
Modeling and Simulation of Manufacturing Systems

with First–Order Hybrid Petri Nets

Fabio Balduzzi∗, Alessandro Giua†, Carla Seatzu‡

Abstract

First–Order Hybrid Petri Nets are a model that consists of continuous places holding fluid, discrete places

containing a non–negative integer number of tokens, and transitions, either discrete or continuous. In the first

part of the paper, we provide a framework to describe the overall hybrid net behaviour that combines both time–

driven and event–driven dynamics. The resulting model is a linear discrete–time, time–varying state variable

model, that can be directly used by an efficient simulation tool. In the second part of the paper, we focus on

manufacturing systems. Manufacturing systems are discrete event dynamic systems whose number of reachable

states is typically very large, hence approximating fluid models have often been used in this context. We describe

the net models of the elementary components of an FMS (machines and buffers) and we show in a final example

how these modules can be put together in a bottom–up fashion.

Published as:
F. Balduzzi, A. Giua, C. Seatzu, ”Modelling and Simulation of Manufacturing Systems Using First-Order
Hybrid Petri Nets,” Int. J. of Production Research, Vol. 39, No. 2, pp. 255-282, Jan 2001.

∗Dip. Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino. Italy,

balduzzi@polito.it
†Dip. Ingegneria Elettrica ed Elettronica, Università di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy. giua@diee.unica.it
‡Dip. Ingegneria Elettrica ed Elettronica, Università di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy. seatzu@diee.unica.it

1 Introduction

In this paper we use First–Order Hybrid Petri Nets (FOHPN), a class of nets that combines time–driven and
event–driven dynamics, to describe manufacturing systems. This hybrid model, that was originally presented
in (Balduzzi et al. 1999, 2000), answers a need — deeply felt in the field of manufacturing systems — for a
formal tool that integrates the different phases of design, analysis and control of dynamical systems.

1.1 Motivation

The analysis and optimization of discrete event models require large amount of computational efforts. Thus,
manufacturing systems are difficult to analyze and control and, with very few exceptions, problems of realistic
scale quickly become analytically and computationally intractable.

To cope with this problem, fluid models which are continuous–dynamics approximations of discrete sys-
tems, have been successfully developed and applied by many authors (Caramanis 1987, Sharifnia 1994, Suri
and Fu 1994, Balduzzi and Menga 1998) to the manufacturing domain. There are several advantages in
using fluid approximations for analysis and control of complex manufacturing systems. First, there is the
possibility of considerable increase in computational efficiency, because the simulation of fluid models can
often be done much more efficiently. Second, fluid approximations provide an aggregate formulation to deal
with complex systems, thus reducing the dimension of the state space. Their simple structures allow explicit
computation and performance optimization. Third, the design parameters in fluid models are continuous
(e.g. buffer sizes), hence it is possible to use gradient information to speed up optimization and to per-
form sensitivity analysis. Furthermore, it has also been shown that fluid approximations do not introduce
significant errors when making performance analysis of manufacturing systems via simulations: the main
performance measures are still surprisingly accurate (Suri and Fu 1994, Balduzzi and Menga 1998), given
the fundamental differences in the dynamics of these models.

It should be noted that in general different fluid approximations are necessary to describe the same
manufacturing system, depending on its discrete state: machines working or down, buffers full or empty,
and so on. Thus, the resulting model can be better described as a hybrid model, where a different dynamics
is associated to each discrete state.

Petri nets (PN) (Murata 1989) have originally been introduced to describe and analyze discrete event
systems. Recently, much effort has been devoted to apply these models to hybrid systems (Trivedi and
Kulkarni 1993, David 1997, Alla and David 1998, Demongodin and Koussoulas 1998). The hybrid net model
we consider in this paper, First–Order Hybrid Petri Nets, is general enough to model classes of hybrid
systems of practical interest whose first–order continuous behaviour can be studied by linear algebraic tools
and can be used to solve problems of myopic optimization and sensitivity analysis (Balduzzi et al. 2000).
The aim of the paper is to show that FOHPN are extremely suited to model manufacturing systems where
the arrival/departure of parts is described by fluid approximations.

1.2 The proposed model

FOHPN are a model that consists of continuous places holding fluid, discrete places containing a non–negative
integer number of tokens, and transitions, either discrete or continuous.

As in all hybrid models, in FOHPN we distinguish two behavioral levels: time–driven and event–driven.

The continuous time–driven evolution of the net is described by a first–order fluid model, i.e. a model in
which the instantaneous firing speeds (IFS) of the continuous transitions are piece–wise constant control
variables which represent the machine production rates, the arrival of parts, and so on. Each IFS is a real
vector v that may be chosen by the system operator within a given set S and represents a particular mode
of operation of the system. Among all possible modes of operation, the system operator may choose the best
according to a given objective (Balduzzi et al. 2000).

A discrete–event model describes the behaviour of the net that, upon the occurrence of macro–events,
evolves through a sequence of macro–states. The interval of time between the occurrence of two consecutive
macro–events is called macro–period.

In (Balduzzi et al. 2000) the authors have considered two types of macro–events: (a) the firing of a
discrete transition (that may represent the failure/repair of a machine); (b) the emptying of a continuous
place (that may represent the emptying/filling of a buffer). However, the timing structure associated to
the macro–event occurrence has not been explicitly examined in (Balduzzi et al. 2000). In this paper, we
use timers to describe the timing structure associated to the transition firings. This implies that the set of
macro–events has to be augmented to take into account those events that modify the timer values.

The overall hybrid net behaviour, that combines both time–driven and event–driven dynamics, can be
described by a linear discrete–time, time-varying state variable model of the form x(k + 1) = A(k)x(k) +
B(k)u(k). The state vector x(k) at the end of the k-th macro–period is given by the marking of all places
(continuous and discrete) and by the value of all timers associated to timed transitions. The input vector
u(k) is given by the length of the k-th macro–period and by the characteristic vector that specifies which
transition (if any) fires at the end of the k-th macro–period. We shall provide a simple algorithm to determine
the state vector evolution at the end of each macro–period.

We see three main advantages in the proposed formulation. First, the linear state variable model can
be directly implemented to construct an efficient and general simulation tool that may be used in the
manufacturing domain. Second, this algebraic formalism allows one to describe manufacturing systems with
a well–understood linear (albeit time–varying) state variable model to which classical control theory may
be applied. Third, although we do not discuss this point in this paper, we recall that the FOHPN model
is amenable to sensitivity analysis, i.e. it can be used to obtain information about the degrees of freedom
that can be exploited when making performance optimization or optimal design of the system parameters
configuration (Balduzzi et al. 2000).

The paper is structured as follows. In the first part we recall the definition of FOHPN and we present
some useful tools for simulating its evolution. In particular, we provide a simple algorithm to determine
the overall net behaviour that combines both time–driven and event–driven dynamics. In the second part,
we focus on manufacturing systems. We describe the FOHPN models of the elementary components of an
FMS (machines and buffers) and we show in a final example how these modules can be put together in a
bottom–up fashion. Finally, we apply the results we have developed to a manufacturing system characterized
by unreliable machines, buffers of finite capacity, different classes of products, and general routing policies.

2 Relevant literature

Fluid models have been successfully applied by many authors to the manufacturing domain. Sharifnia (1994)
investigated the stability and performance of distributed control policy for continuous–flow production sys-
tems. Caramanis (1987) combined simulations of continuous tandem lines and non–linear programming
techniques to solve optimization problems. Suri and Fu (1994) described the dynamics of continuous tan-
dem lines in a form that enables GSMP representation. Other results related to the simulation of tandem
production lines can be found in Phillis and Kouikoglou (1994), where a simulation algorithm much more
efficient than conventional discrete event simulators was proposed. In a recent work Balduzzi and Menga
(1998) developed a discrete–time, time–varying linear stochastic state variable model for the fluid approx-
imation of flexible manufacturing systems. Then, by using perturbation analysis techniques they obtained
average values and variances of both performance measures and their gradients with respect to the system
parameters to perform optimal design of the system configuration.

The hybrid Petri net model we propose follows the formalism described by David and Alla (1998a, b).
In effect our model can be seen as an extension of timed hybrid nets with constant maximal speeds with the
following additional features: token reservation is not used; stochastic transitions are also included in our
model; minimal firing speeds are considered as well. The novel contribution of our work is that of showing
how the first–order behaviour of such a net can be efficiently described with a linear algebraic formalism, by
exploiting the results of the fluid approximation theory. We originally introduced these ideas in (Balduzzi
et al. 2000), where the basic concepts of FOHPN were presented, and in (Balduzzi et al. 1999), where the
simulation algorithm to represent the overall net behaviour was given.

Linear algebraic techniques have also been used by Amrah et al. (1998) when modeling manufacturing
systems with continuous Petri nets. These authors deal with open and closed transfer lines modelled by
controlled variable speed continuous Petri nets, a type of continuous Petri nets (Alla and David 1998) with
controllable maximal firing speeds. Then, by using a constrained optimization approach, they obtained
optimal values for the machine production rates that bring the average levels of buffers to a desired value.
However, it must be observed that transfer lines are not a general model, in the sense they do not require
scheduling and routing strategies. Our framework, instead, may deal with manufacturing systems in the
more general configurations and settings.

3 First–Order Hybrid Petri Nets

In this section we recall the Petri net formalism used in this paper following (Balduzzi et al. 2000). For a
more comprehensive introduction to place/transition Petri nets see (Murata 1989). The common notation
and semantics for timed nets can be found in (Ajmone et al. 1995).

3.1 Net structure

A First–Order Hybrid Petri Net (FOHPN) is a structure N = (P, T, Pre, Post,D, C). The set of places
P = Pd ∪ Pc is partitioned into a set of discrete places Pd (represented as circles) and a set of continuous
places Pc (represented as double circles). The cardinality of P , Pd and Pc is denoted n, nd and nc. We
assume that the place labeling is such that: Pc = {pi | i = 1, . . . , nc}, Pd = {pi | i = nc + 1, . . . , n}.

The set of transitions T = Td∪Tc is partitioned into a set of discrete transitions Td and a set of continuous
transitions Tc (represented as double boxes). The set Td = TI ∪ TD ∪ TE is further partitioned into a set of
immediate transitions TI (represented as bars), a set of deterministic timed transitions TD (represented as
black boxes), and a set of exponentially distributed timed transitions TE (represented as white boxes). The
cardinality of T , Td and Tc is denoted q, qd and qc. We also denote with qt the cardinality of the set of timed
transitions Tt = TD ∪ TE . We assume that the transition labeling is such that: Tc = {tj | j = 1, . . . , qc},
Tt = {tj | j = qc + 1, . . . , qc + qt}, TI = {tj | j = qc + qt + 1, . . . , q}.

The pre- and post-incidence functions that specify the arcs are (here R+
0 = R+ ∪ {0}):

Pre, Post :

{
Pc × T → R+

0

Pd × T → N
.

We require (well-formed nets) that for all t ∈ Tc and for all p ∈ Pd, Pre(p, t) = Post(p, t). This ensures
that the firing of continuous transitions does not change the marking of discrete places.

The function D : Tt → R+ specifies the timing associated to timed discrete transitions. We associate
to a deterministic timed transition tj ∈ TD its (constant) firing delay δj = D(tj). We associate to an
exponentially distributed timed transition tj ∈ TE its average firing rate λj = D(tj), i.e. the average firing
delay is 1/λj , where λj is the parameter of the corresponding exponential distribution.

The function C : Tc → R+
0 × R+

∞ specifies the firing speeds associated to continuous transitions (here
R+
∞ = R+ ∪ {∞}). For any continuous transition tj ∈ Tc we let C(tj) = (V ′

j , Vj), with V ′
j ≤ Vj . Here

V ′
j represents the minimum firing speed (mfs) and Vj represents the maximum firing speed (MFS). In the

following, unless explicitly specified, the mfs of a continuous transition tj will be V ′
j = 0.

We denote the preset (postset) of transition t as •t (t•) and its restriction to continuous or discrete places
as (d)t = •t ∩ Pd or (c)t = •t ∩ Pc. Similar notation may be used for presets and postsets of places. The
incidence matrix of the net is defined as C(p, t) = Post(p, t)−Pre(p, t). The restriction of C to PX and TY

(X,Y ∈ {c, d}) is denoted CXY . Note that by the well-formedness hypothesis Cdc = 0nd×qc .
Example 1. Consider the net in figure 1.a. Place p1 is a continuous place. Places p2, p3, p4, p5 are discrete
places. Transitions t1 and t2 are continuous transitions with MFS V1 and V2; we have not specified the mfs
of the continuous transitions because in this case their value is zero. We assume V1 a < V2 b (here a and b

are the arc weights given by Pre and Post). Discrete transitions t3, t4, t5, t6 are exponentially distributed
timed transitions whose average firing rates are λ3, λ4, λ5 and λ6 respectively.

The two continuous transitions represent two unreliable machines; parts produced by the first machine
(t1) are put in a buffer (place p1) before being processed by the second machine (t2). The weight of the arc
a (resp., b) represents the ratio between the flow worked by the machine and the flow put into (resp., taken
from) the buffer.

The incidence matrix of this net is

C =

[
Ccc Ccd

Cdc Cdd

]
=




a −b 0 0 0 0
0 0 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1




.

We have (well-formedness) Cdc = 04×2. In this particular example we also have Ccd = [0, 0, 0, 0]. ¥

[Insert figure 1 about here]

3.2 Marking and enabling

A marking

m :

{
Pc → R+

0

Pd → N

is a function that assigns to each discrete place a non-negative integer number of tokens, represented by
black dots, and assigns to each continuous place a fluid volume; mi denotes the marking of place pi. The
value of the marking at time τ is denoted m(τ). The restriction of m to Pd and Pc are denoted with md

and mc, respectively. An FOHPN system 〈N, m(τ0)〉 is an FOHPN N with an initial marking m(τ0).
The enabling of a discrete transition depends on the marking of all its input places, both discrete and

continuous.
Definition 2. Let 〈N, m〉 be an FOHPN system. A discrete transition t is enabled at m if for all pi ∈ •t,
mi ≥ Pre(pi, t). ¥

A continuous transition is enabled only by the marking of its input discrete places. The marking of its
input continuous places, however, is used to distinguish between strongly and weakly enabling.
Definition 3. Let 〈N, m〉 be an FOHPN system. A continuous transition t is enabled at m if for all
pi ∈ (d)t, mi ≥ Pre(pi, t).

We say that an enabled transition t ∈ Tc is:

• strongly enabled at m if for all places pi ∈ (c)t, mi > 0;

• weakly enabled at m if for some pi ∈ (c)t, mi = 0. ¥

Example 4. In the net in figure 1.a the discrete part of the net represents the failure model of the machines.
When place p2 is marked, transition t1 is enabled, i.e. the first machine is operational; when place p3 is
marked, transition t1 is not enabled, i.e. the first machine is down. A similar interpretation applies to the
second machine. The marking represented in the net shows that initially both machines are operational and
the buffer contains a fluid quantity m1. Transition t1 is strongly enabled. Transition t2 is strongly (resp.,
weakly) enabled if m1 > 0 (resp., m1 = 0). ¥

3.3 Net dynamics

We now describe the dynamics of an FOHPN. First, we consider the behaviour associated to discrete transi-
tions that combines a continuous dynamics associated to the timers, and a discrete–event dynamics associated
to the transition firing. Then we consider the time–driven behaviour associated to the firing of continuous
transitions.

In the following we will use ei,r to denote the i–th canonical basis vector of dimension r, i.e. the vector

ei,r = [

i︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

r

]T .

We also define, to simplify the notation, the index %(j) = j − qc that will be used to define the firing
vector associated to a discrete transition.

Discrete transitions dynamics

We associate to each timed transition tj ∈ Tt a timer νj .
Definition 5 (Timers evolution). Let 〈N, m〉 be an FOHPN system and [τk, τ) be an interval of time in
which the enabling state of a transition tj ∈ Tt does not change. If tj is enabled in this interval then

νj(τ) = νj(τk) + (τ − τk), (1)

while if tj is not enabled in this interval then

νj(τ) = νj(τk) = 0. (2)

Whenever tj is disabled or it fires, its timer is reset to 0. ¥
With the notation of (Ajmone 1995), we are using a single–server semantics, i.e. only one timer is

associated to each timed transition, and an enabling–memory policy, i.e. each timer is reset to 0 whenever
its transition is disabled.

The vector of timers associated to timed transitions is denoted ν = [νqc+1, νqc+2, · · · , νqc+qt]
T ∈ (R+

0)qt .
Note that the timer evolution is continuous and linear during a macro–period and may change at the occur-
rence of the following macro–events: (a) a discrete transition fires, thus changing the discrete marking and
enabling/disabling a timed transition; (b) a continuous place reaches a fluid level that enables/disables a
discrete transition.

An enabled timed transition tj ∈ Tt fires when the value of its timer reaches a given value νj(τ) = ν̂j :
we call the ν̂’s the timer set points. In the case of a deterministic transition, ν̂j = δj is the associated delay.
In the case of a stochastic transition, ν̂j is the current sample of the associated random variable: it is drawn
each time the transition is newly enabled. An immediate transition fires as soon as it is enabled, i.e. it can
be considered as a deterministic transition with ν̂ = 0.
Definition 6 (Discrete transition firing). The firing of a discrete transition tj at m(τ−) yields the
marking m(τ) and for each place p it holds mp(τ) = mp(τ−) + Post(p, tj)−Pre(p, tj) = mp(τ−) + C(p, tj).
Thus we can write {

mc(τ) = mc(τ−) + Ccdσ(τ)
md(τ) = md(τ−) + Cddσ(τ)

(3)

where σ(τ) = e%(j),qd
is the firing count vector associated to the firing of transition tj . ¥

In the above definition we note that, given the transition labeling defined in section 3.1, a transition tj is
the %(j)− th discrete transition, hence, say, Ccde%(j),qd

represents the column of matrix Ccd corresponding
to transition tj .

Continuous transitions dynamics

The instantaneous firing speed (IFS) at time τ of a transition tj ∈ Tc is denoted vj(τ). We can write the
equation which governs the evolution in time of the marking of a place pi ∈ Pc as

ṁi(τ) =
∑

tj∈Tc

C(pi, tj)vj(τ) = eT
i,nc

Cccv(τ) (4)

where v(τ) = [v1(τ), . . . , vnc
(τ)]T is the IFS vector at time τ . Indeed Equation (4) holds assuming that at

time τ no discrete transition is fired and that all speeds vj(τ) are continuous in τ .
The enabling state of a continuous transition tj defines its admissible IFS vj .

• If tj is not enabled then vj = 0.

• If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V ′
j , Vj].

• If tj is weakly enabled, then it may fire with any firing speed vj ∈ [V ′
j , V j], where V j ≤ Vj since tj

cannot remove more fluid from any empty input continuous place p than the quantity entered in p by
other transitions.

The computation of the IFS of enabled transitions is not a trivial task. We will set up in the next section
a linear–algebraic formalism to do this. Here we simply discuss the net evolution assuming that the IFS are
given.

We say that a macro–event occurs when: (a) a discrete transition fires, thus changing the discrete marking
and enabling/disabling a continuous transition; (b) a continuous place becomes empty, thus changing the
enabling state of a continuous transition from strong to weak.
Definition 7 (Continuous transition firing). Let τk and τk+1 be the occurrence times of two consecutive
macro–events as defined above; we assume that within the interval of time [τk, τk+1) the IFS vector is constant
and denoted v(τk). The continuous behaviour of an FOHPN for τ ∈ [τk, τk+1) is described by

{
mc(τ) = mc(τk) + Cccv(τk)(τ − τk)
md(τ) = md(τk).

(5)

¥
Example 8. In the net in figure 1.a we assume that the timer vector ν = [ν3, ν4, ν5, ν6]T is initially set
to zero. If m1 > 0 at time τ0, transitions t1 and t2 are strongly enabled and may fire at their maximum
speeds, i.e. we choose v1 = V1 and v2 = V2. The continuous marking of the net during this macro–period
is given, as in Equation 5, by mc(τ) = m1(τ) = m1 − (V2 b − V1 a) (τ − τ0), and the timer vector is
ν(τ) = [τ − τ0, 0, τ − τ0, 0]T . ¥

4 Computation of a firing speed vector

We use linear inequalities to characterize the set of all admissible firing speed vectors S. Each IFS vector
v ∈ S represents a particular mode of operation of the system described by the net, and among all possible
modes of operation, the system operator may choose the best according to a given objective.

4.1 Admissible IFS vectors

They form a convex set described by linear equations.
Definition 9 (admissible IFS vectors). Let 〈N, m〉 be an FOHPN system with nc continuous transitions
and incidence matrix C. Let TE(m) ⊂ Tc (TN (m) ⊂ Tc) be the subset of continuous transitions enabled
(not enabled) at m, and PE = {p ∈ Pc | mp = 0} be the subset of empty continuous places. Any admissible

IFS vector v = [v1, · · · , vnc
]T at m is a feasible solution of the following linear set:





(a) Vj − vj ≥ 0 ∀tj ∈ TE(m)
(b) vj − V ′

j ≥ 0 ∀tj ∈ TE(m)
(c) vj = 0 ∀tj ∈ TN (m)
(d)

∑
tj∈TE C(p, tj) · vj ≥ 0 ∀p ∈ PE(m)

(6)

Thus the total number of constraints that define this set is: 2 card {TE(m)}+card {TN (m)}+card {PE(m)}.
The set of all feasible solutions is denoted S(N, m). ¥

Constraints of the form (6.a), (6.b), and (6.c) follow from the firing rules of continuous transitions.
Constraints of the form (6.d) follow from (4), because if a continuous place is empty then its fluid content
cannot decrease. Note that if V ′

i = 0, then the constraint of the form (6.b) associated to ti reduces to a
non–negativity constraint on vi.
Example 10. Let 〈N, m(τ0)〉 be the continuous net in figure 1.a. If m1 > 0, according to the previous
definition, the set S(N, m(τ0)) is defined by the following inequalities:





V1 − v1 ≥ 0
V2 − v2 ≥ 0
v1, v2 ≥ 0

(7)

If m1 = 0, we add to the constraint set S(N, m(τ0)) the additional constraint {a v1−b v2 ≥ 0} associated
to the empty place p1. ¥

4.2 Optimal IFS vector

Once the set of all admissible IFS vectors has been defined, we need a procedure to select one among them.
One possible way of computing an optimal IFS vector consists in introducing an objective function that may
be representative of a global performance index and solving the corresponding optimization problem with
the constraint set given by (6). We consider some examples.

• Maximize flows. In an FOHPN we may consider as optimal the solution v∗ of (6) that maximizes the
performance index J = 1T · v which is of course intended to maximize the sum of all flow rates. In the
manufacturing domain this may correspond to maximizing machines utilization.

• Maximize outflows. In an FOHPN we may want to maximize the performance index J = aT · v where

aj =

{
1 if tj is an exogenous transition,

0 if tj is an endogenous transition.

In the manufacturing domain this may correspond to maximizing throughput.

• Minimize stored fluid. In an FOHPN we may want to minimize the derivative of the marking of a place
p ∈ Pc. This can be done by minimizing the performance index J = aT · v where

aj =

{
C(p, tj) if tj ∈ p(c) ∪ (c)p,

0 otherwise.

In the manufacturing domain this may correspond to minimizing the work–in–process (WIP).

4.3 Discussion

There are two main differences between our model and the one proposed by Alla and David (1998b).
The definition of continuous transitions enabling proposed in (Alla and David 1998b) requires that a

weakly enabled transition be “fed”, i.e. there exists an upstream transition strongly enabled feeding it.
According to this definition, two transitions in a cycle as depicted in figure 2.a are not enabled and the
cycle is blocked, while according to our definition they are both weakly enabled and the cycle is not blocked.
To overcome this limitation, David and Alla introduced in (2001) a new concept, that of ε-marking: if an
arbitrary small marking is initially assigned to any of the two places of the cycle in figure 2.a, then both
transitions can be considered weakly enabled. Thus, in this generalized framework it is possible to assign to
empty cycles two semantics: blocked cycles (those that are empty) and non-blocked cycles (those ε-marked).
We believe that blocked cycles are not a useful modeling feature for manufacturing systems of practical
interest, thus we have chosen to keep just the second semantics, that will be used to model zero–capacity
buffers (see section 6.1). However, one may also adopt for FOHPN the enabling definition used in (David
and Alla 2001).

Another difference with (Alla and David 1998b) is that we have also introduced minimum firing speeds
for continuous transitions. As a consequence of this, as shown in (Balduzzi et al. 2000), the set S(N, m)
defined by (6) may not admit feasible solutions in some cases. As an example, consider the net in figure 2.b,
where transitions t1 and t2 have (V ′

1 , V1) = (0, 2) and (V ′
2 , V2) = (3, 5). If m1 = 0 and place p2 is marked,

then there is no feasible solution to the constraint set:




0 ≤ v1 ≤ 2

3 ≤ v2 ≤ 5

v2 ≤ v1

i.e. no admissible modes of operation is possible. This is a useful indication for the system designer that the
system does not satisfy the requirements. Note that when place p2 is not marked, transition t2 is disabled,
hence its IFS is v2 = 0 and any v1 ∈ [0, 2] satisfies the constraint set, regardless of the value of m1.

[Insert figure 2 about here]

5 Macro–behaviour: a linear model

In this section we show how it is possible to combine the continuous and discrete–event dynamics described
in the previous section to obtain a linear time–varying, discrete–time state variable model.

5.1 Macro–events, macro–periods and state vector

If we consider both continuous and discrete–event dynamics, the system evolution is driven by four types of
macro–events.

• πi: a continuous place pi becomes empty. This may change the enabling state of a set of continuous
transitions from strong to weak, thus modifying the set S.

• γj : a discrete transition tj fires. This changes the discrete marking and may enable/disable a set of
continuous transitions, thus modifying the set S, or enable/disable a set of discrete transitions, thus
modifying the vector of timers.

• εi: a continuous place pi whose marking is increasing, reaches a flow level that enables a set of discrete
transitions. This will enable the corresponding timers.

• ε̄i: a continuous place pi whose marking is decreasing, reaches a flow level that disables a set of discrete
transitions. This will disable and reset the corresponding timers.

In (Balduzzi et al. 2000) only the first two types of macro-events have been taken into account, since
they are the only ones to produce a variation on S.

The possible effects of each macro-event on the marking m, the timer vector ν, the constraint set S are
summarized in the table below.

Jump Jump Change Timer
in m in ν in S enab disab

πi ×
γj × × × × ×
εi ×
ε̄i × ×

Let τk, for k = 0, 1, 2, . . ., be the occurrence time of the k–th macro–event. The interval [τk, τk+1] is
called a macro–period and its length is denoted ∆(k +1) = (τk+1− τk). Note that a macro–period may have
a null length whenever an immediate transition fires. As an example, suppose that a continuous place pi

reaches a fluid level that enables an immediate transition tj . Then, the sequence of events will be ’εi at time
τk’ and ’γj at time τk+1’, with τk = τk+1. This is similar to the notion of vanishing state in (Aimone 1995).

Our aim is that of obtaining a discrete–time state variable model of the system where each sampling
instant k corresponds to the occurrence of the k–th macro–event, i.e. to the time instant τk. The overall
state of the system is given by the marking of all places and by the values of all timers. Because of the choice
of the single–server semantics only one timer is associated to each timed transition. Thus, we can define the
state vector of the system as

x(k) =




mc(τk)
md(τk)
ν(τk)



} nc

} nd

} qt

(8)

i.e. x(k) ∈ Rs, where s = nc + nd + qt.

5.2 Discrete–time dynamics

We now derive a discrete–time state equation of the form:

x(k + 1) = A(k)x(k) + B(k)u(k), (9)

where u(k) ∈ R+
0 × Nqd is the input vector, A(k) and B(k) are matrices of appropriate dimensions.

To show this, we first observe that the behaviour of an FOHPN can be described within a macro–period
[τk, τk+1] by the following equations:





mc(k + 1) = mc(k) + Cccv(k)∆(k + 1) + Ccdσ(k + 1)
md(k + 1) = md(k) + Cddσ(k + 1)
ν(k + 1) = D(k)ν(k) + f(k)∆(k + 1).

(10)

where we have written all vectors as functions of k instead of τk. Here σ(k + 1) is the firing count vector
that specifies which discrete transition fires at time τk+1 and ∆(k + 1) is the length of the macro–period.

The first two equations follow from the combination of the net dynamic equations (3), (5). The third
equation follows from (1) and (2). Here matrix D(k) ∈ {0, 1}qt×qt and vector f(k) ∈ {0, 1}qt depend on the
macro–event occurring at the sampling instant k + 1. In particular, the following definitions, whose validity
can be easily verified, hold:

• Macro-events πi, εi. There will be no jump in ν and each timer associated to an enabled transition
increases with unitary rate. Therefore for all th ∈ Tt

f%(h)(k) =

{
1 if th is enabled at m(k)
0 otherwise

; D(k) = diag {f(k)} , (11)

i.e. D(k) is a diagonal matrix with entries Dh,h = fh.

• Macro-event γj . Let T j ⊂ Tt be the subset of timed transitions disabled by the firing of tj . For all th ∈ T j ,
νh(k + 1) will be reset to 0 regardless of the value of νh(k). Furthermore the timer of tj will be also reset
to 0 after its firing. Therefore for all th ∈ Tt

f%(h)(k) =





1 if (j 6= h) and (th 6∈ T j)
and th is enabled at m(k)

0 otherwise
; D(k) = diag {f(k)} . (12)

• Macro-event ε̄i. Let T i ⊂ Tt be the subset of timed transitions disabled by the decreasing marking of the
continuous place pi. The timers of all these transitions will be reset to 0. Therefore for all th ∈ Tt

f%(h)(k) =





1 if (th 6∈ T i) and
th is enabled at m(k)

0 otherwise
; D(k) = diag {f(k)} . (13)

Finally, we observe that equation (10) is in the form of equation (9) if we consider (8) and let

A(k) =




Inc×nc 0nc×nd
0nc×qt

0nd×nc Ind×nd
0nd×qt

0qt×nc 0qt×nd
D(k)


 , B(k) =




Cccv(k) Ccd

0nd×1 Cdd

f(k) 0qt×nd


 , u(k) =

[
∆(k + 1)
σ(k + 1)

]
. (14)

The input vector u specifies: (a) the length ∆(k+1) of the current macro–period; (b) which transition (if
any) will fire at the end of the current macro–period. Note that ∆(k + 1) and σ(k + 1) depend on the state
vector x(k) and on the macro–event occurring at the end of the current macro–period. We can explicitly
write their value as follows.

• Macro-event πi. The length of the macro–period is the time it takes to empty the continuous place pi, i.e.
the ratio between its actual marking and its variation with respect to time (changed of sign). The firing
count vector is equal to the null vector since no discrete transition fires. Therefore,

∆(k + 1) =
−mi(k)
ṁi(k)

=
−eT

i,sx(k)
eT

i,nc
Cccv(k)

, σ(k + 1) = 0qd×1. (15)

• Macro-event γj . If tj is a timed transition, the length of the macro–period is the residual lifetime of the
transition timer, i.e.

∆(k + 1) = ν̂j − νj(k) = ν̂j − eT
n+%(j),sx(k), (16)

else if tj is an immediate transition, then ∆(k + 1) = 0. Finally,

σ(k + 1) = e%(j),qd
. (17)

• Macro-events εi, ε̄i. The length of the macro–period is the time it takes the marking mi to reach the value
C(pi, tj) thus enabling (disabling) some discrete transition tj . As in the first case, the firing count vector
is equal to the null vector, since no discrete transition fires. Therefore,

∆(k + 1) =
C(pi, tj)−mi(k)

ṁi(k)
=

C(pi, tj)− eT
i,sx(k)

eT
i,nc

Cccv(k)
, σ(k + 1) = 0qd×1. (18)

5.3 A simulation algorithm

In this subsection we provide a simulation algorithm to determine the state vector at the beginning of each
macro–period, given the initial state x(0). We assume that a criterion J to select the optimal IFS vector
among all admissible ones is also given.
Algorithm 11. Simulation algorithm.

1. Let k := 0, ν(τ0) = 0qt×1, m(0) :=

[
mc(τ0)
md(τ0)

]
, and x(0) :=




mc(τ0)
md(τ0)
ν(τ0)


 . Compute the value of each

timer set point ν̂.

2. Select an IFS vector v(k) ∈ S(N, m(k)) so as to optimize the chosen criterion J .

3. Determine the next macro–event to occur β̄ according to the following steps.

(a) Let Ψk := ∅. (This set in step 3.(h) will contain all pairs (β, ∆β), where β is an event that may potentially
occur and ∆β is its residual lifetime.)

(b) For each immediate transition tj enabled at x(k), add to Ψk the pair (γj , 0).

(c) If Ψk 6= ∅, then goto step 3.(h).

(d) For each timed transition tj enabled at x(k), add to Ψk the pair (γj , ν̂j − eT
%(j)+n,sx(k)).

(e) For each non-empty continuous place pi, if ṁi(k) = eT
i,nc

Cccv(k) < 0 then add to Ψk the pair

(πi,
−ei,sx(k)

eT
i,nc

Cccv(k)
).

(f) For each discrete transition tj that is not enabled at x(k), let Pj := {p` ∈ (c)tj | m`(k) < C(p`, tj)} be
the set of continuous places that have not enough fluid content to enable tj . This transition may become
enabled at the end of the current macro–period if the following two conditions are both verified.

• md(k) ≥ Cdd(·, tj), i.e. tj is enabled in the discrete sub–net;

• ∀p` ∈ Pj , ṁ`(k) = eT
`,nc

Cccv(k) > 0, i.e. the marking of all places in Pj is increasing.

The time it takes for tj to become enabled is

∆ := max
p`∈Pj

C(p`, tj)− e`,sx(k)
e`,nc

Cccv(k)

and we denote pi the place for which this value is maximum. However, tj will not be enabled if any place
p¯̀ in the set P̄j := {p` ∈ (c)tj | m`(k) ≥ C(p`, tj), ṁ`(k) < 0}, will go below the fluid level C(p¯̀, tj) in
the meantime. Thus we let

∆̄ := min
p`∈P̄j

C(p`, tj)− e`,sx(k)
e`,ncCccv(k)

with ∆̄ := ∞ if P̄j = ∅. If ∆̄ > ∆, add (εi,∆) to Ψk.

(g) For each enabled discrete transition tj , let P̄j := {p` ∈ (c)tj | ṁ`(k) < 0} be the set of continuous places
whose marking is decreasing. If P̄j 6= ∅, transition tj may become disabled. In this case let

∆ := min
p`∈P̄j

C(p`, tj)− e`,sx(k)
e`,ncCccv(k)

,

and let pi be the place corresponding to this minimum. The macro–event ε̄i will occur not at time ∆,
but an instant later when mi will go below the value C(pi, tj). Thus we add (ε̄i, ∆+) to Ψk.

(h) Choose from Ψk the pair (β̄, ∆β̄) where ∆β̄ is the minimum over all pairs. Event β̄ is the next to occur.

Note that if two pairs (β1, ∆) and (β2, ∆+) are in Ψk, then (∆ < ∆+) and β1 should be chosen.

4. Let x(k+1) := A(k)x(k)+B(k)u(k) where matrices A(k), B(k) and vector u(k) are defined in accordance
with the results in subsection 5.2 and depend on the type of macro-event β̄.

Let k := k + 1, and m(k) := [In×n 0n×qt] x(k).

5. Update the value of each timer set point ν̂. The set point of all timed transitions disabled by macro-event
β̄ should be reset to 0. The set point of all transitions enabled after the occurrence of macro-event β̄

should be reinitialized. Goto step 2. ¥

Now, let us apply the above algorithm to an example.
Example 12. Consider the net in figure 1.a, already discussed in the previous examples, and let the initial
time be τ0 = 0. Let the initial marking be that represented in the figure. We assume that at each macro–
period the performance index to maximize is the overall machines utilization, i.e. J = v1 + v2.

k=0. The initial state vector is x(0) = [m1, 1, 0, 1, 0, 0, 0, 0, 0]T . The enabled stochastic transitions
are t3 and t5, so we extract the timer set points ν̂3 and ν̂5 from the corresponding distribution. Assume
ν̂5 < ν̂3.

Transitions t1 and t2 are strongly enabled and may fire at their maximum speeds, thus to maximize J we
choose v(0) = [V1, V2]T .

We compute Ψ0 = {(π1, ∆π1), (γ3, ∆γ3), (γ5, ∆γ5)}, where ∆π1 = m1/(V2 b − V1 a), ∆γ3 = ν̂3 and
∆γ5 = ν̂5.

Assume ∆π1 < ν̂5. Then π1 is the next event to occur, i.e. the first macro–event is due to the emptying of
continuous place p1. The length of the first macro–period is ∆(1) = ∆π1 and the occurrence time of the
first macro–event is τ1 = ∆π1 .

Matrices A(0), B(0), and the input vector u(0) have the following values:

A(0) =




1 01×4 01×4

04×1 I4×4 04×4

04×1 04×4 diag {[1 0 1 0]}


 , B(0) =




V1 − V2 01×4

04×1 Cdd

[1 0 1 0]T 04×4


 , u(0) =




τ1

0
0
0
0




.

k=1. The state vector at the beginning of the second macro–period is x(1) = [0, 1, 0, 1, 0, τ1, 0, τ1, 0]T .

The timer set points keeps the previous values, because no timed transition changes its enabling state.

During this macro–period, t1 remains strongly enabled, while t2 is weakly enabled and may fire at most
at speed V 2 = v1 · (a/b) < V2. Thus, the optimal IFS vector is v(1) = [V1, V1 · (a/b)]T .

We compute Ψ1 = {(γ3, ∆γ3), (γ5, ∆γ5)}, where ∆γ3 = ν̂3 − τ1 and ∆γ5 = ν̂5 − τ1.

Then γ5 will be the next event to occur, i.e. the second macro–event is due to the firing of transition t5.
The length of the second macro–period is ∆(2) = ∆γ5 = ν̂5 − τ1 and the occurrence time of the second
macro–event is τ2 = ∆γ5 + τ1 = ν̂5.

We compute

A(1) =




1 01×4 01×4

04×1 I4×4 04×4

04×1 04×4 diag {[1 0 0 1]}


 , B(1) =




V1(1− a/b) 01×4

04×1 Cdd

[1 0 0 1]T 04×4


 , u(1) =




τ2 − τ1

0
0
0
1




.

k=2. The state vector at the beginning of the third macro–period is x(2) = [0, 1, 0, 0, 1, τ2, 0, 0, 0]T . The
timer set point of transition t3 is kept, while the one of transition t5 is reset to 0. Transition t6 has become
enabled, so we extract the timer set points ν̂6 from the corresponding distribution. Assume ν̂3 − τ2 < ν̂6.

The optimal IFS vector is v(2) = [V1, 0]T , since only continuous transition t1 is enabled and may fire at
its maximum firing speed.

We compute Ψ2 = {(γ3, ∆γ3), (γ6, ∆γ6)}, where ∆γ3 = ν̂3 − τ2 and ∆γ6 = ν̂6.

Then γ3 will be the next event to occur, i.e. the third macro–event is due to the firing of transition t3. The
length of the third macro–period is ∆(3) = ∆γ3 = ν̂3−τ2 and the occurrence time of the third macro–event
is τ3 = ∆γ3 + τ2 = ν̂3.

We compute

A(2) =




1 01×4 01×4

04×1 I4×4 04×4

04×1 04×4 diag {[0 1 0 1]}


 , B(2) =




V1 01×4

04×1 Cdd

[0 1 0 1]T 04×4


 , u(2) =




τ3 − τ2

0
1
0
0




.

And so on. ¥

6 Modeling manufacturing systems with FOHPN

In this section we show how FOHPN can be used to model manufacturing systems producing a variety of
products and consisting of unreliable machines and buffers in a general network configuration.

We define the basic modules for buffers and machines and the interconnections between them. These
modules can be composed in a bottom-up fashion, as shown in the example in the next section. Note that we
consider here only continuous–flow production systems. However, using discrete transitions is also possible
to model batch systems in which batches of products are processed at a time.

6.1 Buffer models

Let r be the number of different part classes in the system. A multi–class (MC) buffer Bi is modeled with
r continuous places pq

Bi, for q = 1, . . . , r, whose marking represents the buffer content of parts of class q.
Let Iq

in,Bi and Iq
out,Bi be the set of indexes of machines that may, respectively, deposit or take from

the buffer parts of class q. The arrival of parts of class q from machine Mj , where j ∈ Iq
in,Bi, is modeled

by a continuous transition labeled tqMj,Bi inputting into pq
Bi. The routing of parts of class q to machines

Mj , where j ∈ Iq
out,Bi, is modeled by a continuous transition labeled tqBi,Mj outputting from pq

Bi. These
transitions represent the interfaces among machines and buffers: if no constraint is associated to these flows,
the MFS of these transitions are taken to be ∞.

If the buffer has a finite capacity CBi, then a continuous place pBi will also be present in the buffer
model. This new place will have arcs Pre(pBi, ·) =

∑r
q=1 Post(pq

Bi, ·) and Post(pBi, ·) =
∑r

q=1 Pre(pq
Bi, ·).

The initial marking of place pBi is chosen as: mpBi
(τ0) = CBi −

∑r
q=1 mpq

Bi
(τ0). Thus for any reachable

marking m holds mpBi
+

∑r
q=1 mpq

Bi
= CBi.

The FOHPN model of a finite capacity MC buffer is shown in figure 3. The initial marking shown
assumes that the buffer is initially empty. For each MC buffer the following set of equations will be included
in S(N, m):

{
(a)

∑
j∈Iq

in,Bi
vq

Mj,Bi ≥ ∑
j∈Iq

out,Bi
vq

Bi,Mj if mpq
Bi

= 0

(b)
∑r

q=1

∑
j∈Iq

out,Bi
vq

Bi,Mj ≥ ∑r
q=1

∑
j∈Iq

in,Bi
vq

Mj,Bi if mpBi
= 0

(19)

For each class q, if the buffer does not contain parts of this class, i.e. mpq
Bi

= 0, a constraint of type
(19.a) is used. If the buffer is full, i.e. mpBi

= 0, then constraint (19.b) is also used. Depending on the
current marking m, the number of constraints associated to an MC buffer may vary from 0 — when the
buffer is not full but contains parts of all classes — to r — when the buffer is full of parts of only one class.

A single–class buffer Bi reduces to a simpler model with only two continuous places, denoted pBi and
pBi.

[Insert figure 3 about here]

Zero–capacity buffer

Sometimes it may be necessary to impose synchronization constraints among continuous transitions. As
an example, if we want to say that the overall flow of transitions t1 and t2 is equal to the overall flow of
transitions t3, t4 and t5 we require that

v1 + v2 = v3 + v4 + v5.

This can be done, as in figure 4, introducing a zero–capacity buffer, represented by the empty continuous
places p and p. These two empty places enforces two constraints of the form given in Eq. (6.d) on the IFS
of their input and output continuous transitions:

{
v1 + v2 ≥ v3 + v4 + v5

v3 + v4 + v5 ≥ v1 + v2

Note that the buffer introduces an empty cycle. If the enabling definition of (David and Alla 2001) is
used, an ε-marking should be assigned to this cycle (see section 4.3).

[Insert figure 4 about here]

6.2 Machine production models

The production of a multi–class (MC) machine Mi processing r classes of products is modeled with r single–
class subnets. The subnet associated to each class q, for q = 1, . . . , r, has a continuous transition tqMi to
represent the processing of parts of class q, and one input and one output zero–capacity buffer — represented
by continuous places pq

in,Mi, p q
in,Mi and pq

out,Mi, p q
out,Mi — to impose that for parts of class q the total input

flow is equal to the processed flow and to the total output flow.
Let Iq

in,Mi and Iq
out,Mi be the set of indexes of, respectively, input and output buffers of machine Mi for

parts of class q. The interfaces among machine and buffers are represented by continuous transitions tqBj,Mi

(for j ∈ Iq
in,Mi) and tqMi,Bj (for j ∈ Iq

out,Mi), as already discussed in the model of the buffers.
We assume that the production of any part class is not singularly bounded, i.e. the MFS of each tqMi is∞,

but we assume that the machine has an overall production rate, modeled by the firing of transition tMi, that
is bounded by VMi. Thus the continuous transition tMi is synchronized with all tqMi by the zero–capacity
buffer represented by continuous places pMi and pMi: this ensures that vMi = v1

Mi + · · ·+ vr
Mi.

As parts of different classes may require for their processing different service times, let us denote with
θq the average service time of parts of class q, and let θ̃ = minq{θq}. Thus we can assume VMi = θ̃−1 and
defining γq = θqVMi, for q = 1, . . . , r, we obtain the FOHPN model shown in figure 5. For such a MC
machine we have the following set of (2r + 2) equations:





(a) vMi ≤ VMi

(b) vMi =
∑r

q=1 γqv
q
Mi

(c) vq
Mi =

∑
j∈Iq

in,Mi
vq

Bj,Mi (∀ q = 1, . . . , r)

(d) vq
Mi =

∑
j∈Iq

out,Mi
vq

Mi,Bj (∀ q = 1, . . . , r)

(20)

Equation (20.b) derives from the zero–capacity buffer pMi and pMi. The 2 r equations (20.c) and (20.d)
derive from the input and output zero–capacity buffers of each class q subnet.

[Insert figure 5 about here]

Two simpler representation of the machine model are possible. In the case of a single–class machine,
we have just one of the sub–nets represented within the continuous line boxes in figure 5. Clearly, the
specification of the class is needless: the unique continuous transition of this sub–net will be simply labeled
tMi and have an MFS VMi. The zero–capacity buffer pMi and pMi will be removed.

Another simplification is possible if part of class q are coming from just one input buffer Bh. In this
case the zero–capacity buffer represented by places pq

in,Mi and pq
in,Mi may be removed, directly connecting

transition tqMi to the buffer Bh. Similar reasonings can be applied when the machine is putting processed
parts into a single buffer.

6.3 Machine failure models

We assume that machines may be unreliable and consider two different failure models. A time–dependent
failure (TDF) model assumes that a machine fails after a given time has elapsed since the previous repair
operation. An operation–dependent failure (ODF) model assumes that a machine fails after a given produc-
tion volume has been processed since the previous repair operation. As suggested in (Buzacott and Hanifin
1978) the ODF model is more appropriate than the TDF model when dealing with manufacturing systems.
However TDF models are suitable when programmed maintenance is adopted.

TDF models can be represented with an FOHPN as shown in figure 6. This model is similar to the one
presented in (Alla and David 1998b). Continuous firing of transition tMi corresponds to a continuous
production at rate vMi ≤ VMi. The machine will keep on producing until it is operational, that is the place
pup,i is marked. The firing of transition tF,i corresponds to the machine failure and this event occurs after
a random delay exponentially distributed with parameter λF,i. When tF,i fires, the token in pup,i moves to
place pdown,i, hence tMi is disabled and cannot fire. Analogously, the firing of transition tR,i corresponds
to the machine repair. In figure 6 we have used stochastic transitions to represent the fail/repair events,
but deterministic transitions may be used as well.

[Insert figure 6 about here]

ODF models can be represented with an FOHPN as shown in figure 7. The continuous place pR,i is initially
marked with wi that represents the production volume that will be processed by the machine Mi before
failing. After machine Mi has processed the fluid quantity wi, the continuous place pF,i will be marked by
wi. Then, the immediate transition tdown,i is enabled and fires, emptying place pF,i and removing 1 token
from place pup,i, thus disabling transition tMi. At the same time 1 token is added to the discrete place
pdown,i, thus enabling the stochastic transition tR,i. Place pdown,i represents the condition of the machine
under repairing because when it is marked transition tMi is disabled, i.e. vMi = 0. The machine will be
down until the repair event occurs, i.e. transition tR,i fires, bringing the net back to the initial state.

The ODF model exploits one of the hybrid features of FOHPN: the transformation of fluids into discrete
tokens and vice versa through discrete transitions.

[Insert figure 7 about here]

6.4 A job–shop example

In this section we consider the FOHPN model of a production system consisting of a simple job–shop already
presented in the literature (Sethi and Zhang 1994); we have only added an assembly operation at the end of
the process. Its scheme is sketched in figure 8.

[Insert figure 8 about here]

This job–shop has 4 machines M1, M2, M3, M4, an assembly station M5, and seven buffers, B0, B1, B2,
B3, B4, B5, B6. Machine Mi (i = 1, 2, 3, 4, 5) has a maximum machine production rate VMi. Buffers B0 and
B6 are fictitious in the sense that B0 is an infinite source containing all required raw materials and B6 is a
sink buffer with no constraints. On the contrary all other buffers have a finite capacity CBi.

There are two classes of products: class 1, whose flow is denoted in figure 8 by thin lines, and class 2,
whose flow is denoted by thick lines. The flow of assembled product is denoted in figure 8 by a dotted line.
Row parts of both classes are initially contained in B0.

Initially, all buffers are empty (except the raw parts buffer B0) and all machines are assumed to be
operational. The FOHPN model of the production system under consideration is reported in figure 9.

[Insert figure 9 about here]

For the sake of simplicity, we assume that only M1 and M2 are unreliable machines characterized by a
time–dependent failure model. Furthermore, machine M2 has the same service time when processing parts
of both classes. We also assume that all buffers have finite capacity except the two–class buffer B0 and the
final single–class buffer B6.

We apply the simulation algorithm 11 to the job–shop example in figure 8, computing the state vector
during four macro–periods. Numerical values of matrices A(k) and B(k) have not been reported here to
keep the example short.

Let us consider the following numerical values: VM1 = 10, VM2 = 15, VM3 = 30, VM4 = 10, VM5 = 10;
α2 = 0.7; m1

B0 = 103, m2
B0 = 103; CB1 = 50, CB2 = 50, CB3 = 40, CB4 = 30, CB5 = 30; λR,1 = 0.1,

λF,1 = 0.06, λR,2 = 0.07, λF,2 = 0.2.
We denote the set of places as:

P = {p1, · · · , p21} = {p1
B0, p

2
B0, pB1, pB1, pB2, pB2, pB3, pB3, pB4, pB4, pB5,

pB5, pB6, pM4, pM4, pin,M3, pin,M3, po,1, pd,1, po,2, pd,2};

the set of transitions as:

T = {t1, · · · , t13} = {tM1, tM2, tM3, t
1
M4, t

2
M4, tM4, tM5, tB1,M3, tB3,M3, tR,1, tF,1, tR,2, tF,2};

the state space vector at the beginning of the (k + 1)–th macro–period as:

x(k) = [mc(k)T , md(k)T ,ν(k)T]T ,

where

mc(k) = [mp1
B0

(k), mp2
B0

(k),mpB1(k), mpB1
(k),mpB2(k),mpB2

(k),

mpB3(k),mpB3
(k),mpB4(k),mpB4

(k), mpB5(k),mpB5
(k),

mpB6(k),mpM4(k),mpM4
(k),mpin,M3(k),mpin,M3

(k)]T ,

md(k) = [mpo,1 ,mpd,1 ,mpo,2 ,mpd,2]
T ,

ν(k) = [νtR,1 , νtF,1 , νtR,2 , νtF,2]
T ;

and the optimal IFS vector at the (k + 1)–th macro–period as:

v(k) = [vM1(k), vM2(k), vM3(k), v1
M4(k), v2

M4(k), vM4(k), vM5(k), vB1,M3(k), vB3,M3(k)]T .

The optimal control policy we use in this example consists in the maximization of the system throughput
(the IFS vM5) while minimizing the number of input parts. More precisely, at each macro–period we solve
an optimization problem of the form

max
v∈Sk

J = 1000 · vM5(k)− (vM1(k) + v2
M4(k)) (21)

where the different weighting coefficients have been chosen so as to consider the throughput maximization
as the prior requirement, and the minimization of the flow of row parts taken from buffer B0 as a secondary
requirement.

k=0. Let the initial time be τ0 = 0 and the initial marking be that represented in figure 9. All timers have
initially a zero value. Thus the state vector at the beginning of the first macro–period is

x(0) = [103, 103, 0, 50, 0, 50, 0, 40, 0, 0, 0, 30, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]T .

The enabled timed transitions are t11 = tF,1 and t13 = tF,2, so we extract their timer set–points from the
corresponding distribution: assume ν̂11 = 16 and ν̂13 = 5.

The optimal IFS vector is computed by solving an optimization problem of the form (21) where

S0 :





vM1 ≤ VM1 (1)
vM2 ≤ VM2 (2)
vM3 ≤ VM3 (3)
vM4 ≤ VM4 (4)
vM5 ≤ VM5 (5)
vM3 = vB1,M3 + vB3,M3 (6)
vM4 = v1

M4 + v2
M4 (7)

v1
M4 + vB1,M3 ≤ vM1 (8)

vM2 ≤ α2VM3 (9)
vB3,M3 ≤ vM2 (10)
vM5 ≤ v1

M4 + (1− α2)vM3 (11)
vM5 ≤ v2

M4 (12)

(22)

The optimal IFS vector is v(0) = [10, 15, 23.53, 1.47, 8.53, 10, 8.53, 8.53, 15]T .

We compute

Ψ0 = {(π1, ∆π1), (π2, ∆π2), (π4,∆π4), (π6, ∆π6), (π8, ∆π8), (π10, ∆π10), (π12,∆π12), (γ11, ∆γ11), (γ13,∆γ13)},

where ∆π1 = ∆π2 = 100, ∆π4 = ∆π8 = ∆π10 = ∆π12 = ∞, ∆π6 = 40.32, ∆γ11 = 16 and ∆γ13 = 5.
Thus γ13, i.e. the firing of discrete transition t13 = tF,2, is the next event to occur: this corresponds to

the failure of machine M2. The length of the first macro–period is ∆(1) = ∆γ13 = 5 and τ1 = ∆γ13 .

k=1. The state vector at the beginning of the second macro–period is

x(1) = [995, 995.74, 0, 50, 7.36, 42.65, 0, 40, 0, 30, 0, 30, 42.65, 0, 0, 0, 0, 1, 0, 0, 1, 0, 5, 0, 0]T ,

i.e. all machines — excepted M2 — are operational and all finite capacity buffers — excepted B2 — are
empty.

The enabled timed transitions are t11 = tF,1 and t12 = tR,2. The timer set point of transition t11 keeps
the previous value, while a timer set–point needs to be extracted for transition t12: assume ν̂12 = 14.

The set of admissible IFS vectors is now defined by the new constraint set S1, whose only differences
with respect to S0 are in constraints (2) and (9), both replaced by the single equation

vM2 = 0

due to the failure of machine M2.

The optimal IFS vector is v(1) = [10, 0, 5.88, 4.12, 5.88, 10, 5.88, 5.88, 0]T , i.e. the failure of machine
M2 forces the assembly machine M5 to work at a lesser rate than its MFS.

We compute

Ψ1 = {(π1, ∆π1), (π2, ∆π2), (π4,∆π4), (π6, ∆π6), (π8, ∆π8), (π10, ∆π10), (π12,∆π12), (γ11, ∆γ11), (γ12,∆γ12)},

where ∆π1 = 99.5, ∆π2 = 169.34, ∆π4 = ∆π8 = ∆π10 = ∆π12 = ∞, ∆π6 = 7.928, ∆γ11 = 11 and ∆γ12 = 14.
Then π6, i.e. the emptying of the continuous place p̄B2 = p6, is the next event to occur: this corresponds

to the filling of buffer B2. The length of the second macro–period is ∆(2) = ∆6 = 7.928 and τ2 = τ1 + ∆6 =
12.928.

k=2. At the beginning of this macro–period the state vector is equal to

x(2) = [987.72, 991.71, 0, 50, 50, 0, 0, 40, 0, 0, 0, 30, 89.28, 0, 0, 0, 0, 1, 0, 0, 1, 0, 12.928, 7.928, 0]T ,

i.e. all machines — excepted M2 — are operational; buffer B2 is full, and all other finite capacity buffers
are empty.

The timer set points keep the previous values, because no timed transition changes its enabling state.
The set of admissible IFS vectors is now defined by the new constraint set S2, that is obtained from S0

by replacing constraints (2) and (9) with
{

vM2 = 0 (2′′)
α2vM3 ≤ vM2 (9′′)

since machine M2 is down and buffer B2 is full (i.e. place pB2 is empty).
The optimal IFS vector is v(2) = [5, 0, 0, 5, 5, 10, 5, 0, 0]T . Note that, machine M3 cannot work, since

a fixed ratio of its processed parts should have been put into buffer B2, but this is not possible now, being
buffer B2 full.

We compute

Ψ2 = {(π1, ∆π1), (π2, ∆π2), (π4,∆π4), (π5, ∆π5), (π8, ∆π8), (π10, ∆π10), (π12,∆π12), (γ11, ∆γ11), (γ12,∆γ12)},

where ∆π1 = 197.41, ∆π2 = ∆π4 = ∆π5 = ∆π8 = ∆π10 = ∆π12 = ∞, ∆γ11 = 3.072 and ∆γ12 = 6.072.
Thus γ11, i.e. the firing of transition tF,1 = t11, is the next event to occur: this corresponds to the failure

of machine M1. The length of the third macro–period is ∆(3) = ∆γ11 = 3.072 and τ3 = τ2 + ∆γ11 .

k=3. At the beginning of the fourth macro–period the state vector is

x(3) = [985.54, 989.54, 0, 50, 50, 0, 0, 40, 0, 0, 0, 30, 135.91, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 11, 0]T ,

i.e. all machines — excepted M1 and M2 — are operational; buffer B2 is full while all other finite capacity
buffers are empty.

The enabled timed transitions are t10 = tR,1 and t12 = tR,2. The timer set point of transition t12 keeps
the previous value, while a timer set–point needs to be extracted for transition t10: assume ν̂10 = 10.

The set of admissible IFS vectors is now defined by the new constraint set S3, that is obtained from S0

by replacing constraints (1), (2) and (9) with the following constraints




vM1 = 0 (1′′)
vM2 = 0 (2′′)
α2vM3 ≤ vM2 (9′′)

since machine M1 and M2 are down and buffer B2 is full (i.e. place pB2 is empty).
The optimal IFS vector is v(3) = [0, 0, 0, 0, 0, 0, 0, 0, 0]T , that means that the whole production system

is completely blocked during this macro–period. This can be easily understood by taking into account that,
being M5 an assembly station that contemporary takes parts of class 1 and 2, it cannot work if the flow of
parts of class 1 is interrupted.

We compute

Ψ3 = {(π1, ∆π1), (π2, ∆π2), (π4,∆π4), (π5, ∆π5), (π8, ∆π8), (π10, ∆π10), (π12,∆π12), (γ10, ∆γ10), (γ12,∆γ12)},

where ∆π1 = ∆π2 = ∆π4 = ∆π5 = ∆π8 = ∆π10 = ∆π12 = ∞, ∆γ10 = 10 and ∆γ12 = 3.
Thus, γ12 is the next event to occur: this corresponds to the repairing of machine M2. The length of this

macro–period is ∆(4) = ∆γ12 = 3 and τ4 = τ3 + ∆γ12 = 19.

k=4. At the beginning of the fifth macro–period the state vector is

x(4) = [985.54, 989.54, 0, 50, 50, 0, 0, 40, 0, 0, 0, 30, 135.91, 0, 0, 0, 0, 0, 1, 1, 0, 4, 0, 0, 0]T .

The continuous marking mc(4) is equal to mc(3), since no continuous transition has fired during the previous
macro–period.

The set of admissible IFS vectors is now defined by the new constraint set S4, that is obtained from S0

by replacing constraints (1) and (9) with
{

vM1 = 0 (1′′′′)
α2vM3 ≤ vM2 (9′′′′)

since machine M1 is down and buffer B2 is full (i.e. place pB2 is empty).
The optimal IFS vector is v(4) = [0, 15, 15, 0, 4.5, 4.5, 4.5, 0, 15]T .

This evolution can also be described graphically as shown in figure 10, representing the most significant
state components: figures 10.(a)· · · (d) show the markings of the continuous places corresponding to non
empty buffers; figures 10.(d)· · · (h) show the markings of discrete places. The symbol ’o’ has been used to
represent the discrete numerical values computed in accordance to the linear state space model. Within each
macro–period the linearity of the curves is due to the first–order approximation.

[Insert figure 10 about here]

7 Conclusions

In this paper we have shown that First–Order Hybrid Petri Nets are well suited to represent manufactur-
ing systems, providing a unifying description of the discrete states of a system and of the corresponding
approximated fluid models.

The elementary subnets describing different components of a manufacturing system can be composed
in a bottom-up fashion to derive the overall model. The choice of the optimal machine production rates
corresponds to determining the instantaneous firing speed vector of continuous transitions. This has been
solved myopically using a linear programming approach.

A linear time-varying discrete-time state variable model has been used to describe the system behaviour,
thus providing the basis of an efficient simulation tool. There are two main issues that have not been
addressed in this paper and may be the object of future research.

Firstly, we plan to address the problem of performance optimization of manufacturing systems. There
are two aspects in this issue: optimization of the system performances by a suitable choice of the IFS of
continuous transitions, and optimization of the system design parameters, such as buffer capacity, maximal
machine production rates, machine reliability, etc. In (Balduzzi et al. 2000) these aspects have been partially
addressed within a macro–period using the sensitivity analysis methods that pertain to First–Order Hybrid
Petri Nets. We feel that it is necessary to also address them within a given horizon that may span over
several macro–periods.

Secondly, it is important to characterize relevant properties of manufacturing systems such as stability,
bottlenecks, deadlock, etc. These properties should be related to properties of FOHPN and suitable algo-
rithms should be derived to validate them. As an example, stability may be related to place boundedness or
absence of Zeno executions (i.e. in an given finite horizon only a finite number of macro–events may occur);
deadlock may be related to liveness, etc.

References

Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G., 1995, Modelling with Generalized
Stochastic Petri Nets, (Wiley Series in Parallel Computing, John Wiley and sons).

Alla, H., David, R., 1998, Continuous and Hybrid Petri Nets, Journal of Circuits, Systems and Computers,
8, 159–188.

Alla, H., David, R., 1998, A Modelling and Analysis Tool for Discrete Event Systems: Continuous Petri
Net, Performance Evaluation, 33, 175–199.

Amrah, A., Zerhouni, N., El Moudni, A., 1998, On the control of manufacturing lines modelled by controlled
continuous Petri nets, International Journal of Systems Science, 29, 127–137.

Balduzzi, F., Menga, G., 1998, A State Variable Model for the Fluid Approximation of Flexible Manufac-
turing Systems, Proceedings IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, pp. 1172–1778.

Balduzzi, F., Giua, A., Menga, G., 2000, First–Order Hybrid Petri Nets: a Model for Optimization and
Control, IEEE Trans. on Robotics and Automation, 16.

Balduzzi, F., Giua, A., Menga, G., Seatzu, C., 1999, A Linear State Variable Model for First–Order Hybrid
Petri Nets, Proceedings of the 14–th IFAC World Congress, Bejing, P.R. China, pp. 205–210.

Buzacott, J.A., Hanifin, L.E., 1978, Models of automatic transfer lines with inventory banks: A review and
comparison, AIIE Trans., 10, 197–207.

Caramanis, M., 1987, Production System Design: a Discrete Event Dynamic System and Generalized
Benders’ Decomposition Approach, International Journal of Production Research, 25, 1223–1234.

David, R., 1997, Modeling of Hybrid Systems Using Continuous and Hybrid Petri Nets, Proceedings of the
7–th Petri Nets and Performance Models, Saint Malo, France, pp. 47–58.

David, R., Alla, H., 2001, Réseaux de Petri Hybrides, in Modélisation et commande des systèmes dynamiques
hybrides, Hermés Ed. Paris, France.

Demongodin, I., Koussoulas, N.T., 1998, Differential Petri Nets: Representing Continuous Systems in a
Discrete–Event World, IEEE Transactions on Automatic Control, 43, 573–579.

Murata, T., 1989, Petri Nets: Properties, Analysis and Applications, Proceedings IEEE, 77, 541–580.

Phillis, Y.A., Kouikoglou, V.S., 1994, Discrete Event Modeling and Optimization of Unreliable Production
Lines with Random Rates, IEEE Trans. Robotics and Automation, 10, 153–159.

Sethi, S.P., Zhang, Q., 1994, Hierarchical Decision Making in Stochastic Manufacturing Systems, (Birkhäuser
Boston, Cambridge, MA).

Sharifnia, A., 1994, Stability and Performance od Distributed Production Control Methods based on
Continuous–Flow Models, IEEE Trans. Automatic Control, 39, 725–737.

Suri, R., Fu, B.R., 1994, On Using Continuous Flow Lines to Model Discrete Production Lines, J. Discrete
Event Dynamic Systems, 129–169.

Trivedi, K.S., Kulkarni, V.G., 1993, FSPNs: Fluid Stochastic Petri Nets, Lecture Notes in Computer Science,
691, M. Ajmone Marsan (ed.), Proc. 14th Int. Conf. on Applications and Theory of Petri Nets, (Springer-
Verlag, Heidelberg), 24–31.

List of figures captions

Figure 1: A First–Order Hybrid Petri Net (a) and its evolution (b).

Figure 2: A FOHPN with an empty cycle. (b) A FOHPN which may have no admissible mode of operation.

Figure 3: The model of a multi–class finite buffer.

Figure 4: The model of a zero–capacity buffer.

Figure 5: The production model of a multi–class machine.

Figure 6: Time–Dependent failures model.

Figure 7: Operation–Dependent failures model.

Figure 8: A simple job–shop.

Figure 9: FOHPN of job–shop in figure 8.

Figure 10: Marking evolution: (a) mp1
B0

, (b) mp2
B0

, (c) mpB2 , (d) mpB6 , (e) mpo,1 , (f) mpd,1 , (g) mpo,2 , (h) mpd,2 .

