a way, by choosing appropriate poles for the closed loop dynamic of the stationary

error system, i.e., of the coefficients qx,ij and qz,ij, a satisfactory reconstruction of the system’s

state can be obtained with the knowledge of the trolley position and of the load position wrt

the vertical.

Note that in this case the time–varying system (3) is observable [3] for all values of the

load mass. In fact, the lexicographic basis of the observability matrix has unitary determinant

when the output matrix is Ct = C ′′
t .

5 Stability analysis

The matrices Āτ = Aτ −BτKτ , Ē
′
τ = Aτ −G′

τC
′
τ and Ē

′′
τ = Aτ −G′′

τC
′′
τ have eigenvalues

with negative real parts for all values of L(t). However, this is not enough to ensure stability

of the time–varying closed loop model unless the rate of change of the time–varying parameter

L(t) is sufficiently slow.

We propose to apply as in [4] a Lyapunov–like theorem reported in [13], to determine upper

bounds for the rate of change of L(t) that ensure stability.

Theorem 1 (Shamma [13]). Given the time–varying system:

ẋ(t) = A(t)x(t) (46)

where A(t) is bounded and globally Lipschitz continuous, let there exist matrices P (t) and

Q(t), symmetric and positive definite, such that:

1. P (t) is continuously differentiable for all t ≥ 0;

2. there exist constants α1, α2 and α3 > 0 such that, for all t ≥ 0:

• α1 ≤ λmin{P (t)} ≤ λmax{P (t)} ≤ α2

• λmin{Q(t)− Ṗ (t)} ≥ α3

3. P (t)A(t) + AT (t)P (t) = −Q(t) ∀t ≥ 0

where λmin (λmax) denotes the smaller (resp., larger) eigenvalue.

Under these conditions, the linear system (46) is exponentially stable. �
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Now, let us consider the controller design. Let ∆̄τ and V̄ τ be the eigenvalue and eigenvector

matrices for Ā
T
τ . Then, using the transpose of equation (15), it is possible to show that

∆̄t = Ω∆̄τ (47)

and

V̄ t = N−1V̄ τ (48)

are eigenvalue and eigenvector matrices for Ā
T
t . We have chosen matrix P (t) in Theorem 1

as

P (t) = V̄ tV̄
H
t = N−1V̄ τ V̄

H
τ N−1 (49)

where H denotes the complex conjugate transpose. Thus it is easy to compute analytically

matrices Q(t) and Ṗ (t).

Exactly the same choices can be done for the error closed loop system with matrix Ē
′
t

(Ē
′′
t ). We denote as P ′

ob(t) and Q′
ob(t) (P ′′

ob(t) and Q′′
ob(t)) the corresponding matrices.

The procedure outlined above, requires the computation of the minimal eigenvalue of the

symmetrical matrices (Q − Ṗ ) and (Q′
ob − Ṗ

′
ob) (and (Q′′

ob − Ṗ
′′
ob)). This is usually done

numerically and it may be the case that this number is very close to zero. Thus one may

worry that the sign of this quantity be incorrect because of numerical errors. The following

proposition may be used to validate the approach.

Proposition 2. Let M ∈ Rm×m be a symmetric matrix with eigenvalues λi and eigenvectors

vi, and let λ̂i and v̂i, be the corresponding estimates (vi and v̂i have unitary euclidean norm).

Let us consider the intervals Ii = [λ̂i−βi, λ̂i+βi], where βi = ‖Mv̂i − λ̂iv̂i‖2. If Ii∩Ij = ∅
for all i 6= j, then λi ∈ Ii for all i.

Proof. Follows from the fact that if M is a symmetric real matrix its eigenvalues are real, and

its eigenvectors are orthogonal. Thus the relation [15]

min
i
|λi − λ̂| ≤ ‖Mw − λ̂w‖2

holds ∀λ̂ ∈ R and ∀w ∈ Rm with ‖w‖2 = 1.

6 An applicative example

In this section we show how the above procedure can be applied to a real overhead crane. We

consider a model produced by Munck Cranes Inc., Ontario–Canada whose load capacity varies
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Load mass (Kg) 20÷÷500 501÷÷15000 15001÷÷50000

Lifting
{ -0.995 ± 0.577j,
-0.357 ± 0.216 j,
-1.267 ± 0.637 j,

  -0.375 ± 0.196 j }

{ -0.189 ± 0.098 j,
-0.636 ± 0.302 j,
-0.270 ± 0.154 j,

  -0.798 ± 0.418 j }

{ -0.298 ± 0.151 j,
-0.100 ± 0.057 j,
-0.552 ± 0.273 j,

  -0.177 ± 0.100 j }

Lowering
{ -0.997 ± 0.891 j,
-2.369 ± 0.411 j,
-0.997 ± 0.891 j,

  -2.369 ± 0.411 j }

{ -1.903 ± 0.875 j,
-0.335 ± 0.181 j,
-1.621 ± 0.867 j,

  -0.398 ± 0.247 j }

{ -1.108 ± 0.464 j,
-0.147 ± 0.072 j,
-1.123 ± 0.519 j,

  -0.201 ± 0.107 j }

Table 1: The selected sets of eigenvalues for Āτ when the controller is used in conjunction

with the first observer.

from 1 to 50 ton. In particular, in this paper we consider an overhead crane whose trolley

mass is mT = 4037 Kg and whose bridge mass is mB = 4112 Kg. We assume the length of the

suspending rope to be: L(t) ∈ [Lmin, Lmax], where Lmin = 2 m and Lmax = 10 m. To deduce

the controller and observer gain matrices we assumed that the rope length has a constant

derivative |L̇(t)| = 0.5 m/s. Clearly this is not true during a real movement. Therefore during

numerical simulations, we have removed this assumption and we have imposed an acceleration

of ±0.5 m/s2 at the beginning and at the end of the hoisting and lowering movement, while in

the central part of the movement the velocity is constant and equal to ±0.5 m/s.

During the simulations, we have also removed the assumption of linearity thus we used

the nonlinear model given in the appendix. The wind force acting on the load is taken into

account as well. All numerical simulations have been carried out with the SIMULINK toolbox

of MATLAB.

In previous works the authors used the gain–scheduling technique to derive a satisfactory

control law for a given planar crane [4, 11]. In those works, even in the second one where also

an observer has been designed, a single set of eigenvalues for the controller and a single one for

the observer has been used. In this paper, we make a different choice motivated by the greater

complexity of the system at hand. In particular, we divided the whole range of possible values

of the load mass in three different intervals and we further distinguished among lowering and

lifting movement. Then, we associated to each range a different set of eigenvalues for the

reference stationary system and the error system. In this way we introduced a double gain–

scheduling, thus producing a significant improvement in the performance of the controlled
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Load mass (Kg) 20÷÷500 501÷÷15000 15001÷÷50000

Lifting
{ -1.385 ± 0.611j,
-0.391 ± 0.173j,
-1.250 ± 0.654j,

  -0.449 ± 0.235j }

{ -0.382 ± 0.188j,
-0.144 ± 0.061j,
-0.591 ± 0.311j,

  -0.237 ± 0.124j }

{ -0.761 ± 0.379j,
-0.315 ± 0.157j,
-0.973 ± 0.477j,

  -0.397 ± 0.195j }

Lowering
{ -1.204 ± 1.195j,
-0.472 ± 0.461j,
-1.203 ± 1.204j,

  -0.476 ± 0.495j }

{ -1.417 ± 0.681j,
-0.360 ± 0.173 j,
-1.850 ± 0.926 j,

  -0.505 ± 0.253 j }

{ -0.887 ± 0.341j,
-0.156 ± 0.066 j,
-0.891 ± 0.484 j,

  -0.257 ± 0.140 j }

Table 2: The selected sets of eigenvalues for Āτ when the controller is used in conjunction

with the second observer.

system. Note that, from an applicative point of view, this does not introduce any amount in

the cost of realization of the system, being the load mass assumed known [17] during each

operation.

The px,i and pz,i coefficients, i.e., the design parameters of the controller, are derived

choosing the sets of eigenvalues for Āτ and are reported in Tab. 1–2. Tab. 1 contains the

eigenvalues of Āτ when the first observer is used in conjunction with the controller, while the

eigenvalues of Āτ , when the controller is used in conjunction with the second observer, are

reported in Tab. 2.

Analogously, the sets of eigenvalues selected for matrices Ē
′
τ and Ē

′′
τ respectively, are

summarized in Tab. 3–4.

Note that in all cases, the eigenvalues, obtained as the result of a trial and error procedure,

have been reported in the mentioned tables with the following order: we have first written the

eigenvalues relative to matrix Āτ,x (Ē
′
τ,x, Ē

′′
τ,x), then those relative to Āτ,z (Ē

′
τ,z, Ē

′′
τ,z).

Now, let us present the results of three different simulation test cases.

6.1 Simulation 1

In the first simulation, we considered a load mass equal to the maximum load capacity, i.e.,

equal to 50 ton. We assumed that the only measurable variables are xT and zT , thus the first

asymptotic observer was used for the state reconstruction. The simulation was performed for

a lifting movement from Lo = 10 m to Lf = 2 m. The corresponding set of eigenvalues used

for the determination of the design parameters can be easily argued from Tab. 1–3. In this
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Load mass (Kg) 20÷÷500 501÷÷15000 15001÷÷50000

Lifting
{ -2.247 ± 0.1331j,
-0.842 ± 0.495 j,
-2.247 ± 0.1331j,

  -0.842 ± 0.495 j }

{ -1.943 ± 0.834cj,
-0.704 ± 0.302 j,
-2.331 ± 0.964 j,

  -0.806 ± 0.333 j }

{ -3.030 ± 0.873 j,
-1.467 ± 0.423 j,
-3.064 ± 0.905 j,

  -1.513 ± 0.447 j }

Lowering
{ -3.400 ± 0.010 j,
-1.500 ± 0.010 j,
-3.400 ± 0.010 j,

  -1.500 ± 0.010 j }

{ -2.867 ± 0.667 j,
-0.434 ± 0.093 j,
-2.889 ± 0.783 j,

  -0.658 ± 0.166 j }

{ -4.881 ± 0.610 j,
-0.442 ± 0.074 j,
-3.897 ± 0.596 j,

  -0.680 ± 0.133 j }

Table 3: The selected sets of eigenvalues for Ē
′
τ .

simulation we assumed that no external disturbance was acting on the load. The initial state

of the crane was xV (0) = zV (0) = 1.5 m, xC(0) = zC(0) = −5 m, ẋV (0) = ẋC(0) = żV (0) =

żC(0) = 0 m/s, while the initial state of the observer was x̂V (0) = 1 m, x̂C(0) = −4.5 m,

ẑV (0) = 2 m, ẑC(0) = −5.5 m, ˆ̇xV (0) = ˆ̇xC(0) = ˆ̇zV (0) = ˆ̇zC(0) = 0 m/s.

In Fig. 2 the results of the first simulation are reported. Figure (a) shows the displacement

of the load wrt to a fixed coordinate system. Figure (b) shows the displacement of the load

wrt the vertical and enables us to conclude that quite no oscillation occurs during the load

movement. In (c) we reported the estimation error on the first and on the second component

of the state (the following notation has been used: eV = xV − x̂V , eC = xC − x̂C). The

corresponding errors for the fifth and sixth state component have not been reported here for

brevity’s sake, having a similar behaviour. Finally, in (d) the curves representative of the

control forces are shown.

6.2 Simulation 2

In the second simulation, we considered a limit case of a movement with no load, i.e., mL =

20 Kg. Note that mL = 0 Kg is not a significant value. In fact, even if no load has to

be transferred, an hook is suspended to the rope as well and its mass can be realistically

assumed equal to 20 Kg. We assumed that both the trolley position and the load position

wrt the vertical are measured, i.e., we implemented the second observer. The simulation was

performed for a lowering movement from Lo = 2 m to Lf = 10 m. The corresponding set of

eigenvalues used for the determination of the design parameters can be easily argued from
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Load mass (Kg) 20÷÷500 501÷÷15000 15001÷÷50000

Lifting
{ -4.495 ± 0.201j,
-3.896 ± 0.174 j,
-2.497 ± 0.112 j,

  -2.597 ± 0.116 j }

{ -2.797 ± 0.125 j,
-1.298 ± 0.059 j,
-2.797 ± 0.125 j,

  -1.398 ± 0.063 j }

{ -1.998 ± 0.090 j,
-1.198 ± 0.054 j,
-2.197 ± 0.098 j,

  -1.198 ± 0.054 j }

Lowering
{ -12.492 ± 0.335 j,

-4.096 ± 0.139 j,
-12.492 ± 0.335 j,
  -4.096 ± 0.139j }

{ -8.899 ± 0.127 j,
-4.499 ± 0.064 j,
-8.899 ± 0.127 j,

  -4.499 ± 0.064 j }

{ -10.499 ± 0.042 j,
-10.499 ± 0.078 j,
-9.499 ± 0.042 j,

  -9.499 ± 0.064 j }

Table 4: The selected sets of eigenvalues for Ē
′′
τ .
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Figure 2: Results of Simulation 1.
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Figure 3: Results of Simulation 2.

Tab. 2–4. In this simulation we assumed again that no external disturbance was acting on

the load. The initial state of the crane was xV = 0.3 m, xC = −5 m, zV = 0.2 m, zC − 4.5 m,

ẋV (0) = ẋC(0) = żV (0) = żC(0) = 0 m/s, while the initial state of the observer was x̂V = 0.3 m,

x̂C = −5 m, ẑV = 0.2 m, ẑC − 4.5 m, ˆ̇xV (0) = 0.2 m/s, ˆ̇xC(0) = 0.1 m/s, ˆ̇zV (0) = −0.2 m/s,

ˆ̇zC(0) = −0.1 m/s.

The results of this second simulation are reported in Fig. 3 where the physical meaning

of the variables is the same as those reported in Fig. 2, with the only exception of figure (c)

where the estimation error of the third and of fourth state components have been reported

(the following notation has been used: e′V = ẋV − ˆ̇xv, e′C = ẋC − ˆ̇xC). In fact, in this case, i.e.,

when the second observer is used, we introduced no error on the initial estimation of xV , xC ,

zV and zC , being these variables assumed known by definition of the output matrix.
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Figure 4: Results of Simulation 3.

6.3 Simulation 3

In this simulation we considered an intermediate value of the load mass, i.e., mL = 10000 Kg.

As in the previous simulation, we assumed to reconstruct the state with the second observer.

We have also taken into account the wind effect acting on both the X and the Z direction.

In particular we assumed that dx = 1000 N during the time interval [1 s, 6 s] and dz = 500 N

during the time interval [5 s, 8 s]. These values seem to be reasonable considering the wind

modellization reported in standard engineering handbooks. A lifting movement from Lo =

10 m to Lf = 2 m has been taken into account. The initial state of the crane and that of the

observer was the same as those already considered in the previous simulation, as well as the

same significant have the plots in Fig. 4.
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6.4 Stability analysis

The stability analysis presented in Section 5 requires the computation of λmin{Q− Ṗ } (as a

function of L) for different values of L̇.

Fig. 5.a shows the plot of λmin{Q − Ṗ } versus L for different values of L̇ and for mL =

50000 Kg. In this case we assumed that the eigenvalues of matrix Āτ are those reported in

Tab. 2. However, the same conclusions can be drawn when considering those reported in

Tab. 1.

In each diagram, only the extreme values of L̇ have been reported for clearness. However,

the other values can be easily argued considering that L̇ varies of a quantity equal to 0.1 m/s

from one curve to the adjacent one.

According to theorem 1, the upper bound on |L̇| is the value corresponding to the first

curve that, as |L̇| is increased, goes to negative values. As can be seen from Fig. 5.a, relative

to lifting operations, this happens for |L̇| > 1.4 m/s. The same conclusion can be derived in

the case of a lowering movement (the corresponding figures are not reported). Hence it can

be concluded that the time–varying system with matrix Āt is stable if |L̇| < 1.4 m/s, that is

to say it is always stable in nominal conditions.

The same discussion has been done for the error closed loop system when both the observers

are considered. In this section we limit to present the results of the stability analysis in the

case of the second observer. Analogous conclusions can be drawn in the other case.

In Fig. 5.c we reported the curves corresponding to those in Fig. 5.a where Q′′
ob(t) and

P ′′
ob(t) are determined in the same manner as P (t) and Q(t). The same conclusion can be

derived in the case of a lowering movement (the corresponding figures are not reported here).

Note that stability of the observer is guaranteed for any velocity of practical interest. This is

due to our choice for the sets of observer eigenvalues, that are much more stable than those

of the controller.

The analogous curves with mL = 20 Kg and relative to a lowering operation are shown in

Fig. 5.b and Fig. 5.d. Similar curves can be drawn in the case of a lifting movement. Even

in this case stability is proved for all operating conditions of interest. The same reasoning, as

well as the same conclusions, can be repeated for all intermediate values of the load mass.

Note that in reality what is plotted in the previous figures is not λmin but its estimate

λ̂min computed with a numerical procedure. Even if all computed values λ̂min are close to

zero, Proposition 2 can be used to ensure that all λmin are positive. In fact, in all cases the

estimated eigenvector ŵ associated to the estimated eigenvalue λ̂ was such that the values of
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Figure 5: The results of stability analysis: (a)–(b) plot of λmin{Q − Ṗ } with mL = 42500Kg

and mL = 20Kg, respectively; (c)–(d) plot of λmin{Q′′
ob − Ṗ

′′
ob} with mL = 42500Kg and

mL = 20Kg, respectively.

the norms ‖{Q− Ṗ }ŵ − λ̂ŵ‖2 and ‖{Q′′
ob − Ṗ

′′
ob}ŵ − λ̂ŵ‖2 are u 10−14, while all estimated

eigenvalues are spaced much further apart.

7 Conclusions

In this paper we presented a general methodology for controlling three–dimensional overhead

cranes. This work is an extension of previous ones where the authors limit to consider planar

cranes.

Time–scaling relations have been used to reduce the original time–varying system to a

stationary one. The observer–controller design for the reference system has been carried out

via pole–placement. Then, the time–scalings inversion enabled us to derive in a parametric
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form the time–varying gains for both the observer and the controller. Note that in this paper

we implemented a double gain–scheduling, being the eigenvalues of the closed–loop and of the

reference error system dependent on the load mass and on the lowering/lifting movement.

The stability of the time–varying system has also been studied. Using a Lyapunov–like

theorem it was possible to find upper bounds for the rate of change of the varying parameter

(the length of the suspending rope) that ensure the stability of a given crane in all its possible

operating conditions: maximum load and no load, lifting and lowering movements.

Appendix

The dynamics of the system in Fig. 1 are described by the following equations (obtained

by the translational equilibrium of the three masses):

mT ẍT = fx − Fsinϕ cosθ

mLẍL = Fsinϕ cosθ + dx

mC z̈T = uZ − Fsinϕ sinθ

mLz̈L = Fsinϕ sinθ + dz

mLÿL = mLg − Fcosϕ

(50)

where F is the force in the direction of the rope (not shown in Fig. 1); the position of the load

wrt the fixed coordinate system can be written as:
xL = xT − Lsinϕ cosθ

zL = zT − Lsinϕ sinθ

yL = Lcosϕ.

(51)

With the coordinate transformations

xC =
mT xT + mLxL

mT + mL

, zC =
mCzT + mLzL

mC + mL

, (52)

xV = Lsinϕ cosθ, zV = Lcosϕ sinθ, (53)
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the first four equations of (50) can be rewritten as (we assume mL > 0):

ẍV +
F (ϕ, L)

L

(
1

mT

+
1

mL

)
xV =

fx

mT

− dx

mL

,

ẍC =
fx + dx

mT + mL

,

z̈V +
F (ϕ, L)

L

(
1

mC

+
1

mL

)
zV =

fz

mC

− dz

mL

,

z̈C =
fz + dz

mC + mL

,

(54)

where the rope force F (ϕ, L) is a function of ϕ : (ϕ, ϕ̇, ϕ̈) and L : (L, L̇, L̈) as can be

determined by twice differentiating the last equation in (51) and substituting into the fifth

equation of (50):

F =
mL(g − L̈cosϕ + 2L̇ϕ̇sinϕ + Lϕ̇2cosϕ + Lϕ̈sinϕ)

cosϕ
. (55)

Equations (54) and (55) describe the full nonlinear model of the crane that is used during the

simulations. To design a controller/observer a linear model is derived.

Linearizing the force F around the equilibrium point ϕ∗ : (ϕ = 0, ϕ̇ = 0, ϕ̈ = 0) is equivalent

to setting

sinϕ = ϕ, cosϕ = 1, ϕ̇sinϕ = 0,

ϕ̇2 = 0, ϕ̈sinϕ = 0,
(56)

and assuming L̈(t) = 0, equation (55) yields

F (ϕ∗, L̈(t) = 0) = mLg (57)

i.e., the force along the rope is equal to the weight of the load. Substituting this value of F

into equation (54) and assuming no disturb is acting on the system we obtain the reference

28



linearized model: 

ẍV +
g(mT + mL)

mT L
xV =

fx

mT

,

ẍC =
fx

mT + mL

,

z̈V +
g(mC + mL

mCL
zV =

fz

mC

,

z̈C =
fz

mC + mL

.

(58)
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