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First-Order Hybrid Petri Nets: A Model for
Optimization and Control

Fabio Balduzzi, Member, IEEE, Alessandro Giua, and Giuseppe Menga

Abstract—We consider in this paper first-order hybrid Petri
Nets, a model that consists of continuous places holding fluid, dis-
crete places containing a nonnegative integer number of tokens,
and transitions, either discrete or continuous. We set up a linear
algebraic formalism to study the first-order continuous behavior
of this model and show how its control can be framed as a conflict
resolution policy that aims at optimizing a given objective function.
The use of linear algebra leads to sensitivity analysis that allows
one to study of how changes in the structure of the model influence
the optimal behavior. As an example of application, we show how
the proposed formalism can be applied to flexible manufacturing
systems with arbitrary layout and different classes of products.

Index Terms—Flexible manufacturing systems, hybrid Petri
nets, optimization, performance evaluation, sensitivity analysis.

I. INTRODUCTION

A. Motivation

T HE CONTROL of hybrid systems, i.e., systems with both
continuous-time and discrete-event dynamics, is a domain

of increasing importance and several hybrid models have been
presented in the literature. Petri nets (PN’s) [17] have originally
been introduced to describe and analyze discrete event systems.
Recently, much effort has been devoted to apply these models
to hybrid systems (see Section I-C for a discussion of relevant
literature).

The usual tradeoff between modeling power and analytical
tractability also applies to hybrid PN models. On one hand, there
exist Markovian models with a powerful set of analytical tools
[22]. On the other, there exist models that can describe larger
classes of systems but that can be validated only by simulation
[10], or possibly if the incidence matrix can be defined for them,
by invariant analysis [2], [3], [14], [16].

In this paper, we present a model calledfirst-order hybrid
PN’s(FOHPN’s) [6]–[8] that is general enough to model classes
of systems of practical interest and yet whose first-order con-
tinuous behavior can be studied by linear algebraic tools. An
FOHPN consists of continuous places holding fluid, discrete
places containing a nonnegative integer number of tokens and
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transitions, either discrete or continuous. We assume that an au-
tonomous timing structure (deterministic or stochastic) is asso-
ciated to the discrete transitions. On the contrary, we assume that
the instantaneous firing speeds(IFS) of the continuous transi-
tions are control variables which may be chosen by the system
operator within a given set , where is the number
of continuous transitions and .

In the paper, we address two main issues:on-line controland
structural optimization. The on-line control problem, i.e., the
computation of an optimal IFS vector , corresponds to a
conflict resolution.

Conflict resolution is an important issue in the study of dis-
crete nets. Conflicts arise when a limited number of tokens en-
ables more than one transition, but it is only sufficient to fire
a subset of them. Several schemes have been devised to tackle
this problem for discrete timed nets, includingtoken reserva-
tions [2], resampling rules, andpriorities [1]. To any of these
schemes corresponds a timing structure which imposes ana
priori scheduling policy, i.e., the firing of discrete transitions
is not controlled on-line. In FOHPN’s, we adopt a similar ap-
proach and we assume thatdiscrete transitionsfire according
to their timing structure. Note that this is not a limitation, as
these transitions are generally used to represent the occurrence
of events whose delay is not controllable (e.g., the failure or the
repair of a machine).

The on-line control problem we address in this paper is that
of computing an “optimal” mode of operation of the net by
solving conflicts amongcontinuous transitionsat continuous
places where continuous flows must be routed in the net. The
choice of an optimal IFS vector is framed as a linear program-
ming problem (LPP). This leads quite naturally to thestructural
optimization problem. In fact, the use of linear programming and
sensitivity analysis tools allows one to study of how changes in
the structure of the model influence the optimal behavior.

In the final section, we discuss as an example of application
a manufacturing system. Manufacturing systems are discrete
event systems whose number of reachable states is typically
very large, hence approximating fluid models have often
been used in this context [5], [11], [21]. The FOHPN model
is rich enough to model manufacturing systems consisting
of unreliable machines and buffers of finite capacity in the
most general multiclass multimachine setting. Several criteria
to assess performances of a manufacturing system, such as
throughput rate, buffer levels, machines utilization, etc., can be
framed as conflict resolution policies for the FOHPN model. In
addition, a designer or analyst of a manufacturing system may
want to perform “what if” analysis. For example, what happens
to throughput if a machine produces faster? These problems
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will be addressed applying sensitivity analysis to the FOHPN
model.

B. Proposed Model

In the first part of the paper, we describe a general hybrid PN
model based on the framework proposed by Alla and David [2].
As in all hybrid models, we distinguish two behavioral levels.

At the lower level, the continuous evolution of the net is de-
scribed by first-order fluid models, i.e., models in which the con-
tinuous flows have constant rates and the fluid content of each
continuous place varies linearly with time. Each model is rela-
tive to a givenmacrostatecharacterized by the following: 1) the
discrete marking of the net and 2) the set of empty continuous
places.

The macro-state defines the setof admissible IFS vectors
of continuous transitions. Since we consider the first-order be-
havior, we assume that the IFS vector remains constant within
a macro-state.

At the higher level, a discrete-event model describes
the macro-behavior of the net that, upon the occurrence of
macro-events, evolves through a sequence of macro-states.
As it will be clear in the formal description of the model, we
consider the following two types of macro-events: 1) the firing
of a discrete transition, according to a given timing structure,
and 2) the emptying of a continuous place.

A useful formalism for the analysis of discrete timed nets,
assumes that the timing structure associated to the transitions is
stochastic with exponentially distributed delays (see, e.g., [1]).
This has the advantages of leading to a Markovian model that
can be easily analyzed. In our model, however, the occurrence
of the second type of macro-events does not preserve the
Markovian property, hence, we allow arbitrary stochastic or
deterministic timing structures. Thus, the resulting macro-be-
havior can be described as a generalized semi-Markovian
process (GSMP).

The key features that represent the novelty of our approach
are the following.

• We allow the IFS of a continuous transitionto be chosen
by a control agent in a given range , where is
the minimum firing speed(mfs) and is themaximum
firing speed(MFS).

• We explicitly define the set of all admissible IFS vectors
within a given macro-state. This set is characterized by

the feasible solutions of a linear constraint set.
• We consider the problem of choosing an optimal IFS

vector according to a given objective function. Our opti-
mization scheme can only bemyopic[5], in the sense that
it generates a piecewise optimal solution, i.e., a solution
that is optimal only in a macro-state. Although we provide
the basic tools for the analysis of the overall behavior of
a net, this paper is only concerned with the analysis and
optimization within a macro-state.

• We adopt the optimal basis approach, i.e., the simplex
method, to solve LPP. We show how one can naturally
apply to the FOHPN framework those sensitivity anal-
ysis techniques that pertain to LPP [15], [19] to study how

changes in the structure of the model influence its optimal
behavior.

C. Relevant Literature

The hybrid PN model we propose follows the formalism de-
scribed by David and Alla [2], [3]. In effect, our model can be
seen as an extension of timed hybrid nets with constant maximal
speeds with the following additional features: token reservation
is not used as a conflict resolution policy; stochastic transitions
are also included in our model; minimal firing speeds are con-
sidered as well. The novel contribution of our work is that of
showing how the first-order behavior of such a net can be effi-
ciently analyzed with a linear algebraic formalism.

Linear algebraic techniques have also been used by Amrahet
al. [4] when modeling manufacturing systems with continuous
PN’s. These authors deal with open and closed transfer lines
modeled bycontrolled variable speed continuous PN’s, a type
of continuous PN [3] with controllable maximal firing speeds.
Then by using a constrained optimization approach, they ob-
tained optimal values for the machine production rates that bring
the average levels of buffers to a desired values. However, it
must be observed that transfer lines are not a general model, in
the sense they do not require scheduling and routing. Our work,
instead may deal with manufacturing systems in the more gen-
eral configurations and settings.

Another approach that extends the stochastic discrete PN
framework of [1] toward fluid approximations isfluid sto-
chastic PN’spresented by Trivedi and Kulkarni [22]. These
authors proposed a model with places holding continuous
tokens and arcs representing fluid flows. The flow rates are
uniquely specified by the complete marking of the net. This is
a main difference with our approach, in which the IFS vector of
continuous transitions can be chosen in a given set that defines
all admissible ones.

All these hybrid models discussed so far are fluid models,
i.e., the marking of the continuous places is a nonnegative real
number. However, more general hybrid PN’s that also admit
negative-real markings have been proposed.Differential PN’s
have been presented by Demongodin and Koussoulas [14] and
can be used to model hybrid systems whose continuous evo-
lution can be described by a finite number of linear first-order
differential state equations.High-level hybrid PN’s[16] extend
the hybrid framework to colored nets: the use of real numbers as
colors allows one to model general primitives such as jumps in
the state space and switches in the continuous dynamics, which
cannot be generally described with other formalisms.

In other approaches [10], the PN formalism is only used to
represent the discrete state of a hybrid system, while the contin-
uous state is represented by a vector (not by a marking) whose
arbitrary continuous evolution is modeled by differential alge-
braic equations.

The rest of the paper is structured as follows. In Section II,
we introduce FOHPN’s. Section III is concerned with the com-
putation of the instantaneous firing speed of continuous transi-
tions and with different conflict resolution schemes. Section IV
deals with the sensitivity analysis of this model. In Section V,
we apply the previously developed results to a manufacturing
system.
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II. BACKGROUND

We recall the PN formalism used in this paper. For a more
comprehensive introduction to place/transition PN’s, see [17].
The common notation and semantics for timed nets can be found
in [1]. Hybrid PN’s are defined in [2].

A. Structure and Marking

An FOHPN is a structure .
The set ofplaces is partitioned into a set ofdis-

creteplaces (represented as circles) and a set ofcontinuous
places (represented as double circles).

The set oftransitions is partitioned into a set
of discrete transitions and a set of continuous transitions
(represented as double boxes). The set is
further partitioned into a set ofimmediatetransitions (repre-
sented as bars), a set ofdeterministic timedtransitions (rep-
resented as black boxes), and a set ofexponentially distributed
timed transitions (represented as white boxes). The cardi-
nality of , , and is denoted , , and .

The pre- andpost-incidence functionsthat specify the arcs
are1

and

We require (well-formed nets) that for all and for all
, .

The function specifies the timing associ-
ated to timed discrete transitions. We associate to a deterministic
timed transition its (constant) firing delay .
We associate to an exponentially distributed timed transition

its average firing rate , i.e., the average firing
delay is , where is the parameter of the corresponding
exponential distribution.

The function : specifies the firing speeds
associated to continuous transitions.2 For any continuous tran-
sition , we let , with . Here
represents the mfs and represents the MFS. In the following,
unless explicitly specified, the mfs of a continuous transition
will be .

We denote the preset (postset) of transitionas ( ) and
its restriction to continuous or discrete places as
or . Similar notation may be used for presets and
postsets of places. Theincidence matrixof the net is defined
as . The restriction of to

and ( ) is denoted . Note that by the
well-formed hypothesis, .

A marking

(1)

is a function that assigns to each discrete place a nonnegative
number of tokens, represented by black dots and assigns to each

1Here = [ f0g.
2Here = [ f1g.

Fig. 1. FOHPN.

continuous place a fluid volume; denotes the marking of
place . The value of a marking at time is denoted .
The restriction of to and are denoted with and ,
respectively.

An FOHPN system is an FOHPN with an ini-
tial marking .

B. Enabling and Firing

The enabling of a discrete transition depends on the marking
of all its input places, both discrete and continuous.

Definition 1: Let be an FOHPN system. A discrete
transition is enabledat if for all , .

An enabled discrete transition fires (after its associated
delay) yielding the marking . The firing of
discrete transitions may follow any of the common enabling
and firing rules discussed in [1]. These rules—that define the
structure of the GSMP associated to the net—are well known
and are not further discussed in this paper.

A continuous transition is enabled only by the marking of
its input discrete places. The marking of its input continuous
places, however, is used to distinguish between strongly and
weakly enabling.

Definition 2: Let be an FOHPN system. A contin-
uous transition is enabledat if for all ,

.
We say that an enabled transition is:

• strongly enabledat if for all places , ;
• weakly enabledat if for some , .

Remark 3: We note that the definition of enabling we have
given is slightly different from the one proposed by David and
Alla in [3], where it was also required that a weakly enabled
transition be “fed,” i.e., that there exists an upstream transition
strongly enabled feeding it. The two notions lead to different
semantics for a cycle such as the one in Fig. 1. According to
the definition of [3], the two transitions are not enabled and the
cycle is blocked, while according to our definition they are both
weakly enabled and the cycle is not blocked.

To overcome this limitation, David and Alla introduced in
[13] a new concept—that of-marking. If an arbitrary small
marking is initially assigned to any of the two places of the cycle
in Fig. 1, then both transitions can be considered weakly en-
abled. Thus, in this generalized framework, it is possible to as-
sign to empty cycles two semantics: blocked cycles (those that
are empty) and nonblocked cycles (those-marked).

We believe that blocked cycles are not a useful modeling fea-
ture for systems of practical interest, thus we have chosen to
keep just the second semantics.

The enabling state of a continuous transitiondefines its
admissibleinstantaneous firing speed(IFS) .
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Fig. 2. (a) An FOHPN, (b) its phase-diagram, and (c) its evolution in time.

Definition 4: Let be an FOHPN system and
be a continuous transition with IFS.

• If is not enabled, then .
• If is strongly enabled, then it may fire with any firing

speed .
• If is weakly enabled, then it may fire with any firing

speed , where depends on the
amount of fluid entering the empty input continuous
place(s) of . In fact, the transition cannot remove more
fluid from any empty input continuous placethan the
quantity entered in by other transitions.

The computation of the IFS of enabled transitions is not a
trivial task. We will set up in Section III a linear-algebraic for-
malism to do this. Here, we simply discuss the net evolution
assuming that the IFS are given.

The IFS at time of a transition is denoted . The
evolution in time of the marking of a place is described
by

(2)

Indeed. (2) holds assuming that at timeno discrete transition
is fired and that all speeds are continuous in .

C. Net Dynamics

A macro-eventoccurs when: 1) either a discrete transition
fires, thus changing the discrete marking or enabling/disabling
a continuous transition or 2) or a continuous place becomes
empty, thus changing the enabling state of a continuous tran-
sition from strong to weak.

Let and be the occurrence times of consecu-
tive macro-events; the interval of time is called
macro-periodand its length is denoted .

We will assume that the IFS of continuous transitions are con-
stant during a macro-period. Thus, the discrete marking and the
IFS vector during a macro-period define amacro-statethat cor-
responds to theinvariant behavior statesof [2].

We now describe the dynamics of an FOHPN. Letbe the
initial time, be the instants in which macro-events
occur, and be the IFS vector during the macro-period of

length . Let be thefiring count vectorat time , i.e.,
a vector of dimension that specifies the discrete transitions,
if any, firing at time . Thus, the micro-behavior of an FOHPN
is described during theth macro-period by

(3)

where , while the evolution of the net at the oc-
currence of the macro-events is described by

(4)

The macro-behavior of an FOHPN can be described by a
phase-diagramin which every macro-state is represented by a
box labeled on the right by the length of the corresponding
macro-period. Each box is partitioned into two parts. On the left
(discrete part) the discrete marking of the net is represented.
On the right (continuous part) the continuous markingof the
net at time is represented with the IFS vector. Macro-states
are connected through bars, representing the macro-events that
caused the state transitions. Each bar is labeled on the left (re-
spectively, right) by the discrete transition (respectively, contin-
uous place) that caused the occurrence of the macro-event. An
example is discussed in the following section.

D. Example

Consider the net in Fig. 2(a) and let the initial time be.
Place is a continuous place with initial marking

. Places , , , are discrete places. Transitions
and are continuous transitions with MFS and . We as-
sume (here and are the arc weights given by
and ). Discrete transitions , , , are exponentially
distributed timed transitions whose average firing rates are,

, , and , respectively.
Macro-Period MP0: In the initial state, is not empty and
, are marked. Thus, transitions and are strongly en-

abled and may fire at their maximum speeds, i.e., we choose
and . The continuous marking of the net during

this macro-period is given, as in (2), by
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Fig. 3. FOHPN model of (a) a conflict-free re-entrant production line, (b) a free-choice conflict, and (c) a non free-choice conflict.

while the discrete marking is constant and given by

Macro-Period MP1: At time ,
place becomes empty, thus causing a macro-event. In the new
macro-state, remains strongly enabled, whileis weakly en-
abled and may fire at most at speed . As-
sume and . Then, the continuous marking
of the net during this macro-period is constant: .
The discrete marking maintains the value it had in the previous
macro-period since no discrete transition has fired.

Macro-Period MP2: We assume that the enabled transition
fires at time . This macro-event changes the discrete

marking of the net to . Now transition
is disabled, i.e., , while remains strongly enabled.

Assume . Then, the continuous marking during this
macro-period is given, as in (2), by

This behavior is represented in Fig. 2(b) and (c), which shows
the phase-diagram of this net and the evolution in time of,

, .

III. FIRING SPEED AND DYNAMICS OF AN FOHPN

The computation of an admissible IFS vector of continuous
and hybrid nets is not trivial. In [3], an iterative algorithm was
given to determine asingle admissible vector; the algorithm
aims at maximizing firing speeds while respecting priority rules.
We propose a different approach in which we use linear inequal-
ities to characterize the set of all admissible firing
speed vectors. Each vector represents a particular mode
of operation of the system described by the net, and among all
possible modes of operation, the system operator may choose
the best according to a given objective. There are several advan-
tages in our approach.

• We can explicitly characterize the set of all admissible
IFS vectors in a given macro-state and not just compute
a particular vector.

• We consider more general scheduling rules than priorities.
For example, in an FMS, we may want to maximize ma-
chines utilization, maximize the throughput of the system,
balance the load, etc. Each of these problems corresponds

to a particular objective function. Note that each setcor-
responds to a particular system macro-state. Thus, our op-
timization scheme can only bemyopic [5], in the sense
that it generates a piecewise optimal solution, i.e., a solu-
tion that is optimal only in a macro-period.

• We compute a particular (optimal) IFS vector solving a
linear programming problem, rather than by means of an
iterative algorithm, whose convergence properties may not
be good.

• Linear programming leads to sensitivity analysis, which
plays an essential role in performance evaluation and op-
timization. In fact, we may be able to compute analyti-
cally the objective function improvement due to a param-
eter variation.

A. Admissible IFS Vectors

In this section, we characterize the set of admissible IFS vec-
tors.

Definition 5: Let be an FOHPN system with con-
tinuous transitions and incidence matrix. Let
( ) be the subset of continuous transitions enabled
(not enabled) at , and be the
subset of empty continuous places. Anyadmissible IFS vector

at is a feasible solution of the following
linear set:

(5)

The set of all feasible solutions is denoted .
Thus, the total number of constraints that define

is: card card card (here,
card denotes the cardinality of the set). Constraints of
the form (5.a)–(5.c) follow from the firing rules of continuous
transitions. Constraints of the form (5.d) follow from (2),
because if a continuous place is empty then its fluid content
cannot decrease.

Note that if , then the constraint of the form (5.b)
associated to reduces to a nonnegativity constraint on.

Example 6: Let be the net in Fig. 3(a), with
, where place is initially empty. Such a net is represen-
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tative of a re-entrant production line. Hence, according to the
previous definition

(6)

is the linear constraint set that defines .
We now discuss under which conditions the set ad-

mits feasible solutions. When no feasible solution exists, no ad-
missible modes of operation is allowed by the net. First, we
make the following observation.

Remark 7: Any constraint of the form (5d) related to an
empty continuous placecan be written as

(7)

with and . The set (respectively, )
contains the indices of the continuous transitions whose firing
increases (respectively, decreases) the marking of.

Definition 8: Let be an FOHPN system. A transition
is calledmfs-freeat if at least one of the following

conditions holds:

1) the mfs of is ;
2) has no empty input continuous places, i.e.,

.
We can now provide a sufficient condition for the existence

of admissible IFS vectors.
Proposition 9: Let be the linear set defined by (5).

Such a set is nonempty if all are mfs-free at .
Proof: Let be such that if ,

else . We prove that .
Clearly this vector satisfies all constraints of the form

(5a)–(5c). Moreover, from Remark 7, it follows that any
constraint of the form (5d) can be written as

and the right-hand side of this equation evaluates to 0 by the
assumption that all enabled transitions are mfs-free. Thus, this
constraint is satisfied.

As a counterexample, we show that no feasible solution may
exist if one (or more) continuous transition is not mfs-free.

Example 10: Consider the net in Fig. 3(a) with . Let
and . Thus, transition is not

mfs-free. The set is defined by the following set of
inequalities:

(8)

that clearly admits no feasible solution.

B. Conflict-Free Firing Speed Computation

By the formalism previously introduced, we define the con-
cept ofconflict in a net. We will only treat conflicts at contin-

uous places, since the computation of an admissible IFS vector
is only affected by this type of conflicts.

Example 11: Consider the net shown in Fig. 3(b). When
place is not empty, both and can fire at their MFS. When
place is empty, however, the output flow is bounded
by the input flow , thus in there will be a constraint
of the form (5d) related to placethat writes . This
constraint expresses the fact that we have a limited amount of
resource (the input flow) that must be shared between different
processes (the output transitions).

There is no conflict in a net, instead, if each empty place
has at most one enabled output transition . This

motivates the next definition.
Definition 12: Let be an FOHPN system and

be the linear set defined by (5). We say thatis
continuous conflict-free(CCF) at if for all constraints of the
form (5d) rewritten as (7) holds: card .

In the rest of this section, we discuss the relationship between
conflict resolution (i.e., the computation of IFS vectors) and per-
formance optimization.

If we set our goal to maximize the firing speed of the con-
tinuous transitions, it is possible to show that in a continuous
conflict-free FOHPN each component of the IFS vector may be
maximized independently.

Theorem 13:Let be an FOHPN system. If is CCF
at , the optimal solution of the following LPP

s.t.

is such that , (componentwise).
Proof: Let be the (componentwise) operator, i.e.,

. It is sufficient to prove
that if the net is CCF, then

.
Clearly, if and satisfy (5), then will satisfy all

constraints of the form (5a)–(5c). Under the hypothesis of con-
flict-freeness, we can write any constraint of the form (5d) as-
sociated to a place as follows:

1) if no enabled transition outputs from
place ;

2) if is the only enabled tran-
sition outputting from place;

with , , , .
In the first case, we have that

while in the second case, we have
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i.e., the vector satisfies all constraints of the form (5d) as
well.

In the case of CCF nets, the optimal solutionin the pre-
vious theorem coincides with the solution computed with the
priority algorithm in [3]. It may be interesting, however, to com-
pare the two algorithms via an example.

Example 14: Let us consider again the net in Fig. 3(a) whose
set of admissible IFS vectors is given by (6). If we compute
the vector solution of (6) that maximizes , we
clearly obtain and . This
example is so simple that we can write the solution in closed
form; in more complex cases, the solution can still be easily
found solving the associated LPP. If we apply the procedure
proposed in [3], we obtain at the first iteration step ,
while to compute the IFS of transition we need to solve the
following iterative problem:

and for , the algorithm requires an infinite
number of steps to converge to the correct value

.

C. Global Conflict Resolution

When the net is not conflict-free, not all firing speeds may be
maximized independently. However, we can always find out a
conflict resolution policy by solving an LPP aimed at aglobal
optimizationof the system resources. We may consider different
performance indices as the objective function in the LP formu-
lation of the problem. We consider some examples.

Maximize Flows: In an FOHPN, we may consider as optimal
the solution of (5) that maximizes the performance index

, which is of course intended to maximize the sum over all
flow rates. In the manufacturing domain, this may correspond
to maximizing machines utilization.

Maximize Outflows:In an FOHPN, we may want to maxi-
mize the performance index where

if is an exogenous transition,
if is an endogenous transition.

In the manufacturing domain, this may correspond to maxi-
mizing throughput.

Dynamic Flow Balancing:This problem consists in re-
ducing the difference between maximum and minimum
utilization of continuous transitions. The utilization of
a transition can be given as the ratio .
Then, we may want to minimize the performance index

for a suitable index
set . In the manufacturing domain, this may correspond to
balancing the machines load.

Minimize Stored Fluid: In an FOHPN, we may want to min-
imize the derivative of the marking of a place . This can
be done by minimizing the performance index where

if ,
otherwise.

In the manufacturing domain, this may correspond to mini-
mizing the work-in-process (WIP).

A different optimization procedure is based onglobal prior-
ities (GP). In this case, we have a multiobjective performance
in which the goals have different priorities. We first look for all
solutions that optimize the first goal, then among them for those
that optimize the second goal, and so forth. We discuss a simple
case in which each goal consists in maximizing the IFS of a
single transition, though this result can be easily generalized.

Definition 15: Let be an FOHPN system and
be the linear set defined by (5). Assume that the

continuous transitions of the net are ordered in a priority
sequence . The GP-optimal solution for

is defined by

where .
The GP-optimal solution can be found by solving LPP.

First, we compute ; then, we add to (5) the constraint
and maximize , etc. Note, however, that there exist other
techniques based on lexicographic ordering [9] that may well
be meaningfully used to compute the GP-optimal solution by
solving a single LPP with a suitably modified objective function.

Example 16: Consider the net in Fig. 3(c) with
, , and places ,

initially empty. We apply the method discussed above to obtain
. Note that by applying the algorithm

proposed in [3], we obtain , which is an
admissible IFS vector even though it does not have the same
properties of the GP-optimal solution.

According to the next theorem, a GP-optimal solution is
a basic solution of any LPP subject to , hence, it is
amenable to sensitivity analysis as it will be discussed in the
following section.

Theorem 17:The GP-optimal solution is unique and it is
a vertex, i.e., a basic solution, of the feasible region .

Proof: Let and
for . We

will prove that all vertices of are also vertices of
. In fact, the hyperplane does not cut

the convex set in any internal point because by
construction . The solution

is necessarily unique because for all if for
and then cannot be a

GP-optimal solution.

D. Local Conflict Resolution

The use of a performance index to be maximized (or mini-
mized) over the space of all admissible IFS vectors corresponds
to a global optimization procedure. It is often the case, how-
ever, that local rules are used to determine the operating mode
of a system described by a hybrid net. These rules correspond
to decisions that can be taken in a decentralized way.
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We consider the case of nets where all conflicts arefree-
choice, i.e., if a continuous place has more than one output
continuous transition (e.g., with ),
then it is the only continuous input place for all those transitions
(i.e., ). The conflict in Fig. 3(b) is
free-choice, while the two conflicts in Fig. 3(c) are not. When
the conflicts are not free-choice, the local optimization rules de-
scribed below may not be well founded.

Fixed Ratio: One particular simple rule that may be used to
locally solve free-choice conflicts is that of assigning afixed
ratio of fluid volume to all enabled continuous transitions that
take fluid out of an empty continuous place. As an example, in
Fig. 3(b), we may assign a ratio , . This new
constraint can be added to the setor, even better, by substitu-
tion we can reduce by one the number of variables in (5).

Local Priorities: We can also consider the case oflocal pri-
ority rules by a suitable modification of the linear set (5). As-
sume that in Fig. 3(b) a legal solution is such thathas priority
over , i.e., all fluid entering place should be consumed by
and only if the remaining fluid should be consumed by

. This can be done adding the following constraints:

where , with . Thus, if it
follows . The problem with this technique is that a simple
LPP is transformed into a more complex mixed integer-linear
problem.

IV. SENSITIVITY ANALYSIS FOR FOHPN

The LPP stated in the previous section may be solved taking
into account only the constraints related to enabled transitions
since we know that the IFS of transitions that are not enabled are
0. Let be the set of indices of the enabled
continuous transitions and be the set of
indices of the empty continuous places. Thus, we can write

s.t.

(9)

Defining vector , we obtain the
following standard form:

(10)

Fig. 4. (a) FOHPN model of a manufacturing service. (b) The feasible region
for the IFS vectors.

Note that when , the slack and the corre-
sponding constraint can be removed from the LPP given by (9)
by adding a nonnegativity constraint on .

Here is a vector with variables, is the
matrix constraints, and we assume thathas full rank, is the
( )-vector of the objective coefficients, whilerepresents
the -vector of the right-hand side constants.

In this work, thesimplex methodwill be used to solve LPP.
This is an iterative method in which at each step and in an effi-
cient manner, a new basis is computed. Each basis represents a
vertex of the feasible region. We denote an optimal solution,
the corresponding optimal basis(a set of variables), and
the optimal basis matrix obtained by taking only those columns
of whose corresponding variables are in. An optimal solu-
tion can always be written as

The variables in are the basic variables, while the others,
whose set is denoted , are called nonbasic. Note that the op-
timal solution may be degenerate, i.e., we have many basis as-
sociated with it. It may also be the case that more than one basic
optimal solution exists.

Example 18: In Fig. 4(a), it is represented the FOHPN model
of a manufacturing service, where transitionmodels an un-
reliable machine and transitions and represent the out-
flows from buffer . A buffer capacity 0 is imposed by the
co-buffer place . The maximum production rate of the ma-
chine is bounded by the MFS , while the maximum outflows
rates cannot exceed and , respectively. The discrete part
of the net models the failure/repair stochastic process of the ma-
chine by means of exponential transitionsand with average
firing rates and , respectively. The machine is operating
while place is marked (i.e., transition is enabled) and it is
down when place is marked.

The constraint set associated to this net from the given
marking is

(11)



390 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 4, AUGUST 2000

We take as objective function to be maximized ,
representing the overall output flow, and we obtain the following
LPP in standard form:

s.t.

Note that we have not written the nonnegativity constraints
and we have packed together the last two inequalities of (11).
There are infinitely many optimal solutions of the form ,

, with , represented by the thick
line in Fig. 4(b) in the plane . Two of these are basic
solutions: and . Point

is a nondegenerate solution with basic variables, , ,
and basis . Point is a degenerate

solution with two optimal basis: and
. Furthermore, we observe that in

there is also another basis , which is not
optimal.

Sensitivity analysis refers to the study of how optimal solu-
tions change according to changes of the given linear program
in terms of the coefficients of the matrix, the right-hand side and
the objective function. Suppose that the LPP (10) has an optimal
solution. If there is any change in the values of, , or , the
optimal solution is likely to change in general.

In the next sections, we will develop sensitivity analysis with
respect to the design parameters by assuming changes in the
right-hand side vector and in the matrix coefficients. Perturba-
tions in the cost coefficients will not be considered in this work.

A. Perturbed Model

The perturbed linear programming problem considered in this
paper is defined as follows:

(12)

where is a vector of uncertain parameters. The
nominal value is denoted. For a given value of , the optimal
solution of (12) is

(13)

We compute with the simplex method an optimal solution in
and the corresponding optimal basis. The sensitivity of the

basic variables with respect to can be computed, at
least within a certain domain where the optimal basis does not
change, by taking the partial derivatives

(14)

while the nonbasic variables do not change. Equation
(14) shows the effect on the optimal solution caused by a small
change of . It is only required first-order differentiability

of and with respect to . Furthermore, if the
optimal solution is not degenerate, then the obtained sensitivity
is unique. For simplicity in this presentation, we make the
following assumptions.

1) Only one parameter varies at a time, that is,
, where is the th canonical basis vector. Under this

assumption, the sensitivity given by (14) can be regarded
as function of in the allowable range.

2) Matrix and vector are linear functions of the param-
eter . Thus, we can write

where , .
3) The variation of each parameter influences only one

column, say theth, of matrix . Then

In what follows, we consider separately linear perturbations
of the right-hand side vector and of the matrix coefficients.

B. Perturbation of the Right-Hand Side Vector

We assume that the right-hand side constant vectorvaries
linearly with the parameter , that is, . In the
FOHPN framework, this perturbation corresponds to changes in
the entries of the vector , which denotes the
MFS vector, and of the vector , which de-
notes the mfs vector. As an example, in a manufacturing system
we may want to add servers to a machine in order to increase
the overall productivity of the system.

If only is perturbed, then for . We
may also consider the case where and vary simultane-
ously with the parameter. As an example, if we consider that
some servers are shifted from transitionto or vice versa,
then we have and , hence

. Similar considerations apply when the mfs of a
continuous transition is perturbed.

Let be an optimal basic solution of (10) andan asso-
ciated optimal basis. The perturbed optimal solution has
basic components

(15)

where and
. The optimal value of the objective function is

(16)

When , the derivative of the objective function with
respect to the parameter, i.e., , is also called
dual priceof the th resource. It represents the amount by which
the optimum will increase if the availability of the resource as-
sociated to theth constraint (i.e., the right-hand side of the con-
straint) is increased by one unit.

Equations (15) and (16) hold only whenbelongs to a certain
interval , also called theallowable range, where
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the optimal basis remains unchanged. This requires nonnega-
tivity of the basic variables, , and the bounds for the
parameter can be computed as follows:

if
(17)

and
if

(18)

where and . Since
is invertible, then , i.e., either or must

be finite.
Much attention has been devoted in the literature [18], [15]

to the case in which the optimal solution of the nominal
LPP is unique. In this case, is not a degenerate solution
and the unique optimal basis remains constant within the al-
lowable range, therefore the value of the objective function is
linear in . As reaches the boundary of the allowable range,
a degenerate solution is found, a new basis can be computed
with an allowable range that will not overlap the previous one
except at the end points. As the basis changes, the derivative
of the objective function with respect to the parameter, i.e.,

, may also change, thus it may not be defined
only at a finite number of points whereas we can instead provide
right and left values. In the manufacturing domain, this non-
differentiability behavior has been already observed in tandem
lines by Fu and Suri [20] when the average production rates of
two machines are equal. With our approach, the result is imme-
diately generalized to more general cases.

However, the situation can be more complex when more
than one optimal solution exists, as we show in the following
example. Multiple optimal solutions represent the degrees of
freedom in the optimization procedure.

Example 19: Let us consider again the net in Example 18.
There are two optimal basic solutions, and , and three
optimal bases. We apply the previous methodology to each
basis to obtain the following allowable ranges: ,

, and . As expected, the intervals
and , corresponding to the same optimal basic

solution , do not overlap. However, we note that the
interval corresponding to the optimal basic solution
overlaps both of them. This observation allows us to state that
the interval in which the derivative of the objective function
remains constant is , hence, it is larger than the
allowable range associated to each basis.

Motivated by the previous example, we can state the next
proposition that applies to the case in which there are two op-
timal basic solutions of a given LPP and that can be naturally
extended to the case of more than two solutions.

Proposition 20: Let and be the optimal basic solu-
tions of the LPP (10), and let the perturbed solutions take the
form given by (15). Let be a nondegenerate optimal solu-
tion with allowable range associated to the
unique optimal basis , and be a degenerate optimal solu-
tion with allowable ranges and

associated to the optimal basis and , respectively. Then,
the derivative of the objective function (16) with re-
spect to the parameteris continuous and constant over all the
interval .

Proof: Over each interval , for , the deriva-
tive is continuous and constant, say, , and .
Since is an interval of nonzero length, then .
A similar reasoning shows that and this complete the
proof.

C. Perturbation of the Matrix Coefficients

We assume that the basis matrix varies linearly with the
parameter , according to

, i.e., we assume that only theth column of may vary.
In the FOHPN framework, this perturbation of theth column

corresponds to changes in the weights of the arcs between con-
tinuous places and transition, as it can be seen from (9). Mul-
tiple variations of the coefficients along a column correspond
to a redistribution of the inflow or outflow of a single contin-
uous transition. In a manufacturing system, this situation is quite
common and it arises when we deal with changes of the per-
centage of parts that need to be reworked or with changes of the
routing coefficients. The results we present here also hold when
a single row of varies linearly with the parameter. Never-
theless, this case is less relevant in the context of FOHPN.

Let be an optimal basic solution of (10) andan associ-
ated optimal basis. We recall the matrix equality

The perturbed optimal solution has basic components

(19)

where , , and .
The relative cost coefficient vector of the optimal solution
is

(20)

where , .
Finally, the optimal value of the objective function is given by

(21)

Equations (19)–(21) hold only when the parameterbelongs
to a certain interval wherein the optimal basis

remains unchanged. This requires the following: 1) nonsingu-
larity of the basis matrix, i.e., ; 2) nonnegativity of the
basic variables, ; and 3) nonnegativity of the relative
cost coefficients, , i.e., the optimality condition. Note
that the first condition can be written as .
Moreover, it holds . Since
our interest is in the behavior around , condition (1) be-
comes that has the same sign as
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Fig. 5. FOHPN model of a re-entrant service and its feasible regions.

and this condition is equivalent to . The bounds for
the parameter can be computed as follows. Let us define

and let us consider the following sets of indices:
and . Then,

we can easily find

if
(22)

and
if

(23)

From (19) and (21), we observe that the optimum IFS vector
and the objective function do not vary linearly with the pa-
rameter within the allowable interval as it
does happen if the perturbations of the matrix coefficients are
made infinitesimally small. Therefore, the gradient of the ob-
jective function with respect to theth column vector of , say

, is a nonlinear function of the parameter. In partic-
ular, if , for each value of such that ,
the derivative of the objective function with respect to the pa-
rameter can be easily computed as

(24)

Note that in the case of , the objective function
varies linearly with the parameterwithin the allowable interval

.

D. Example: Sensitivity Analysis for a Re-Entrant Service

In this section, we consider a simple FOHPN which repre-
sents a re-entrant service, as shown in Fig. 5, that will clarify
our developments. In this net transition,models the produc-
tion of a machine whose maximum production rate is bounded
by the MFS , while the maximum outflow rates cannot ex-
ceed and , respectively. The routing coefficient, with

, represents the percentage of parts that are required
to be reworked on the machine (reworking factor).

From the given marking, being placeempty, the constraint
set associated to this net is

(25)

Now solving for subject to (25), we obtain the
optimum firing speed allocation (production rates) which maxi-
mizes the machine utilization. As discussed in the previous sec-
tions, this LP formulation allows us to make sensitivity analysis,
that is, we can make perturbations of the elements of the LPP,
e.g., the reworking factor, the maximum machine production
rate , and the maximum outflow rates and , to perform
optimization. First, we consider the case in whichis changed
to and then the case in which are changed to .

Let , , and . In Fig. 5, we have shown the
feasible regions in the plane for this LPP. The thin lines
labeled by the different values of represent the fourth con-
straint. Note that for , we obtain the same results already
developed in Example 18, where we have two optimal basic so-
lutions and ,
i.e., points (A) and (B), and the optimal value of the objective
function is equal to . For , there is a
unique nondegenerate optimal basic solution [point (C)]

with an associated optimal basis , which
yields an optimal objective function value equal to .
For , we have a degenerate optimal basic solution
[point (D)]. Finally, for , the fourth constraint be-
comes redundant and the unique optimal basic solution [point
(D)] is simply given by

with optimal basis and optimal ob-
jective function value equal to . Therefore, we will only
consider perturbations of the parameterfor ,
which yield nontrivial sensitivity analysis for the objective func-
tion .

Now computing the bounds for the parameterto obtain the
allowable range for the optimal basis , we must con-
sider and , where and

. Then, it follows

within which we can calculate the partial derivative of the objec-
tive function with respect to the reworking factorby making
use of (24). In this simple case, it does result ,
which is constant over the interval .

Now let us suppose that the MFS is perturbed, that is,
changes to . Then, applying the method developed in the
previous sections, we compute the characteristic interval
for the design parameter as follows:
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Fig. 6. The FOHPN model of a multiclass machine.

within which the IFS vector and the objective function vary lin-
early with . As a numerical example, if , then we have

for
for
for

which represent the allowable right-hand side ranges for the
basis to remain unchanged.

V. MODELING MANUFACTURING SYSTEMS WITH FOHPN

We show in this section how FOHPN’s can be used to model
manufacturing systems by means of first-order fluid approxima-
tions. Indeed, fluid models are well studied and documented in
the literature, and the readers are referred to Chen and Mandel-
baum [11] for references on thefluid approximation theory.

A. Notation and Machine Model

We consider an FMS consisting of a set ofsingle-server sta-
tions among which different classes of continuous flows (fluids)
are circulated and processed as in [5]. A machineis rep-
resented in an FOHPN by a continuous transition ,
whose firing corresponds to a continuous production at a rate

. A buffer is represented in an FOHPN by a continuous
place , whose marking represents the current buffer
content. Parts of different classes are routed from machines to
buffers and vice versa according to their production cycles. A
transition associated to the routing, say, from to , is de-
noted . The occurrence of discrete fail/repair events is
modeled by discrete transitions and .

To describe multiclass machines and buffers, it may be nec-
essary to impose synchronization constraints among continuous
transitions. As an example, let us consider a multiclass single-
input/single-output machine , where parts of class arrive
from buffer and after being processed are routed to buffer

. Such a machine is modeled by the net in Fig. 6. Here, the
continuous transition ( ) represents the flow
of parts of class machined by , and transition , whose
MFS is , represents the total flow of parts processed by.
We assume that the production of any part class is not singularly
bounded, i.e., the MFS of each is , while we assume that
the machine has an overall maximum production rate, denoted

.

Such a machine is described by the following set of equations:

(26)

Equation (26b) warrants comment. It is derived from two in-
equalities

The first inequality is imposed by the empty continuous place
that has an input arc from and an output arc to each .

The second one is imposed by the empty continuous place,
that is complementary to place . These two places form a
structure that we callzero-capacity buffer. Note that removing

, (26) can be simplified to

(27)

B. Example: Network Layout

We consider the model of an open production system con-
sisting of two shaping machines and an assembly machine with
two classes of parts flowing through, as shown in Fig. 7. Parts of
classes 1 and 2, coming from external independent sources, are
queued in buffers and , which are both feeding machine

, and then start the processing at machine.
The arrival flow of parts of class 1 may be controlled by the

plant operator within the range ; the arrival flow of
parts of class 2 may be controlled within the range .
Buffer has a finite capacity while buffer has an un-
limited capacity. At the exit of machine parts of class 2 are
ready to enter the assembly machine, while parts of class
1 flow into the buffer with finite capacity , then to ma-
chine , where after the processing some parts may require to
be reworked on the same machine (parameter). At the exit of
machines and , parts of both classes are respectively col-
lected in the buffers and with unlimited capacity and
then are packed together by the assembly machine according to
a specified production mix (parameter). The maximum ma-
chines production rates are denoted , , and . Since
machines are unreliable, we must also take into account a cer-
tain failure model.

Although this model may seem quite simple, it captures the
key difficulties of common control problems arising in manufac-
turing systems, such as dynamic scheduling and routing policies
as well as production rate selection. Problems of parts routing,
admission, and service rate selection have been deeply studied
in recent years. In fact, for a simpler production network model
than the one proposed here (e.g., a tandem two-station network
with two part classes—parts of class 2 visit machine only,
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Fig. 7. A production network.

Fig. 8. FOHPN model of the production network in Fig. 7.

while parts of class 1 visit both machines in sequence), the de-
termination of an explicit solution is still an open problem (see
Chenet al. [12], Wein [23], Phillis and Zhang [24]).

C. Example: PN Model

Let us now model the production network depicted in Fig. 7
by using in a modular way some elementary manufacturing
components described by basic FOHPN models.

The FOHPN model of the production system under consid-
eration is shown in Fig. 8, where the initial marking shown as-
sumes that all buffers are initially empty and that the machines
are operational. There are a few points we would like to discuss.

• Machine is a multiclass machine. Transition and
represent the processing of parts of classes 1 and 2,

respectively. The overall processing is represented by tran-
sition .

• Machines and are single class machines, repre-
sented by a single transition ( and , respectively).

• Buffers of unlimited capacity are represented by contin-
uous places, i.e., place represents the buffer , while
finite buffers are represented by a couple of continuous
places, i.e., place is the buffer and place is the
co-buffer.

• The failure model of the machines is represented by two
discrete places and two discrete transitions. As an ex-
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ample, for machine place is marked when the
machine is operative, place is marked when the
machine is down. The fail/repare of the machine corre-
spond to the firing of transitions and .

• The input flow of parts of class 1 is represented by the
continuous transition characterized by an mfs
and an MFS . This represents the fact that the plant
operator may take some control actions on the external
flow of parts of class 1 but cannot block the arrival of
parts. Although , transition is mfs-free (see
Definition 8), thus an admissible IFS always exists for this
net.

• The input flow of parts of class 2 is represented by the
continuous transition . The plant operator may choose
to discard parts that arrive, hence this transition has an mfs
equal to zero.

• Some parts of class 1 after being processed by machine
may require to be reworked at the same machine ac-

cording to a given reworking factor. This fact is rep-
resented in the FHOPN model by the weights on
arcs , , and . If we as-
sume that defective parts are scrapped, rather than being
reworked, then arcs and will have
a unitary weight. Note that machine can be considered
as a re-entrant line, and it can be modeled as depicted in
Fig. 3(a).

• Parts of both classes are finally assembled by machine
according to a given production mix. The mix fac-

tors of part of classes 1 and 2 are denotedand
and are represented as weights on arcs and

, respectively.

D. Numerical Examples

In this section, we highlight the main steps followed by an
FOHPN simulator and show how to solve production control
problems and make sensitivity analysis by means of the FOHPN
framework.

First of all, we have to define the control problem that we
want to solve in terms of a given performance measure that has
to be optimized. Then, at the occurrence of the macro-events, a
linear programming solver is invoked to provide the optimal ma-
chines production rates, i.e., the instantaneous firing speeds of
the continuous transitions, according to the constraints defined
by the current macro-state. At each step, sensitivity analysis can
be done in order to make adjustment on the optimal myopic so-
lution that represents the reference values for the machine pro-
duction rates within the next macro-state. The marking evolu-
tion over several macro-states can be represented by a phase di-
agram.

In a first example (problem LP1), we assume that the goal is
the maximization of the system outflow within a macro-period,
i.e., the maximization of the production rate of machine
corresponding to the throughput of the network. We show that
among all possible optimal solutions it is also possible to choose
one (by applying the global priority algorithm) that minimizes
the buffer content. We also give examples of sensitivity analysis
with respect to machine production rates, the reworking factor

, and the production mix factor.

In a second example (problem LP2), we choose to maximize
machines utilization and study the marking evolution during
few macro-periods by constructing the corresponding phase di-
agram.

The numerical values used in the examples are: ,
, , , , , ,
. Let us define the instantaneous firing speed vector

and let be the
performance function to be optimized. For problem LP1, we
set , and for problem LP2, we set

. The initial marking of the net shown
in Fig. 8 represents an initial macro-state in which all machines
are operational and all buffers are empty. Such a marking has
discrete component

and continuous component

To this initial macro-state, we can associate the following set
of constraints in standard form (nonnegativity constraints are
omitted):

(28)

1) Problem LP1: Maximization of the System Outflow:The
first control problem we consider is the maximization of the
system outflow. For the macro-state corresponding to the initial
marking shown in Fig. 8, this control problem translates into the
following constrained optimization problem:

s.t. (29)

where is given by (28). The solver provides the following
optimal solution: with . The
optimal basis is , , ,

.
a) Sensitivity of the Machine Production Rates:To obtain

information about the network bottlenecks, we can perform sen-
sitivity analysis with respect to the machine production rates.
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For the th constraint ( ), we compute thedual
prices and the allowable ranges, as described in Section IV-B

Consider . As
long as varies within its allowable range , the optimal
basis of the nominal model remains unchanged. In particular,
we observe that the dual price associated to constraint (28.5) is

and all other dual prices are 0. Thus, in this configura-
tion, machine represents the bottleneck of the system. If we
increase the maximum production rate of machine—i.e.,
the maximum firing speed of transition —within
its allowable range, we can proportionally increase the value
of the objective function . Within this range, the partial
derivative of the objective function with respect to is

and the partial derivative of the
optimal basic solution with respect to is

. These two derivatives are
constant within the allowable range .

b) Sensitivity of the Reworking/Scrapping Factor:We
now consider sensitivity analysis with respect to the reworking
factor (parameter ). We first observe that if we define

, the constraint set (28) can be rewritten,
changing constraints 5, 9, and 10 as follows:

(30)

This shows that the net in Fig. 8 is equivalent to a net with
no reworking factor and where transition has MFS

. In this case, the sensitivity analysis with respect to
reduces to the sensitivity analysis with respect to a right-hand

side coefficient and can be carried out as previously described.
Let us consider instead a more interesting case. We assume

that parts of class 1 are scrapped after failing their processing at
machine . In this case, the arcs and
in the net depicted in Fig. 8 will have unitary weight, while
the parameter in the arc is now calledscrapping
factor. These changes correspond to rewriting the constraint set
(28) changing constraint 9 as

(31)

The solver provides the following optimal solution:
with and optimal basis

.

A perturbation of parameter changes just one element of
matrix , namely the element in constraint
10, in the column corresponding to variable . Thus, we
define . In this particular case, the parameter
introduced in Section IV-C is . Therefore, the objective
function and the optimal basic solution vary linearly
with the parameter as long as it remains within the allowable
range

but for physical reasons we should consider ,
since . Within this range, the derivative of
the objective function with respect to [by applying (24)]
is and the partial derivative of
the optimal basic solution with respect to is

. Thus, we may obtain a better perfor-
mance by reducing the percentage of scrapped parts that fail
their processing at machine .

c) Sensitivity of the Production Mix:We now consider
sensitivity analysis with respect to the production mix factor
(parameter ). We write , and we observe that
a perturbation of changes two elements of matrix given
by (28) (constraints 10 and 11) in the column corresponding to
variable . In this case, the parameterintroduced in Sec-
tion IV-C is , and therefore, the optimal basic solu-
tion and the objective function do not vary linearly with the pa-
rameter . Sensitivity analysis provides the following allowable
range for :

showing that cannot be increased if the optimal basis has to
remain unchanged. Applying (24), we obtain the derivative of
the objective function with respect toas

. In this case, we may obtain a better performance by re-
ducing the factor , i.e., by changing the production mix so as
to increase the ratio of parts of class 2 with respect to parts of
class 1.

As an example, consider , i.e., . By
solving LPP (28) for the updated value of, we obtain

(while ) and
.

d) Maximum Outflow with Minimal Buffers Content:The
control problem defined by (29) admits more than one optimal
basic solutions, e.g., , and

are other optimal basic solutions. Thus, the
plant operator may use the global priority algorithm given in
Definition 15 to derive a control law in order to minimize, in
a second step, the overall buffers content by maximizing the
overall buffer outflows

subject to the constraint set (28) with the additional con-
straint: . As a solution, we obtain and

that allows all buffers to have their content
equal to 0.

2) Problem LP2: Maximization of Machines Utiliza-
tion: The second problem we consider is the maximization of
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the machines utilization. We show how to derive an optimal
control policy that myopically maximizes the machines utiliza-
tion, and we describe the developments within the first four
macro-periods: all buffers are empty; machine

breaks down; buffer becomes full;
machine gets repaired.

: The first macro-period, of length , starts at time
. The initial marking has discrete and continuous components

i.e., all machines are operational and all buffers are empty. The
set of admissible IFS is defined by the constraint setgiven
by (28). We solve the following constrained linear optimization
problem:

s.t. (32)

The solver provides the following optimal solution:
and , which represents an optimal control
policy to be adopted during the first macro-period. In particular,
throughout the interval , is increasing at a rate equal to
2, while the other buffers content are constant and equal to 0.
We assume that machine fails, i.e., transition fires, at
time . This macro-event ends the current macro-period.

: The second macro-period, of length , starts at
time . At the beginning of the macro-period, the marking has
discrete and continuous components

i.e., all machines—but —are operational and all
buffers—but —are empty. The set of admissible IFS
is defined by the new constraint set, that is obtained from

in (28) removing constraint 11 because buffer is not
empty and changing constraint 5 to

because machine is down. We solve the following con-
strained linear optimization problem:

s.t. (33)

The solver provides the following optimal solution:
and . This solution means that the failure of
machine forces machine to produce at a rate ,
thus increasing the content of buffers and . In partic-
ular, throughout the interval , the content of buffer is
increasing at a rate equal to 4 and the content of bufferis in-
creasing at a rate equal to 3. All other buffers are empty. Since
buffer has a finite capacity , it will reach its maximum
level after an interval of time

If we assume that no discrete transition fires before, at time
, buffer will be full and this macro-event ends

the current macro-period.
: The third macro-period, of length , starts at

time . At the beginning of the macro-period, the marking has
discrete and continuous components

i.e., all machines—but —are operational, buffer is full,
buffer is not empty, all other buffers are empty. The set of
admissible IFS is defined by the new constraint set, that is
obtained from in (28) removing constraint 11 because buffer

is not empty, and changing constraints 5 and 9 to:

because machine is down and buffer is full (i.e., place
is empty). We solve the following constrained linear opti-

mization problem:

s.t. (34)

The solver provides the following optimal solution: ,
and . Throughout the interval , the
content of buffer is increasing at a rate equal to 2 and the
content of buffer is increasing at a rate equal to 4. Buffer

is full, while all other buffers are empty. We assume that
machine is repaired, i.e., transition fires, at time .
This macro-event ends the current macro-period.

: The fourth macro-period, of length , starts at
time . At the beginning of the macro-period, the marking has
discrete and continuous components

i.e., all machines are operational, buffer is full, buffers
and are not empty, all other buffers are empty. The set of
admissible IFS is defined by the new constraint set, that is
obtained from in (28) removing constraints 7 and 11 because
buffers and are not empty, and changing constraint 9 to

because buffer is full. We solve the following constrained
linear optimization problem:

s.t. (35)

The solver provides the following optimal solution:
and . Throughout the interval , the
content of buffer is decreasing at a rate equal to 2 and the
content of buffer is increasing at a rate equal to 2. Buffer

is full, and all other buffers are empty.
Macro-Behavior and Phase Diagram:In the pre-

vious evolution, the myopic optimal control policy
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Fig. 9. Phase diagram of the FOHPN in Fig. 8.

that allows the maximization
of the machines utilization is defined as follows:

throughout
throughout
throughout
throughout

The developments discussed so far can be graphically shown,
as in Fig. 9, by means of the phase diagram of the net with regard
to the first four macro-periods.

VI. CONCLUSIONS

We have considered in this paper FOHPN’s, and we have set
up a linear algebraic formalism to study the first-order contin-
uous behavior of this model, thus showing how its control can
be framed as a conflict resolution policy that aims to optimize a
given objective function. Assuming that the instantaneous firing
speeds of continuous transitions are piecewise constant, we have
shown that the set of all possible behaviors of the net during
a macro-state can be represented by a convex set defined by
linear inequalities. The computation of the instantaneous firing
speed—and the associated problem of conflict resolution—can
be seen as the net counterpart of a performance optimization
with global or local objective functions.

Sensitivity analysis techniques have been also proposed in
this paper to obtain information about the degrees of freedom
that can be exploited when making performance optimization or
optimal design of the system parameters configuration. Finally,
we have discussed in depth a case study of a realistic manu-
facturing system with three machines and five buffers. In this
system, parts may fail their processing and thus may have to
be sent back for reworking or may be scrapped, and we have
introduced a parameter to take into account the possibility of

manufacturing different finished products according to an ar-
bitrary production mix. We have shown examples of how dif-
ferent control policies may be enforced by different objective
functions, of sensitivity analysis with respect to different design
parameters (machine production rates, reworking or scrapping
factor, production mix factor), and of evolution over more than
one macro-period.
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