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{giua,seatzu}@diee.unica.it

Abstract

In this paper we tackle the decidability of marking reachability for a hybrid formalism
based on Petri nets. The model we consider is the untimed version of First–Order Hybrid
Petri Nets: it combines a discrete Petri net and a continuous Petri net, the latter being a
fluid version of a usual discrete Petri net.

It is suggested that the decidability results should be pursued exploiting a hierarchy of
models as it has been done in the framework of Hybrid Automata. In this paper we define
the class of Single–Rate Hybrid Petri Nets: the continuous dynamics of these nets is such
that the vector of the marking derivatives of the continuous places is constant but for a
scalar factor. This class of nets can be seen as the counterpart of timed automata with
skewed clocks. We prove that the reachability problem for this class can be reduced to the
reachability problem of an equivalent discrete net and thus it is decidable.

1 Introduction

Modeling, analysis, and control of hybrid systems are topics presently attracting the attention
of ever more researchers. As a result, several models for hybrid systems, i.e., systems presenting
both time-driven and event-driven dynamics, have been conceived. A rich related literature
already exists, where one can find not only survey papers about the different hybrid models like
[9], but also special publications embracing any aspect relevant to hybrid systems [14, 10, 3, 4, 5].

In this framework, a well known hybrid modeling methodology is based on Hybrid Automata
(HA), which can be considered to be a generalization of the Timed Automata (TA) originally
presented by [1]. A HA consists of a classical automaton provided with a continuous state
that may continuously evolve in time with different dynamics or have discontinuous jumps at
the occurrence of a discrete event belonging to a predefined set of feasible events. Significant
results about the decidability and the complexity of special sub–classes of this model have been
presented by different authors [16, 19].

∗Published as: F. Balduzzi, A. Di Febbraro, A. Giua, C. Seatzu, ”Decidability Results in First-Order Hybrid
Petri Nets,” Discrete Event Dynamic Systems, Vol. 11, No. 1&2, pp. 41-57, 2001. The original publication is
available at www.springerlink.com.
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Petri nets (PN) were first introduced, and are still successfully used, to describe and analyze
discrete event systems [17]. Recently, much effort has been devoted to apply these models to
hybrid systems as well. A recent survey of the relevant literature can be found in [12].

The model considered in this paper was first presented by [8] and is inspired from the approach
of David and Alla [11]. In this model, called hereafter First–Order Hybrid Petri Nets (FOHPN),
places and transitions can be either continuous or discrete: continuous places hold fluid, discrete
places contain a non–negative integer number of tokens. Note that here, differently from [8],
it is assumed that no timing structure is associated to the firing of discrete transitions. This
is consistent with the definition of HA, where the variable “time” is only associated to the
continuous evolution.

The first part of the paper is devoted to a comparison between FOHPN and HA, highlighting
relationships which are worth commenting on. A major difference consists in the fact that the
discrete state space of a FOHPN, i.e., the set of discrete markings of the net, may be infinite,
while the discrete state space of a HA, i.e., the set of locations, must be finite. In all other
respects, however, a FOHPN is a special case of a HA, and any FOHPN with bounded discrete
places may also be modeled by a HA.

The recent results on HA have shown that a trade-off between modeling power and analytical
tractability is necessary. To this end, several special classes of HA have been studied: timed
automata, timed automata with skewed clocks, multirate and rectangular automata (initialized
or not) [19].

Since FOHPN have only recently been introduced, very little is known about their decidabil-
ity properties. This motivates the authors in defining and exploring a hierarchy of models of
increasing complexity.

In a preliminary work [6] the class of Unitary–Rate Hybrid Petri Nets (URHPN) was presented.
A URHPN consists of a FOHPN with a single continuous transition whose firing increases
the marking of all continuous places with the same rate. For this class, that can be seen as
the FOHPN counterpart of a timed automaton, it was proven that the marking reachability
problem is decidable. This result is not surprising, because the reachability problem is known
to be decidable for TA [1].

In this paper we extend this result, introducing a new class of FOHPN named Single–Rate Hybrid
Petri Nets (SRHPN) that can be seen as the FOHPN counterpart of a timed automaton with
skewed clocks. This class, that strictly includes the class of URHPN, consists of a FOHPN with
a single continuous transition whose firing speed v is constant, and whose firing may increase
the marking of different continuous places with different rates. Thus, the continuous dynamic
is such that the marking of each continuous place increases with a single constant rate that
depends on the place. Note however that all the results presented in this paper also hold if the
firing speed of the continuous transition is not constant but may take value in a real interval,
i.e., v ∈ [V ′, V ]. In this case one has a single–rate evolution but for a scalar factor that may
vary in time.

We have already remarked that in general FOHPN are a less powerful model than HA. However,
when we pose structural restrictions to the two formalisms and compare corresponding subclass-
es, the situation changes. As an example, when comparing SRHPN and TA with skewed clocks,
it is clear that the two models are significantly different and neither one can be seen as a special
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case of the other one. TA can model “reset” of the continuous state, while SRHPN can model
“jumps of constant magnitude” of the continuous state and may also have an infinite discrete
state space. It will be proved that the reachability problem for SRHPN can be reduced to the
reachability problem of an equivalent discrete PN and thus it is decidable. Note that the com-
plexity of this problem is usually high [20] unless the net considered belong to special classes.
Nevertheless, this result is interesting, because the reachability problem for a TA with skewed
clocks is known to be undecidable [15].

The paper is structured as follows. Section 2 presents the formal definition of hybrid Petri nets
and the rules governing their evolution. In Section 3 the definition of hybrid automata is given.
In Section 4 the relations between hybrid automata and hybrid Petri nets are explored. In
Section 5 the considered special class of hybrid Petri nets, called SRHPN, is defined and it is
proved that for this net the reachability problem is decidable.

2 First–Order Hybrid Petri Nets

The Petri net formalism used in this paper can be seen as the “untimed” version of the model
presented in [8], in the sense that no timing structure is associated to the firing of discrete
transitions. For a more comprehensive introduction to place/transition Petri nets see [17].

An (untimed) First–Order Hybrid Petri Net (FOHPN) is a structure N = (P, T, Pre, Post, C).

The set of places P = Pd ∪ Pc is partitioned into a set of discrete places Pd (represented as
circles) and a set of continuous places Pc (represented as double circles). The cardinality of P ,
Pd and Pc is denoted n, nd and nc.

The set of transitions T = Td ∪ Tc is partitioned into a set of discrete transitions Td and a set
of continuous transitions Tc (represented as double boxes). The cardinality of T , Td and Tc is
denoted q, qd and qc.

The pre- and post-incidence functions that specify the arcs are (here R+
0 = R+∪{0}): Pre, Post :

Pd × T → N, Pc × T → R+
0 .. It is required (well-formed nets) that for all t ∈ Tc and for all

p ∈ Pd, Pre(p, t) = Post(p, t).

The function C : Tc → R+
0 × R+

∞ specifies the firing speeds associated to continuous transitions
(here R+

∞ = R+∪{∞}). For any continuous transition tj ∈ Tc let C(tj) = (V ′
j , Vj), with V ′

j ≤ Vj .
Here V ′

j represents the minimum firing speed (mfs) and Vj represents the maximum firing speed
(MFS).

The preset (postset) of transition t is denoted as •t (t•) and its restriction to continuous or
discrete places as (d)t = •t ∩ Pd or (c)t = •t ∩ Pc. Similar notation may be used for presets and
postsets of places. The incidence matrix of the net is defined as C(p, t) = Post(p, t)−Pre(p, t).
The restriction of C to PX and TY (X,Y ∈ {c, d}) is denoted CXY . Note that by the well-
formedness hypothesis Cdc = 0: this ensures that the firing of a continuous transition cannot
modify the discrete marking of the net.

A marking m : Pd → N, Pc → R+
0 is a function that assigns to each discrete place a non-negative

number of tokens, represented by black dots and assigns to each continuous place a fluid volume;
mp denotes the marking of place p. The value of a marking at time τ is denoted m(τ). The
restriction of m to Pd and Pc are denoted with md and mc, respectively. An FOHPN system
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(N,m(τ0)) is an FOHPN N with an initial marking m(τ0).

The enabling of a discrete transition depends on the marking of all its input places, both discrete
and continuous.
Definition 1. Let (N,m) be an FOHPN system. A discrete transition t is enabled at m if for
all pi ∈ •t, mi ≥ Pre(pi, t). �

A continuous transition is enabled only by the marking of its input discrete places. The marking
of its input continuous places, however, is used to distinguish between strongly and weakly
enabling.
Definition 2. Let (N,m) be an FOHPN system. A continuous transition t is enabled at m if
for all pi ∈ (d)t, mi ≥ Pre(pi, t).

An enabled transition t ∈ Tc is:

• strongly enabled at m if for all places pi ∈ (c)t, mi > 0;

• weakly enabled at m if for some pi ∈ (c)t, mi = 0. �

In the following the hybrid dynamics of an FOHPN is described. The time–driven behavior
associated to the firing of continuous transitions is considered first, and then the event–driven
behavior associated to the firing of discrete transitions.

The instantaneous firing speed (IFS) at time τ of a transition tj ∈ Tc is denoted vj(τ). The
equation which governs the evolution in time of the marking of a place pi ∈ Pc can be written
as

ṁi(τ) =
∑
tj∈Tc

C(pi, tj)vj(τ) (1)

where v(τ) = [v1(τ), . . . , vnc(τ)]
T is the IFS vector at time τ . Indeed Equation 1 holds assuming

that at time τ no discrete transition is fired and that all speeds vj(τ) are continuous in τ .

The enabling state of a continuous transition tj defines its admissible IFS vj .

• If tj is not enabled then vj = 0.

• If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V ′
j , Vj ].

• If tj is weakly enabled, then it may fire with any firing speed vj ∈ [V ′
j , V j ], where V j ≤ Vj .

The value of V j depends on the flow entering the empty input continuous places of tj ,
since tj cannot remove more fluid from any empty place than the quantity that enters due
to the firing of other transitions.

It is possible now to characterize the set of all admissible IFS vectors.
Definition 3. (admissible IFS vectors)
Let (N,m) be an FOHPN system. Let TE(m) ⊂ Tc (TN (m) ⊂ Tc) be the subset of continuous
transitions enabled (not enabled) at m, and PE = {pi ∈ Pc | mi = 0} be the subset of empty
continuous places. Any admissible IFS vector v at m is a feasible solution of the following linear
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set: 
(a) Vj − vj ≥ 0 ∀tj ∈ TE(m)
(b) vj − V ′

j ≥ 0 ∀tj ∈ TE(m)

(c) vj = 0 ∀tj ∈ TN (m)
(d)

∑
tj∈TE

C(p, tj)vj ≥ 0 ∀p ∈ PE(m)

(2)

The set of all feasible solutions is denoted S(N,m). �

Constraints of the form (2.a), (2.b), and (2.c) follow from the firing rules of continuous transi-
tions. Constraints of the form (2.d) follow from (1), because if a continuous place is empty then
its fluid content cannot decrease.

Note that the set S is a function of the marking of the net. Thus asm changes it may vary as well.
In particular it changes at the occurrence of the following macro–events: (a) a discrete transition
fires, thus changing the discrete marking and enabling/disabling a continuous transition; (b) a
continuous place becomes empty, thus changing the enabling state of a continuous transition
from strong to weak.

Let τk and τk+1 be the occurrence times of two consecutive macro–events of this kind; it is
assumed that within the interval of time [τk, τk+1) the IFS vector is constant and denoted as
v(τk). Then the continuous behavior of an FOHPN for τ ∈ [τk, τk+1) is described by{

mc(τ) = mc(τk) +Cccv(τk)(τ − τk)
md(τ) = md(τk).

(3)

The firing of a discrete transition tj at m(τ) yields the marking{
mc(τ) = mc(τ−) +Ccdσ(τ)
md(τ) = md(τ−) +Cddσ(τ)

(4)

where σ(τ) is the firing count vector associated to the firing of transition tj .

2.1 Firing sequence and reachability

Now, some definitions that will be useful in the following are provided.
Definition 4. (Event Step) Let us consider a FOHPN system (N,m). If t ∈ Td is enabled at
m, t may fire. The firing of t determines a new marking m̃ = m+ Post(·, t)− Pre(·, t) and we
write m[t⟩m̃. �

We can use a similar notation for the marking variation due to the firing of continuous transitions.
Definition 5. (Time Step) Let (N,m) be a FOHPN system and let v ∈ S(N,m) be the IFS
vector constant within a time step of length τ̄ ∈ R+. The marking m̃ reached at the end of the
step is 

m̃d = md

m̃c =

∫ τ

0
Cccv(τ)dτ +mc ≥ 0

and we write m[τ⟩m̃. �
Definition 6. Let (N,m) be a FOHPN system. A firing sequence σ = α1 · · ·αk ∈ (Td ∪ R+)∗

is enabled from a marking m if m[α1⟩m1[α2⟩ m2 · · · [αk⟩m̃ holds. To denote that the firing of
σ from m determines the marking m̃ we write m[σ⟩m̃. �
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3 Hybrid Automata

A hybrid automaton [18, 19] is a structure H = (L, act, inv,E) defined as follows.

• L is a finite set of locations.

• act : L → Inclusions is a function that associates to each location l ∈ L a differential
inclusion of the form ẋ ∈ actl(x) ⊆ Rn where actl(x) is a set-valued map; if actl(x) is a
singleton then it is a differential equation.

A solution of a differential inclusion with initial condition x0 ∈ Rn is any differentiable
function ϕ(τ), where ϕ : R → Rn such that ϕ(0) = x0 and ϕ̇(τ) ∈ actl(ϕ(τ)).

• inv : L → Invariants is a function that associates to each location l ∈ L an invariant
invl ⊂ Rn.

An invariant function is x ∈ invl. The invariant function constrains the behaviour of the
automaton state during time steps within a given subset of Rn.

• E ⊂ L × Guards × Jump × L is the set of edges. An edge e = (l, g, j, l′) ⊂ E is an edge
from location l to l′ with guard g and jump relation j.

A guard is g ⊂ Rn. An edge is enabled when the state x ∈ g.

A jump relation is j ⊂ Rn × Rn. During the jump, x is set to x′ provided (x,x′) ∈ j.
When j is the identity relation, the continuous state does not change.

The state of the hybrid automaton is the pair (l,x) where l ∈ L is the discrete location, and
x ∈ Rn is the continuous state. The hybrid automaton starts from some initial state (l0,x0).
The trajectory evolves with the location remaining constant and the continuous state x evolving
within the invariant function at that location, and its first derivative remains within the differ-
ential inclusion at that location. When the continuous state satisfies the guard of an edge from
location l to location l′, a jump can be made to location l′. During the jump, the continuous
state may get initialized to a new value x′. The new state is the pair (l′,x′). The continuous
state x′ now moves within the invariant function with the new differential inclusion, followed
some time later by another jump, and so on.

In this paper the interest is focused on two special classes of Hybrid Automata, the Timed
Automata and the Timed Automata with Skewed Clocks. Let us recall the definition of a rectangle,
before defining them.
Definition 7. An n-dimensional rectangle is a set of the form r = [l1, u1] × · · · × [ln, un] with
li, ui ∈ Z±∞. The i-th component of r is ri = [li, ui]. The set of all n-dimensional rectangles is
Rectn. �
Definition 8. An n-dimensional timed automaton R = (L, act, E) is an hybrid automaton in
which the set Inclusions contains the single element 1 ∈ Rn, i.e., ẋi = 1 for each i at every
control location; Guard = Rectn; Jump = {j | j = j1 × · · · × jn} where ji = [li, ui] or ji = id.
The relation [li, ui] = {(x,x′) | x′ ∈ [li, ui]} and id is the identity relation. �

Since the differential equation is fixed at each location in the timed automaton, we denote the
timed automaton by T = (L,E).
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Definition 9. An n-dimensional timed automaton with skewed clocks R = (L, act, E) is an
hybrid automaton in which the set Inclusions contains the single element v ∈ (R+)n, i.e., ẋi = vi
for each i at every location; Guard = Rectn; Jump = {j | j = j1 × · · · × jn where ji =
[li, ui] or ji = id}. Here we consider the relation [li, ui] = {(x,x′) | x′ ∈ [li, ui]} and id is the
identity relation. �

Note that, following [1, 19], we are assuming that the behaviour of such classes of HA is not
constrained by any invariant function.

4 Hybrid Petri nets and hybrid automata

In this section the relations between hybrid automata and hybrid Petri nets are explored. The
table below summarizes the differences existing between the two hybrid models. The first three
rows deal with the state definition; the 4-th and the 5-th rows with the continuous dynamics,
and the last two rows with the discrete evolution associated to the occurrence of events in hybrid
automata and to the firing of discrete transitions in hybrid Petri nets.

FOHPN HA

discrete state md ∈ Nnd l ∈ L
continuous state mc ∈ Rnc x ∈ Rn

state (md,mc) ∈ Nnd × Rnc (l,x) ∈ L× Rn

activity ṁc ∈ {Cccv |v ∈ S(N,m) } ẋ ∈ actl(x)

invariant mc ∈ (R+
0 )

nc x ∈ invl

guard {m |m ≥ Pre(·, t)} g ⊂ Rn

jump {(mc, m̃c) | m̃c = mc +Ccd(·, t)} j ⊂ Rn × Rn

In both models the state consists of a discrete part (location, discrete marking) and a continuous
part (continuous state, continuous marking). In the hybrid automaton only the location l ∈ L
is represented in the transition structure, while the continuous state x ∈ Rn is given using an
algebraic formalism. In the FOHPN the net marking m = (md,mc) ∈ Nnd × (R+

0 )
nc represents

with a single formalism both discrete and continuous state. Another important difference is
the fact that a Petri net may have an infinite number of discrete markings (i.e., the discrete
state space may be infinite), while the locations of an automaton may only take values within
a finite set L. This is the hybrid equivalent of the difference between finite state automata and
place/transition Petri nets. We remark that it may be possible to define a HA with a set of
locations L = N, but in the general case this model cannot be finitely described, lacking any
structure: thus L is usually defined as a finite set.

The activity function which constrains ẋ ∈ actl(x) finds its counterpart in hybrid Petri nets. In
fact, the continuous marking of a FOHPN varies with ṁc = Cccv, where v ∈ S(N,m) is the IFS
at m. Clearly, in the case of FOHPN this set has a special structure: given the characterization
of eq. (2) one can see that it is a linear convex set and thus a FOHPN is similar to the special
sub–class linear HA [2]).

Similarly, while in a hybrid automaton the continuous state at each location l may be constrained
by an arbitrary invariant function invl, in a hybrid Petri net the only constraint to continuous
marking is that it must be non–negative and it is the same for all discrete markings. Note,
however, that this invariant function is not explicitly given in the model, i.e., in the definition of
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FOHPN we did not mention any constraint on the continuous markings. This constraint follows
from the definition of initial marking (that must be non negative) and from the fact that the
set of admissible IFS vectors is defined so that for each empty continuous place the output flow
can never exceed the input flow. Finally, we also observe that while no upper bound of the
continuous marking — this is an invariant function that may be useful in many cases — can
be directly imposed, it may be possible to bound a continuous place adding to the net a new
complementary continuous place, a technique also used in discrete nets.

The guard g ⊂ Rn associated to an edge of a HA corresponds to the enabling condition m ≥
Pre(·, t) associated to a discrete transition t of a FOHPN. Note first of all that while each
edge of a HA represents a single event, in a FOHPN a single transition may represent different
events. Thus, the fact that the transition enabling depends on the discrete marking md is
used to specify that a given transition corresponds to an event that may be enabled only by a
subset of locations. On the other hand, the fact that the transition enabling depends also on
the continuous marking mc is the FOHPN counterpart of the guard g of an hybrid automaton.
Note also that the enabling of a FOHPN is a guard with special structure: it is a ”right closed
set”, i.e., if (md,mc) ∈ g, and m̃c ≥ mc =⇒ (md, m̃c) ∈ g.

Finally, in hybrid automata the jump relation j ⊂ Rn × Rn defines for each edge the updated
value that the continuous state assumes when the location varies, i.e., when an event occurs.
The updated value may always be the same each time the event occurs, may depend on the
value that the continuous state has before the event occurs, or may also be non deterministic,
in the sense that the relation j may be one–to–many. In a FOHPN, on the other hand, the
firing of a discrete transition t produces a constant variation on the continuous marking, i.e.,
if the continuous marking before the transition firing is any vector mc the updated marking
m̃c = mc +Ccd(·, t) will differ from it by an additive quantity Ccd(·, t). Thus, while the jump
relation of a HA may be used to associate to an event firing a variable variation of the continuous
state, a FOHPN can only produce constant discrete marking variations. In particular, in FOHPN
the reset of the continuous marking is not possible. Furthermore, we remark that in FOHPN
each transition firing updates not only the continuous marking but the discrete marking as well.
The discrete marking updating is used to specify the updated discrete state (location) reached
after the occurrence of the event from a given discrete marking (location).

To summarize, FOHPN can be seen as a restriction of HA with the only exception that a FOHPN
may have an infinite number of locations. Note, however, that the generality of HA has as a
consequence the fact that most properties are undecidable unless very strong restrictions are
added to the basic model. When we pose these restrictions on HA to obtain special sub–classes,
and compare these classes with the corresponding sub–classes of FOHPN, the two formalisms
are rather different and neither one can be seen as special case of the other one.

The main feature that any FOHPN lacks with respect to an HA is the fact that the content
of a continuous place cannot be reset to zero. We remark, however, that the possibility of
resetting the contents of continuous places using flush–out arcs is currently being investigated
for particular hybrid Petri net models [13].
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p1
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(3,3)
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t1
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t3

Figure 1: A Single–Rate Hybrid Petri Net.

5 Single–Rate Hybrid Petri Nets

In this section we define the special class of Single–Rate FOHPN that can be seen as the net
counterpart of timed automata with skewed clocks. It consists of a FOHPN where the continuous
dynamics is such that the marking of each continuous place constantly increases with an integer
slope.
Definition 10. A Single–Rate Hybrid Petri Net (SRHPN) is a FOHPN where:

• Tc = {tc},

• •tc = ∅,

• C(tc) = (v, v) where v ∈ N+,

• ∀i | pi ∈ Pc : Post(pi, tc) = wi ∈ N+ and {wi} is a prime set, i.e., the wi’s do not have a
factor common to all of them,

• Pre, Post ∈ Nn×q. �

Thus a Single–Rate Hybrid Petri Net has a single continuous transition tc that is always enabled
— because it has no input places — and whose firing speed is constant. The marking of all
continuous places increases with constant rate during a time step. Discontinuous variations of
continuous markings may only follow the firing of discrete transitions.

The special structure of this net is such that at each step S(N,m) = {v} is a singleton set and
this set is always the same regardless of m. It is important to note that all results presented
in this paper still hold if we consider C(tc) = (V ′, V ). In this case the set of admissible IFSs
S(N,m) is a segment and the marking of all continuous places may increase with different rates
during a time step but the rates associated to different places always have the same ratio.

We have assumed without loss of generality that the set of all wi — the weights of the arcs from
the continuous transition tc to the continuous places pi — is a prime set. In fact, if this is not the
case, we can always consider an equivalent net N ′ with the same structure as the original one but
with different values of both v and wi. The new firing speed would be v′ = v ·GCD(w1, · · · , wnc)
and the new weights would be w′

i = wi/GCD(w1, · · · , wnc), where GCD denotes the greatest
common divisor.

Furthermore, we assume that all arcs have integer weights. Such an assumption has been
introduced for simplicity. In fact, whenever Pre, Post ∈ Qn×q all the weights could be multiplied
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m0=(0, 0.3, 0, 1, 0)  m1=(1, 0.8, 0, 1, 0)

τ=0.1667

m1’=(0, 0.8, 1, 0, 0)

τ=0.0667

 m2=(0.4, 1, 1, 0, 0)

m2’=(0.4, 0, 0, 0, 1)
τ=0.1

m3=( 0.4, 0, 0, 0, 1)

m3’=(0, 0.3, 0, 1, 0) m4=(1, 0.8, 0, 1, 0)

τ=0.1667

t1

t2

t3

Figure 2: The reachability graph of the SRHPN in figure 1.

by the least common multiple of the denominators of all the constants appearing in Pre, Post
to get a new hybrid net that is isomorphic with a new one where Pre, Post ∈ Nn×q.

The evolution of SRHPN can be related to that of timed HA with skewed clocks. In fact, the
continuous evolution (due to the firing of the transition tc) is such that each continuous variable
mpi , i.e., the marking of each continuous place pi, has a constant derivative equal to vwi during
a time interval in which no discrete transition fires. Thus the derivative of each continuous
variable is constant, but non necessarily equal to 1. Furthermore, different variables can have
different derivatives.
Remark 11. Note that the class of Unitary–Rate Hybrid Petri Nets, formally defined by the
authors in [6], are a particular case of SRHPN where the weights of the arcs from continuous
transition to continuous places are all 1’s.
Example 12. The FOHPN in figure 1 is a SRHPN. It represents a production system with two
continuous flows of parts (type 1 and type 2) that are put into two buffers (places p1 and p2).
The batch processing of parts, represented by the cycle of discrete transitions, requires first a
unit of part type 1, then a unit of part type 2 and then again a unit of part type 1.

Its reachability graph is shown in figure 2 under the assumption that m0 = (0, 0.3, 0, 1, 0)T . It
has been drawn in accordance with the following rule. The firing of the continuous transition is
represented only if it produces a variation on the enabling condition of the net. Note however
that the continuous transition is always enabled and always fires with a constant rope equal to
3. Therefore, there exists a time–step enabled from all right-most markings of each row of the
graph: such a time–step of length τ adds a marking quantity 2τ to mp1 and a marking quantity
τ to mp1 . �

Now, we prove that the reachability problem for SRHPN is decidable.

Let us first define an equivalence relation on (R+
0 )

m.
Definition 13. Given a vector w = (w1, · · · , wm)T ∈ (N+)m where {wi} is a prime set, we say
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that a vector x ∈ (R+
0 )

m is w-consistent with y ∈ (R+
0 )

m if:

∃ b ∈ [0, 1) : ∀i = 1, · · · ,m, ⟨yi⟩ = ⟨xi + wi b⟩

where ⟨·⟩ denotes the fractional part and we write x ∼w y. The equivalence classes of this
relation are denoted [x]w. �
Example 14. Let x = (0, 0.3)T and w = (2, 1)T . In figure 3 the set of vectors w-consistent
with x are represented in the plane (x1, x2) and lie on a family of parallel lines. All lines are
equally spaced and are characterized by a constant slope equal to 2. �
Definition 15. Given a vector x ∈ (R+

0 )
m and a vector y ∈ [x]w, we define the vector

γ(x,y,w) = x+ τ̂w where

τ̂ = min{τ ≥ 0 | ∀i = 1, · · · ,m, ⟨xi + τwi⟩ = ⟨yi⟩}

and we call γ the w–cover of x with the same fractional part of y. Note that τ̂ ∈ [0, 1) because
{wi} is a prime set. �

In plain words, if we consider a point x and if we move along the direction corresponding to
the vector w — i.e., we move along the unique line in [x]w passing through x — the w-cover
γ(x,y,w) is the first point we reach with the same fractional part of y.

Now, let us provide a constructive algorithm to determine the numerical value of τ̂ and thus the
vector γ.
Algorithm 16. Observe that, since τ̂ ∈ [0, 1), the integer part of each component of γ may
differ from the integer part of the corresponding component of x by a quantity that belongs to
the set:

Ii =
{

{0, 1, · · · , wi − 1} if ⟨xi⟩ ≤ ⟨yi⟩
{1, 2, · · · , wi} otherwise.

Compute gi = ⟨γi⟩ − ⟨xi⟩ ≡ ⟨yi⟩ − ⟨xi⟩ (this is a known quantity) and define ki = ⌊γi⌋ − ⌊xi⌋.
Thus we need to solve for τ ∈ [0, 1) the following system of equations

γi = xi + τwi, (i = 1, · · · ,m),

that can be rewritten as
ki + gi = τwi, (i = 1, · · · ,m),

where the unknown terms are τ ∈ [0, 1) and ki ∈ Ii.

If there exists one value of τ̂ ∈ [0, 1) such that ⟨x + τ̂w⟩ = ⟨y⟩, then this value is unique and
can be computed as follows.

for all i = 1, 2, · · · ,m
begin

Ji := ∅;

for all ki ∈ Ii, Ji := Ji ∪ {ki + gi
wi

};
end

τ̂ := ∩m
i=1Ji;

γ := x+ τ̂w.

Now, let us provide a necessary condition for a marking m̃ to be reachable.

11
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Figure 3: The equivalence class [(0, 0.3)]w, w = (2, 1)T .

Lemma 17. Let (N,m) be a SRHPN system with w = Ccc, i.e., Post(pi, tc) = wi for i =
1, · · · , nc. If m̃ ∈ R(N,m) then m̃c ∈ [mc]w.

Proof. If m̃ ∈ R(N,m), then there exists a firing sequence σ = α1, α2, · · · , αk such that

m[α1⟩m1[α2⟩m2 · · · [αk⟩m̃.

It is enough to show that mc
i ∈ [mc

i−1]w and the result follows from the transitivity of the
equivalence relation.

(Event step) Since all the arc weights are integers, the firing of a discrete transition produces
no variation on the fractional parts of a continuous marking. Thus, if mi−1[αi⟩mi and αi ∈ Td,
then ⟨mi−1⟩ = ⟨mi⟩ and mc

i ∈ [mc
i−1]w.

(Time step) The firing of the continuous transition may produce a variation on the fractional
parts of the continuous markings. Unless w = 1, the variations of different marking components
have different magnitude. However, their ratio is always the same since the arc weights are
constant. Thus, if αi = τ ∈ R+, then mc

i =
∫ τ
0 Cccv(τ)dτ + mc

i−1. However, v(τ) is constant
and equal to v and Ccc = (w1, · · · , wnc)

T by hypothesis, hence
mi,p1 = w1 v τ +mi−1,p1
...
mi,pnc

= wnc v τ +mi−1,pnc
.

Now, let b = ⟨vτ⟩, then ∀p ∈ Pc, ⟨mi,p⟩ = ⟨mi−1,p + wi b⟩. Thus, mc
i ∈ [mc

i−1]w. This completes
the proof.

Example 18. Let us consider the SRHPN system (N,m0) in example 12 with initial marking
m0 = (0, 0.3, 0, 1, 0)T . In figure 4 the set of all continuous markings reachable from m0 is
represented. Obviously, this is a subset of [mc

0]w.

Lines have been distinguished as continuous, dash and dash–dot lines. Continuous line (1)
corresponds to the set of continuous markings reachable when the discrete marking is equal to
md = (1, 0, 0)T , dash line (2) corresponds to the set of continuous markings reachable when
the discrete marking is equal to md = (0, 1, 0)T , and dash-dot line (3) corresponds to the set

12
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Figure 4: The set of continuous markings for the SRHP in example 18.

of continuous markings reachable when the discrete marking is equal to md = (0, 0, 1)T . The
discrete marking changes every times one of the discrete transitions fires and discrete transitions
can only fire alternatively.

Let us examine all possible evolutions of the net when the initial marking is m0. During the
first 0.1667 time instants, no discrete transition is enabled and tc fires until the marking moving
along line (1) reaches m1 = (1, 0.8, 0, 1, 0)T . Now t1 becomes enabled and may fire changing
the marking to m′

1. Note however that t1 does not necessarily fire as soon as m1 is reached; it
may fire from any other point on line (1) greater than m1 thus reaching a corresponding point
on line (2). For all markings on line (2) smaller than m2 no discrete transition is enabled and
only the continuous transition fires until m2 is reached. Now t2 becomes enabled and may fire
changing the marking to m′

2. Note however that t2 is not required to fire as soon as m2 is
reached; it may fire from any point on line (2) greater than m2 thus reaching a corresponding
point on line (3). No discrete transition is enabled until m3 is reached, when t3 may fire thus
reaching m′

3 ≡ m0 on line (1), i.e., the system cames back to the initial marking.

We also observe that the markings m0,m1,m
′
1, etc. that characterize the net evolution corre-

spond to the markings in the reachability graph in figure 2. �

Now, let us define a transformation on a hybrid Petri net.
Definition 19. Let N = (P, T, Pre, Post, C) be a FOHPN. We define discretized PN associated
to N the P/T net ⌊N⌋ = (P ′, T ′, P re′, Post′) with:

– P ′ = P , i.e., ⌊N⌋ has as many places as N , but they are all discrete,

– T ′ = T , i.e., ⌊N⌋ has as many transitions as N , but they are all discrete,

– Pre′(p, t) = ⌊Pre(p, t)⌋,

– Post′(p, t) = ⌊Post(p, t)⌋,

where ⌊·⌋ denotes the integer part. �
Example 20. In figure 5 the discretized PN corresponding to the FOHPN in figure 1 is shown.
�
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The following proposition shows that the discretized net can be used to determine if a marking
m is reachable from m0 if the two makings have the same fractional part.
Proposition 21. Let (N,m0) be a SRHPN system and consider the discrete PN system (⌊N⌋, ⌊m0⌋)
associated to N . Given any marking m with ⟨m⟩ = ⟨m0⟩, it holds m ∈ R(N,m0) iff ⌊m⌋ ∈
R(⌊N⌋, ⌊m0⌋).

Proof. Let us denote t the discrete transition of ⌊N⌋ corresponding to the continuous transition
tc in N and let v be the constant firing speed associated to tc.

First, let us observe that m ∈ R(N,m0) iff ∃σ such that m0[σ⟩m. Since the continuous
transition in (N,m0) is always enabled, this implies that ∃ σ̃ = στσT such that m0[σ̃⟩m, where
στ ∈ R+

0 and σT ∈ T ∗
d , i.e., if m is reachable, then it may also be reached by a “normalized

sequence” where a single time step occurs first, and all the event steps occur only at the end.

Since ⟨m⟩ = ⟨m0⟩, then m is reached from m0 by firing tc for a time interval whose length is a
multiple of 1/v, i.e., στ = k/v.

Finally, the result follows from the fact that the firing of each discrete transition in N finds its
counterpart in ⌊N⌋ and the firing of tc for a time interval of length 1/v corresponds to the firing
of t in ⌊N⌋.

Now, we provide a necessary and sufficient condition for a marking m in a SRHPN to be
reachable.
Theorem 22. Let (N,m0) be a SRHPN system with Post(pi, tc) = wi, for i = 1, · · · , nc. Then,
m ∈ R(N,m0) iff mc ∈ [mc

0]w and ⌊m⌋ ∈ R(⌊N⌋, m̃) where{
m̃c = ⌊γ(mc

0,m
c,w)⌋

m̃d = md
0,

and ⌊N⌋ is the discretized net associated to N .

Proof. As in the proof of the previous proposition, we observe that m ∈ R(N,m0) iff there
exists a normalized sequence σ = στσT such that m0[σ⟩m.

The firing sequence στ can be written as στ = σ′
τσ

′′
τ , where σ′

τ ∈ [0, 1/v), and σ′′
τ = k/v, with

k ∈ N+
0 . Therefore, m0[σ

′
τ ⟩m′

0[σ
′′
τ ⟩m′[σT ⟩m. Obviously, ⟨m′

0⟩ = ⟨m′⟩ = ⟨m⟩.

We further observe that the difference in the fractional part betweenm0 andm is due to the time
step σ′

τ , that has a length less than 1/v and whose firing yields m′
0 from m0. Moreover m′

0 =∫ σ′
τ

0 vCccdτ +m0 = vσ′
τCcc +m0 = bw +m0, where b = vσ′

τ ∈ [0, 1) and w = Ccc. Therefore,
m′c

0 is exactly the w-cover of mc
0 with the same fractional part of mc, i.e., m′c

0 = γ(mc
0,m

c,w)
and the integer part of m′

0 is exactly the marking m̃ defined in the theorem statement.

Finally, by virtue of proposition 21, since m′
0 and m have the same fractional part, then m ∈

R(N,m′
0) if and only if ⌊m⌋ ∈ R(⌊N⌋, ⌊m′

0⌋).
Example 23. Let us consider the SRHPN system (N,m0) in example 12 with initial mark-
ing m0 = (1.3, 0.5, 0, 1, 0)T . Here w = (2, 1)T . We want to determine whether m =
(5.1, 1.9, 0, 0, 1)T ∈ R(N,m0) by applying theorem 22.

Clearly mc ∈ [mc
0]w because if we take b = 0.4, then ∀pi ∈ Pc, ⟨mpi⟩ = ⟨m0,pi + bwi⟩.
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Figure 5: The discretized PN corresponding to the SRHPN in figure 1.

By applying algorithm 16, we compute the marking γ(mc
0,m

c,w) = (2.1, 0.9)T and we define
m̃ = ⌊(2.1, 0.9, 0, 1, 0)T ⌋ with m̃c = ⌊γ(mc

0, m
c,w)⌋ and m̃d = md

0. If we consider the dis-
cretized PN in figure 5 we see that ⌊m⌋ = (5, 1, 0, 0, 1)T is reachable from m̃ = (2, 0, 0, 1, 0)T .
In fact, the firing sequence, say, σ = t1 t t t2 is such that m̃ [σ⟩ ⌊m⌋. Therefore, we can conclude
that m ∈ R(N,m0). �

By virtue of the above theorem 22, the results on the reachability of discrete Petri nets can be
extended to SRHPN, thus proving the validity of the following corollary.
Corollary 24. The reachability problem is decidable for SRHPN.

Proof. Follows from theorem 22 and from the fact that the reachability problem is decidable for
discrete PN [20].

6 Conclusions

Although Hybrid Automata can be seen under most aspects as a generalization of First–Order
Hybrid Petri Nets, restricted classes of HA and FOHPN are different models that describe
different classes of hybrid systems.

As an example, we have studied in this paper Single–Rate Hybrid Petri Nets, a model that
can be seen as the Petri net counterpart of a Timed Automaton with skewed clocks. The
reachability problem for a hybrid net in this class has been reduced to the reachability problem
of a corresponding discrete Petri net, and thus it is decidable.

To study this class of nets, in one of the examples we have informally used the reachability
graph analysis that has been developed for discrete nets. It may be interesting to find out if
a technique based on the reachability/coverability graph may always be applied to this hybrid
model and which properties can be studied with it.

So far, no results on the decidability properties of the general FOHPNmodel are known. Towards
the goal of proving/disproving this general result, we feel it is worth defining and exploring sub–
classes of FOHPN of increasing complexity. These structures may extend the classes of models
for which important properties can be shown to be decidable and can be studied with standard
tools of discrete Petri nets.
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