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Abstract—We consider in this paper first-order hybrid Petri  transitions, either discrete or continuous. We assume that an au-
Nets, a model that consists of continuous places holding fluid, dis- tonomous timing structure (deterministic or stochastic) is asso-
crete places containing a nonnegative integer number of tokens, ¢iaiaq to the discrete transitions. On the contrary, we assume that

and transitions, either discrete or continuous. We set up a linear theinstant firi i£S) of th ti t .
algebraic formalism to study the first-order continuous behavior einstantaneous firing speedt=S) of the continuous transi-

of this model and show how its control can be framed as a conflict tions are control variables which may be chosen by the system
resolution policy that aims at optimizing a given objective function. ~operator within a given s&t C (RZ)"=, wheren,. is the number

The use of linear algebra leads to sensitivity analysis that allows of continuous transitions arRiS’ = R*T U {0}.

one to study of how changes in the structure of the model influence In the paper, we address two main issisline controland

the optimal behavior. As an example of application, we show how tructural ootimization Th i trol blemi th
the proposed formalism can be applied to flexible manufacturing structural optimization fne on-line control probiemt.e., the

systems with arbitrary layout and different classes of products. ~ computation of an optimal IFS vectere S, corresponds to a
conflict resolution

Conflict resolution is an important issue in the study of dis-
crete nets. Conflicts arise when a limited number of tokens en-
ables more than one transition, but it is only sufficient to fire

. INTRODUCTION a subset of them. Several schemes have been devised to tackle
A. Motivation this problem for discrete timed nets, includitaken reserva-

HE CONTROL of hybrid systems, i.e., systems with botﬂonS [2], resampling rulesgn(_j priorities [1]. TO. any of these
schemes corresponds a timing structure which imposes an

continuous-time and discrete-event dynamics, is a domain

. L 4 eDnori scheduling policy, i.e., the firing of discrete transitions
of increasing importance and several hybrid models have b €Nt controlled on-line. In FOHPN's. we adobt a similar a-
presented in the literature. Petri nets (PN’s) [17] have origina(%lla/ ' ’ P P

Index Terms—Flexible manufacturing systems, hybrid Petri
nets, optimization, performance evaluation, sensitivity analysis.

. i 4 roach and we assume thdiscrete transitiondire according
been introduced to describe and analyze discrete event systéms, ~. . L R
eir timing structure. Note that this is not a limitation, as
Recently, much effort has been devoted to apply these modgls .
. : . . these transitions are generally used to represent the occurrence
to hybrid systems (see Section I-C for a discussion of releva ; .
literature) of events whose delay is not controllable (e.g., the failure or the

. . repair of a machine).
The .u.sual tradeo_ff betweer) modeling power and analytlcael.l_he on-line control problem we address in this paper is that
tractability also applies to hybrid PN models. On one hand, therF . T .

. . . : of computing an “optimal” mode of operation of the net by
exist Markovian models with a powerful set of analytical too'éolving conflicts amongontinuous transitionsit continuous
[22]. On the other, there exist models that can describe Iart_?) r

classes of systems but that can be validated only by simulatC aggz g\;haer:eocgrr;[;}lfggsvfeli\;\fr glgrsatrgz dr(;l;tzd”:]neg;e ?oet.ra-\m-e
[10], or possibly if the incidence matrix can be defined for them, . P - . prog
by invariant analysis [2], [3], [14], [16]. ming problem (LPP). This leads quite naturally to teictural

In this paper, we present a model callirdt-order hybrid optimization problemin fact, the use of linear programming and

) ; . sensitivity analysis tools allows one to study of how changes in
PN's(FOHPN's) [6] . [8] t'hat is general enough to model CIaSS%ﬁe structure of the model influence the optimal behavior.
of systems of practical interest and yet whose first-order CON-| “ihe final section. we discuss as an example of application

tinuous behavior can be studied by linear algebraic tools. An : . )
. . . . ) manufacturing system. Manufacturing systems are discrete
FOHPN consists of continuous places holding fluid, discrete . )
- o event systems whose number of reachable states is typically
places containing a nonnegative integer number of tokens ah S :
very large, hence approximating fluid models have often

been used in this context [5], [11], [21]. The FOHPN model
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will be addressed applying sensitivity analysis to the FOHPN  changes in the structure of the model influence its optimal
model. behavior.

C. Relevant Literature

B. Proposed Model The hybrid PN model we propose follows the formalism de-

In the first part of the paper, we describe a general hybrid Fag¢ribed by David and Alla [2], [3]. In effect, our model can be
model based on the framework proposed by Alla and David [§g€n as an extension of timed hybrid nets with constant maximal
As in all hybrid models, we distinguish two behavioral levels.SPeeds with the following additional features: token reservation

At the lower level. the continuous evolution of the net is gds not used as a conflict resolution policy; stochastic transitions
scribed by first-order fluid models, i.e., models in which the corr® @lso included in our model; minimal firing speeds are con-
tinuous flows have constant rates and the fluid content of eatif€red as well. The novel contribution of our work is that of
continuous place varies linearly with time. Each model is rel§howing how the first-order behavior of such a net can be effi-
tive to a givermacrostateharacterized by the following: 1) the ¢i€ntly analyzed with a linear algebraic formalism.
discrete marking of the net and 2) the set of empty continuous-near algebraic techniques have also been used by Aetrah
places. al. [4] when modeling manufacturing systems with continuous

The macro-state defines the sebf admissible IFS vectors F¥ > These authors dea}l with open and'closed transfer lines
of continuous transitions. Since we consider the first-order b@_odeled bycontrolled variable speed continuous PNstype

havior, we assume that the IFS vector remains constant Wit@hcontinuous PN [3] with controllable maximal firing speeds.
a mac,ro—state en by using a constrained optimization approach, they ob-

At the higher level, a discrete-event model describ%:%unedopumalvaluesforthemachlneproductlon rates that bring

. e average levels of buffers to a desired values. However, it
the macro-behavior of the net that, upon the occurrence 0 : .
must be observed that transfer lines are not a general model, in

ma<_:ro-_even1;s evolyes through a sequence of macro-statet%.e sense they do not require scheduling and routing. Our work,
As it will be clear in the formal description of the model, we

consider the following two types of macro-events: 1) the firinmStead may deal with manufacturing systems in the more gen-

of a discrete transition, according to a given timin struc:tureraI configurations and settings.
: ' ding 9 9 " Another approach that extends the stochastic discrete PN
and 2) the emptying of a continuous place.

framework of [1] toward fluid approximations iuid sto-
A useful formalism for the analysis of discrete timed net [1] bp

deterministic timing structures. Thus, the resulting macro-be-A” these hybrid models discussed so far are fluid models

havior can be described as a generalized semi-Markovigll ‘the marking of the continuous places is a nonnegative real

process (GSMP). number. However, more general hybrid PN’s that also admit
The key features that represent the novelty of our approa}?ﬁgative-real markings have been propoggitferential PN's

are the following. have been presented by Demongodin and Koussoulas [14] and

* We allow the IFS of a continuous transitiésto be chosen can be used to model hybrid systems whose continuous evo-
by a control agent in a given rang€’, V;], whereV/ is lution can be described by a finite number of linear first-order
the minimum firing speedmfs) andV; is the maximum differential state equationsligh-level hybrid PN'g16] extend
firing speed(MFS). the hybrid framework to colored nets: the use of real numbers as

* We explicitly define the set of all admissible IFS vectorsolors allows one to model general primitives such as jumps in
v within a given macro-state. This set is characterized lilye state space and switches in the continuous dynamics, which
the feasible solutions of a linear constraint set. cannot be generally described with other formalisms.

* We consider the problem of choosing an optimal IFS In other approaches [10], the PN formalism is only used to
vector according to a given objective function. Our optirepresent the discrete state of a hybrid system, while the contin-
mization scheme can only lmeyopic[5], in the sense that uous state is represented by a vector (not by a marking) whose
it generates a piecewise optimal solution, i.e., a soluti@bitrary continuous evolution is modeled by differential alge-
that is optimal only in a macro-state. Although we provideraic equations.
the basic tools for the analysis of the overall behavior of The rest of the paper is structured as follows. In Section II,
a net, this paper is only concerned with the analysis ame introduce FOHPN's. Section Il is concerned with the com-
optimization within a macro-state. putation of the instantaneous firing speed of continuous transi-

» We adopt the optimal basis approach, i.e., the simpl¢ons and with different conflict resolution schemes. Section IV
method, to solve LPP. We show how one can naturalfjeals with the sensitivity analysis of this model. In Section V,
apply to the FOHPN framework those sensitivity analwe apply the previously developed results to a manufacturing
ysis techniques that pertain to LPP [15], [19] to study howsystem.
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Il. BACKGROUND

We recall the PN formalism used in this paper. For a more
comprehensive introduction to place/transition PN’s, see [17].
The common notation and semantics for timed nets can be found
in [1]. Hybrid PN’s are defined in [2].

A. Structure and Marking Fig. 1. FOHPN.

An FOHPN is a structuré/ = (P, T, Pre, Post, D, C).

The set oplacesP = P, U P, is partitioned into a set afis- continuous place a fluid volumes, denotes the marking of
creteplacesP, (represented as circles) and a setofitinuous Placep. The value of a marking at time is denotedm(7).
placesP. (represented as double circles). The restriction ofn to P, and P, are denoted withn¢ andm?®,

The set oftransitions?” = 7;; U 7. is partitioned into a set respectively.
of discrete transition&; and a set of continuous transitiofis ~ An FOHPN systemV, m(7)) is an FOHPNN with an ini-
(represented as double boxes). Thefset= 17 UTp U T is  tial markingm(o).
further partitioned into a set @dihmediateransitions?’; (repre-
sented as bars), a setadterministic timedransitionsI’ (rep- B. Enabling and Firing

resented as black boxes), and a sebgionentially distributed  The enabling of a discrete transition depends on the marking
timedtransitions7x (represented as white boxes). The cardjs 5 its input places, both discrete and continuous.

nality of ', Ty, andT.. is denoteth, ng, andn.. Definition 1: Let (V, m) be an FOHPN system. A discrete
The pre- and post-incidence functionthat specify the arcs ansitiont is enabledatm if for all pE*t,m, > Pre(p, t). M

are An enabled discrete transitiohfires (after its associated
PyxT—N delay) yielding the markingn’ = m + C(-, t). The firing of
Pre: + : " ;
P.xT— R discrete transitions may follow any of the common enabling
and and firing rules discussed in [1]. These rules—that define the
Py xT — N structure of the GSMP associated to the net—are well known
Post: {pc x T — RY. and are not further discussed in this paper.

) A continuous transition is enabled only by the marking of
We require vell-formed netpthat for allz € 7. and for all jts input discrete places. The marking of its input continuous

p € Py, Pre(p, t) = Post(p, 1). __ . _ places, however, is used to distinguish between strongly and
The functionD: T,\T; — RT specifies the timing associ- weakly enabling.

ated to timed discrete transitions. We associate to a deterministi¢yefinition 2: Let (N, m) be an FOHPN system. A contin-

timed transitiort; € Tp its (constant) firing delay; = D(t:). yous transitiort is enabledat m if for all p € @t, m, >
We associate to an exponentially distributed timed transitign.q(j, 1),

t; € Tpitsaveragefiringratd; = D(t;),i.e., theaveragefiring e say that an enabled transitio® 77, is:
delay is1/A;, where); is the parameter of the corresponding
exponential distribution.

The functionC: 7, — Ry x Rt specifies the firing speeds

« strongly enablectm if for all placesp € V¢, m,, > 0;
« weakly enabledtm if for somep € (Vt, mz=0. W

associated to continuous transitidnBor any continuous tran- . Remark_ 3: We _note that the definition of enabling we_have
sitiont; € T, we letC(#;) = (V/, Vi), with V/ < V;. HereV?! given is slightly different from the one proposed by David and
repres;nts tck'le mfs arltjZ represze’ntsZ t’he MFé. In trz1e foIIow7ing Alla i_n. [3], where it. was also requirgd that a weakly enaplgd
unless explicitly specified, the mfs of a continuous transitio[rﬁ"’\nSItlon be “fed, €., thqt there exists an upstream trgnsmon
will be V/ = 0. S rongly enabled feeding it. The two nqtlon_s lead to dlff_erent
We deznote the preset (postset) of transitioas*# (£*) and semantics for a cycle such as the one in Fig. 1. According to
the definition of [3], the two transitions are not enabled and the

its restriction to continuous or discrete place$@s= *tN P, le is blocked. whil dina t definition th both
or (¢ = *+ N P.. Similar notation may be used for presets ang’° ¢ 'S P'0Cked, whilé according to our detiniion they are bo

postsets of places. Thacidence matrixof the net is defined weakly enabled ar!d t_he_ cyple IS not. blocked. . .
asC(p, t) = Post(p, ) — Pre(p, t). The restriction ofC to To overcome this limitation, David and Alla introduced in
Py anéTy (XY ¢ f{c V) is de;woted’)’Xy. Note that by the [13] a new concept—that of-marking. If an arbitrary small
well-formed h;/potheSi;Q" -0 marking is initially assigned to any of the two places of the cycle
A marking de ' in Fig. 1, then both transitions can be considered weakly en-
abled. Thus, in this generalized framework, it is possible to as-
[ P4—N 1) sign to empty cycles two semantics: blocked cycles (those that
P - RE are empty) and nonblocked cycles (thesaarked).

. We believe that blocked cycles are not a useful modeling fea-

is a function that assigns to each discrete place a npnnegaHY for systems of practical interest, thus we have chosen to
number of tokens, represented by black dots and assigns to 83 just the second semantics S

IHereR} = R+ U {0}. The enabling state of a continuous transitigrdefines its
2HereRY, = R U {co}. admissiblanstantaneous firing spedtFS) v;.
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Fig. 2. (a) An FOHPN, (b) its phase-diagram, and (c) its evolution in time.

Definition 4: Let (N, m) be an FOHPN system ande 7. lengthA,. Leto(7;,) be thefiring count vectorat timery, i.e.,
be a continuous transition with IFS. a vector of dimensiomn, that specifies the discrete transitions,
« If ¢; is not enabled, then, = 0. if any, firing at timer.. Thus, the micro-behavior of an FOHPN

« If t; is strongly enabled, then it may fire with any firingis described during thkth macro-period by

speedy; € [V, Vi]. { me(r) =me(r) + Coo-v(ra) - (1 — 1)

 If ¢; is weakly enabled, then it may fire with any firing u oy 3)
speedv; € [V/,V,], whereV, < V; depends on the mi(r) = m(n)

amount of fluid entering the empty input continuousvherer € [y, 7,.41), While the evolution of the net at the oc-
place(s) oft;. In fact, the transition cannot remove moreurrence of the macro-events is described by

fluid from any empty input continuous plagethan the

guantity entered iy by other transitions. [ { me(n.) =m(1; )+ Cea-0(71) @)

The computation of the IFS of enabled transitions is not a mé(n,) =m(n)+ Cus-o(n).

trivial task. We will set up in Section Ill a linear-algebraic for- 1o macro-behavior of an FOHPN can be described by a
malism to do this. Here, we simply discuss the net evolutiqfhaqe_diagranin which every macro-state is represented by a
assuming that the IFS are given. , box labeled on the right by the lengtky, of the corresponding
The_ IFS_ attimer of atransitiory; € L.is denOt?d’i(T)' The macro-period. Each box is partitioned into two parts. On the left
evolution in time of the marking of a plagee P’ is described (iscrete part) the discrete marking' of the net is represented.

by On the right (continuous part) the continuous markiugof the
dmy(7) net at timery, is represented with the IFS_ vectrMacro-states
= Z C(p, t;) - vi(7). (2) are connected through bars, representing the macro-events that
tET, caused the state transitions. Each bar is labeled on the left (re-

spectively, right) by the discrete transition (respectively, contin-
uous place) that caused the occurrence of the macro-event. An
example is discussed in the following section.

Indeed. (2) holds assuming that at timeo discrete transition
is fired and that all speeds(r) are continuous ifr.

C. Net Dynamics D. Example

A macro-evenbccurs when: 1) either a discrete transition consider the net in Fig. 2(a) and let the initial time he
fires, tr_\us changing _the discrete marking or enabling/disablirﬁ-.qgacep1 is a continuous place with initial marking,,, (ro) =
a continuous transition or 2) or a continuous place becomé/eos> 0. Placess, ps, pa, ps are discrete places. Transitions
empty, thus changing the enabling state of a continuous trafddt, are continuous transitions with MFg andVs. We as-
sition from strong to weak. sumeV; a < Vs b (hereq andb are the arc weights given ite

Let 7 and 7.1, be the occurrence times of CONS€CUang Post). Discrete transitionss, ¢, 5, t¢ are exponentially

tive macro-events; the interval of timig, mi.41) is called gjstributed timed transitions whose average firing rates\are
macro-periodand its length is denotetd;, = 7741 — 7. A4, Az, and)g, respectively.

We will assume that the IFS of continuous transitions are con-\pacro-Period MPO: In the initial statep, is not empty and
stant during a macro—period. T_hus, th_e discrete marking and 5;5(? pa are marked. Thus, transitions andt, are strongly en-
IFS vector during a macro-period definenacro-statehat cor- 5pjed and may fire at their maximum speeds, i.e., we choose

responds to theariant behavior statesf [2]. vy = V1 andv, = V. The continuous marking of the net during
We now describe the dynamics of an FOHPN. tgbe the  this macro-period is given, as in (2), by

initial time, 7,(k > 0) be the instants in which macro-events
occur, ands(7y,) be the IFS vector during the macro-period of me(7) =my, (7) =co — (Vab— V1 a) (7 — 70)
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Fig. 3. FOHPN model of (a) a conflict-free re-entrant production line, (b) a free-choice conflict, and (c) a non free-choice conflict.

while the discrete marking is constant and given by to a particular objective function. Note that each&Sebr-
responds to a particular system macro-state. Thus, our op-
md = [y M, M, mps]T =[101 0. timiz'ation scheme can oqu hayppic[S], i|j the_ sense
that it generates a piecewise optimal solution, i.e., a solu-
Macro-Period MP1: Attime 7, = (co/(Vab — Vi a)) + 7o, tion that is optimal o_nly ina mgcro-period. _
placep; becomes empty, thus causing a macro-event. In the new* We compute a particular (optimal) IFS vector solving a
macro-statet; remains strongly enabled, whileis weakly en- linear programming problem, rather than by means of an
abled and may fire at most at spe®d = vy (a/b) < Va. As- iterative algorithm, whose convergence properties may not
sumev; = V; andv; = Vi (a/b). Then, the continuous marking be good. . o _ .
of the net during this macro-period is constamt; (7) = 0. * Linear programming Iegds to sensitivity analy_S|s, which
The discrete marking maintains the value it had in the previous ~Plays an essential role in performance evaluation and op-
macro-period since no discrete transition has fired. timization. In fact, we may be able to compute analyti-

Macro-Period MP2: We assume that the enabled transition  cally the objective function improvement due to a param-
t; fires at timer, > 7,. This macro-event changes the discrete ~ ©tér variation.
marking of the nettemd = [1 0 0 1]7. Now transition
to is disabled, i.e.y> = 0, while #; remains strongly enabled.A. Admissible IFS Vectors
Assumew; = Vi. Then, the continuous marking during this

L . In this section, we characterize the set of admissible IFS vec-
macro-period is given, as in (2), by

tors.
Definition 5: Let (¥, m) be an FOHPN system with. con-
me(7) = my, (1) = Via(T — 72). tinuous transitions and incidence mat@x Let T=(m) C T,

(Tn(m) C T.) be the subset of continuous transitions enabled
This behavior is represented in Fig. 2(b) and (c), which showisot enabled) ain, and P; = {p € P.|m, = 0} be the
the phase-diagram of this net and the evolution in timepf,  subset of empty continuous places. Amymissible IFS vector
Ui, V2. v = [v; --- v, |t atm is a feasible solution of the following
linear set:

Ill. FIRING SPEED AND DYNAMICS OF AN FOHPN

The computation of an admissible IFS vector of continuous (a) Vj—v; >0 Vt; € Te(m)
and hybrid nets is not trivial. In [3], an iterative algorithm was (b) v;—V/>0 Vt; € Te(m)
given to determine &ingle admissible vector; the algorithm (¢) v =0 Vt; € Tn(m) (5)
aims at maximizing firing speeds while respecting priority rules. (d) Clp, ;) -v; >0 Vp € Pe(m).

We propose a different approach in which we use linear inequal-
ities to characterize the s&tC (R{)"™< of all admissible firing
speed vectors. Each vectore S represents a particular modeThe set of all feasible solutions is denot8@vV, m). [
of operation of the system described by the net, and among alirhys, the total number of constraints that defigV, m)
possible modes of operation, the system operator may cho@ges card{7:(m)} + card{T)(m)} + card{Ps(m)} (here,
the best according to a given objective. There are several advg&rd{ A} denotes the cardinality of the sef. Constraints of
tages in our approach. the form (5.a)—(5.c) follow from the firing rules of continuous
* We can explicitly characterize the set of all admissiblgansitions. Constraints of the form (5.d) follow from (2),
IFS vectors in a given macro-state and not just compubecause if a continuous place is empty then its fluid content
a particular vector. cannot decrease.
* We consider more general scheduling rules than priorities.Note that if V/ = 0, then the constraint of the form (5.b)
For example, in an FMS, we may want to maximize maassociated t¢; reduces to a nonnegativity constraintgn
chines utilization, maximize the throughput of the system, Example 6: Let (N, m) be the net in Fig. 3(a), witlx <
balance the load, etc. Each of these problems correspof@s1), where place is initially empty. Such a net is represen-

~

t;€Te
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tative of a re-entrant production line. Hence, according to thmus places, since the computation of an admissible IFS vector
previous definition is only affected by this type of conflicts.
Example 11:Consider the net shown in Fig. 3(b). When

- > . . X
“ﬁl _ Zl > 8 placep is not empty, botlis and¢s can fire at their MFS. When
UQ v 2 >0 (6) placep is empty, however, the output flows + v3 is bounded
1, V2 =

by the input floww, , thus inS(V, m) there will be a constraint

—(1- >
n-(l-ajy 20 of the form (5d) related to plagethat writesv; > w2 +v3. This

is the linear constraint set that defin®&V, m). B constraint expresses the fact that we have a limited amount of
We now discuss under which conditions theSé&W, m) ad- resource (the input flow) that must be shared between different
mits feasible solutions. When no feasible solution exists, no gatocesses (the output transitions). |
missible modes of operation is allowed by the net. First, we There is no conflict in a net, instead, if each empty place
make the following observation. p € P, has at most one enabled output transition 7... This
Remark 7: Any constraint of the form (5d) related to anmotivates the next definition.
empty continuous place can be written as Definition 12: Let (N, m) be an FOHPN system and
S(N, m) be the linear set defined by (5). We say ttétis
Z ajvj Z Z Xk Vk () continuous conflict-fre¢CCF) atm if for all constraints of the
ied ek form (5d) rewritten as (7) holds: café } < 1. [ ]
with J N K = @ ande;, oy € RT. The set/ (respectivelyX) In the rest of this section, we discuss the relationship between
contains the indices of the continuous transitions whose firimgnflict resolution (i.e., the computation of IFS vectors) and per-
increases (respectively, decreases) the markinpg of O formance optimization.

Definition 8: Let (XN, m) be an FOHPN system. Atransition If we set our goal to maximize the firing speed of the con-
t; € T is calledmfs-freeat m if at least one of the following tinuous transitions, it is possible to show that in a continuous

conditions holds: conflict-free FOHPN each component of the IFS vector may be
1) the mfs oft; is ij =0 maximized independently.
2) t; has no empty input continuous places, e ()t : Theorem 13:Let (N, m) be an FOHPN system. I¥ is CCF
my > 0. Hm atm, the optimal solution* of the following LPP

We can now provide a sufficient condition for the existence
of admissible IFS vectors.

Proposition 9: Let S(N, m) be the linear set defined by (5). v € S(N, m)
Such a set is nonempty if &} € T (m) are mfs-free ain. ) )

Proof: Letv™" be such that™™ = 0if ¢; € Tyr(m), iSsuchthavv &€ S(N, m), v <v* (componentwise).

elsev™™ = V!, We prove that™® € S(N, m). Proof. Let® be the (componentw[sel)ag operator, i.e.,

Clearly this vector satisfies all constraints of the forr®? ¥ = (w; @ i) = (max{w;, y;}:. Itis sufficient to prove
(5a)—(5c). Moreover, from Remark 7, it follows that anghat if the netis CCF, thew, y € S(N,m) — w @y €

max 17w s.t.

constraint of the form (5d) can be written as S(N, m). _ _ _ _
_ _ Clearly, if w andy satisfy (5), therw & ¢ will satisfy all
>t > Y agepn constraints of the form (5a)—(5c). Under the hypothesis of con-
i€ keK flict-freeness, we can write any constraint of the form (5d) as-

and the right-hand side of this equation evaluates to 0 by theciated to a place as follows:
assumption that all enabled transitions are mfs-free. Thus, this1) ZJ.EJ a;v; > 0if no enabled transition outputs from

constraint is satisfied. O placep;
As a counterexample, we show that no feasible solution may 2) chJ QjV; Z QowVout if tout iS the only enabled tran-
exist if one (or more) continuous transition is not mfs-free. sition outputting from place;
Example 10: Consider the net in Fig. 3(a) with = 0. Let  \ith 0y Qo U, Vo € R
mp = 0andVy > Vi > V{ = 0. Thus, transitiort; is not  |n the first case, we have that
mfs-free. The se5(N, m) is defined by the following set of
inequalities:
Vi—wi >0 doalwi@y) = | Doy | @ | agy;
1 1 - jeJ JeJ jeJ
Vomve 20 >040=0
vl >0 (8) - B
!
v2— Vs 20 while in the second case, we have
UL — V2 20
that clearly admits no feasible solution. |
Yoalwiey) 2 | D agw | @ | D agy
B. Conflict-Free Firing Speed Computation jed jed jed
By the formalism previously introduced, we define the con- 2 (outWout ) @ (QoutYout)

cept ofconflictin a net. We will only treat conflicts at contin- = out (Wout B Yout )
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i.e., the vectowr ¢ y satisfies all constraints of the form (5d) adn the manufacturing domain, this may correspond to mini-
well. O  mizing the work-in-process (WIP).

In the case of CCF nets, the optimal solutwnin the pre- A different optimization procedure is based giobal prior-
vious theorem coincides with the solution computed with thges (GP). In this case, we have a multiobjective performance
priority algorithm in [3]. It may be interesting, however, to comin which the goals have different priorities. We first look for all
pare the two algorithms via an example. solutions that optimize the first goal, then among them for those

Example 14: Let us consider again the net in Fig. 3(a) whosthat optimize the second goal, and so forth. We discuss a simple
set of admissible IFS vectors is given by (6). If we computease in which each goal consists in maximizing the IFS of a
the vectorv* solution of (6) that maximized = v; + v2, we single transition, though this result can be easily generalized.
clearly obtairv; = V; andv} = min{(1/(1—«))V1, Va}. This Definition 15: Let (N, m) be an FOHPN system and
example is so simple that we can write the solution in clos&{ N, m) be the linear set defined by (5). Assume that the
form; in more complex cases, the solution can still be easitpntinuous transitions of the net are ordered in a priority
found solving the associated LPP. If we apply the procedusequence; > t; > --- > t,_ . The GP-optimal solution for
proposed in [3], we obtain at the first iteration step= Vi, S(IV, m) is defined by
while to compute the IFS of transitian we need to solve the

following iterative problem: v] = max{v|ve SN, m)}
o 0 vy = max{v|v e S(N, m), vy =]}
Uy ==
vy = max{vzlv € S(N, m), v1 =vj, va = v}
{Ug-i—l — min(Vi + - ok, Va) 3 {va| (N, m), vy =], v2 =03}

and forV; < (1 — a)Va, the algorithm requires an infinite .

number of steps to converge to the correct vaje= (1/(1 — Wherev" =[] --- v |7, _ u

a)Vi. ] The GP-optimal solution can be found by solving LPP.
First, we compute7; then, we add to (5) the constraint = v}

C. Global Conflict Resolution and maximize/ = v, etc. Note, however, that there exist other

techni based on lexi hic ordering [9] that Il
When the net is not conflict-free, not all firing speeds may b§c niques based on lexicographic ordering [9] that may we

imized ind dently. H | find out e meaningfully used to compute the GP-optimal solution by
maximized indepencently. However, we can always tind ou s%lvingasingle LPP with a suitably modified objective function.
conflict resolution policy by solving an LPP aimed aglabal

timizationof th ‘ Wi ider diff Example 16:Consider the net in Fig. 3(c) with
optimizationof the system resources. We may consider differept ~_ "y~ _ 1 ' _ v, Z v, = 7, and placess;, p

. . . . . . 1
pe_rformance indices as the ob]_ect|ve function in the LP formHﬁitially empty. We apply the method discussed above to obtain
lation Qf t.he problem. We consider some examples. _ * =10 7 3 3 10]Z. Note that by applying the algorithm
Maximize Flows: Inan FOHPN, we may consider as Opt'mal;roposed in [3], we obtaim = [10 3 7 7 10]”, which is an

tlhTe solutrllc')rz . of $5) thatmatxmdlzzstthe pe.rfqrm?rr]\ce indgx: dmissible IFS vector even though it does not have the same
-v, which is of course intended to maximize the sum overar?IrOIDertieS of the GP-optimal solution. -

flow rates. In the manufacturing domain, this may correspo dAccording to the next theorem, a GP-optimal solution is

o max.im.izing machines utilization. . a basic solution of any LPP subject &N, m), hence, it is
_MaX|m|ze Outflows:lln an FOHTPN’ we may want to MaX- amenable to sensitivitz analysis Jas i';R\]fvill be)discussed in the
mize the performance indek = a' - v where following section.
Theorem 17: The GP-optimal solutiom™ is unique and it is
a vertex, i.e., a basic solution, of the feasible regsgtv, m).
Proof: Let So(N,m) = S(N,m) and S;(N, m)

In the manufacturing domain, this may correspond to max?—.llsi—l(N’t;nz m“{”h’i. n Uigs‘f%z =1 "'I’ Tre — tl'. we ¢
mizing throughput. will prove that all vertices ofS;(N, m) are also vertices o

Dynamic Flow Balancing:This problem consists in re- Si—1(V, m). In fact, the hyperplanfév|vi - Ui]f does not cut
ducing the difference between maximum and minimu e convex sefs;_1 (N, m) in any interal point because by

utilization of continuous transitions. The utilization ofCS”_SUUCt'O”{“"?i > v} 0Si-1(N,m) = 0. :I'he solunon
a transitiont, € 7, can be given as the ratio;/V;. is necessarily unique /because*for all if v = for
Then, we may want to minimize the performance index = 1 =P < neandv, ., < vy, thenv’ cannot be a
J = max;jex {v;/V;} — minje e {v;/V;} for a suitable index P-optimal solution. =
set K. In the manufacturing domain, this may correspond : .
balancing the machines Ioagd. y P tIS Local Conflict Resolution
Minimize Stored Fluid: In an FOHPN, we may want to min-  The use of a performance index to be maximized (or mini-
imize the derivative of the marking of a plapec P.. This can mized) over the space of all admissible IFS vectors corresponds
be done by minimizing the performance indéx= o -w where to a global optimization procedure. It is often the case, how-
ever, that local rules are used to determine the operating mode
0 — {C(p, ), if t; € p© U ©p, of a system described by a hyprid net. Thege rules correspond
I 0, otherwise. to decisions that can be taken in a decentralized way.

L if ¢; is an exogenous transition,
=0, if ¢; is an endogenous transition.
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We consider the case of nets where all conflicts faee- Ay p: V2 \E]
choice i.e., if a continuous place has more than one output | Z\_ vi<4
continuous transition (e.gp{ = {t1, ta, -- - £} with k& > 1), ot A)
then it is the only continuous input place for all those transition =4 VbV, Vs
(i.e.,@t; = {p}, j =1, ---, k). The conflict in Fig. 3(b) is B _,
free-choice, while the two conflicts in Fig. 3(c) are not. Wher ts o0l 5%

the conflicts are not free-choice, the local optimization rules de- @ ®

scribed below may not be well founded.
Fixed Ratio: One particular simple rule that may be used t?ig. 4. (a) FOHPN model of a manufacturing service. (b) The feasible region
. . . LT or the IFS vectors.
locally solve free-choice conflicts is that of assignindixed
ratio of fluid volume to all enabled continuous transitions that
take fluid out of an empty continuous place. As an example, inNote that whenV;, = 0, the slacks,; and the corre-
Fig. 3(b), we may assign a ratie = swv3, s € R. This new sponding constraint can be removed from the LPP given by (9)
constraint can be added to the Sedr, even better, by substitu- by adding a nonnegativity constraint og, .
tion we can reduce by one the number of variables in (5). Herex is a vector with? 4 k variables A is the/ x (£ + k)
Local Priorities: We can also consider the casdadal pri- matrix constraints, and we assume thatas full rankc is the
ority rules by a suitable modification of the linear set (5). As{¢ + k)-vector of the objective coefficients, whilerepresents
sume that in Fig. 3(b) a legal solution is such thatas priority  the /-vector of the right-hand side constants.

overts, i.e., all fluid entering placg should be consumed iy In this work, thesimplex methoavill be used to solve LPP.
and only ifv; = V5 the remaining fluid should be consumed byrps is an iterative method in which at each step and in an effi-
t3. This can be done adding the following constraints: cient manner, a new basis is computed. Each basis represents a
vertex of the feasible region. We denote an optimal solutign
{ Mz 2V —ws the corresponding optimal bad#g(a set off variables), andi;;
vy < M (1—x) the optimal basis matrix obtained by taking only those columns

. ) . of Awhose corresponding variables arg3nAn optimal solu-
wherez € {0, 1}, M € Rwith M > 0. Thus, ifvs < V2 it {jon £ can always be written as

follows vz = 0. The problem with this technique is that a simple
LPP is transformed into a more complex mixed integer-linear .
problem. 20— V%} _ |:AB b} '
5 0
IV. SENSITIVITY ANALYSIS FORFOHPN

The LPP stated in the previous section may be solved takingThe variables in5 are the basic variables, while the others,
into account only the constraints related to enabled transitiombose set is denotetl’, are called nonbasic. Note that the op-
since we know that the IFS of transitions that are not enabled #éiraal solution may be degenerate, i.e., we have many basis as-
0. Letl; = {ay, ---, au} be the set of indices of the enabledsociated with it. It may also be the case that more than one basic
continuous transitions ankl = {aak+1, - - -, a} be the set of optimal solution exists.
indices of the empty continuous places. Thus, we can write Example 18: In Fig. 4(a), itis represented the FOHPN model

of a manufacturing service, where transitignmodels an un-

max Z ¢j vj s.t. reliable machine and transitiorts and ¢3 represent the out-
jcl, flows from bufferp;. A buffer capacity 0 is imposed by the
( Vo, + 51 =V, co-buffer placep,. The maximum production rate of the ma-
chine is bounded by the MF& , while the maximum outflows
Vo, + Sk =V, rates cannot exceeld a_nd Vs, respectively. _The discrete part
Va, — Ski1 =V of the net models the failure/repair stochastic process of the ma-
chine by means of exponential transitiagnsindt; with average
Ve, — S2k =V firiqg rates A4 _and As, res!oectively._The machine is oper.at.ing
Z Clpe £)0; — saps1 =0 while placeps is marked (i.e., transitioty is enabled) and it is
= 2kkLr 1 down when place, is marked.
The constraint set associated to this net from the given
> Cpas ti)vi — se =0 marking is
\ jel,
552 0. 9) L <5
.. T . v2 < 5
Defining vectorz = [va, < va, S1 --- s¢]*, we obtain the
following standard form: v s4 (11)
—v1+v2at+vys <0
T vVl — VU2 — U3 S 0
mjx{c z|Azx =b, x > 0}. (10) 1, Ve s > 0.
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We take as objective function to be maximizéd= v» + v3, of Ag(g) and b(g) with respect tog;. Furthermore, if the
representing the overall output flow, and we obtain the followingptimal solution is not degenerate, then the obtained sensitivity

LPP in standard form: is unique. For simplicity in this presentation, we make the
following assumptions.
max vz + vs S.t. 1) Only one parametey; varies at a time, that igg = g +
v1 + 81 =9 Ae;, wheree; is the:th canonical basis vector. Under this
v2 + $2 =5 assumption, the sensitivity given by (14) can be regarded
vz + 53 =4 as function of\ in the allowable range.
vl — V2 — Vs =0

2) Matrix A and vectom are linear functions of the param-

] o ) eterA. Thus, we can write
Note that we have not written the nonnegativity constraints

and we have packed together the last two inequalities of (11). Ap(N) = Ap + A\
There are infinitely many optimal solutions of the form= 5, B(\) = b+ Ab*

vy =y, vz = 5 —ywith y € [1, 5], represented by the thick
line in Fig. 4(b) in the plane;, = 5. Two of these are basic
solutions:wi sy = [5 1 4]F andwigy = [5 5 0]'. Point
(A) is a nondegenerate solution with basic variablesss, vs,
so and basigfsy = {v1, v2, vs, s2}. Point(B) is a degenerate
solution with two optimal basisBg; = {v;, va, v3, s3} and As(\) = Ap +2\AL = As + ratel.
Bpz = {v1, v2, s2, s3}. Furthermore, we observe that(®) J

there is also another bagig;s = {v1, v2, 51, s}, whichisnot 1\ hat follows, we consider separately linear perturbations

optlmaI: . . , of the right-hand side vector and of the matrix coefficients.
Sensitivity analysis refers to the study of how optimal solu-

_tions change accor_di_ng to changes qf the gi_ven linear ProgrgM perturbation of the Right-Hand Side Vector
in terms of the coefficients of the matrix, the right-hand side and ) ) .
the objective function. Suppose that the LPP (10) has an optimal//é assume that the right-hand side constant vdctaries
solution. If there is any change in the valuesgfc;, ora,;, the Inearly with the parameter € R, thatis(A) = b+ Ab". Inthe
optimal solution is likely to change in general FOHPN framework, this perturbation corresponds to changes in
. ) " T oo

In the next sections, we will develop sensitivity analysis witf1€ entries of the vectdf = [Va} o V/"k] ' Wf)'cg denptes the
respect to the design parameters by assuming changes in'{#ie& Vector. and of the vectdf” = Vg, --- V,, ", which de-
right-hand side vector and in the matrix coefficients. PerturbB9t€S the mfs vector. As an example, in a manufacturing system

tions in the cost coefficients will not be considered in this workVe May want to add servers to a machine in order to increase
the overall productivity of the system.

A. Perturbed Model If only V,, is_ perturbed, theb” = ¢; fori = 1, E k. We
] ] ) . may also consider the case whéfg andV,. vary simultane-
The perturbed linear programming problem considered in thiq)y with the parametex. As an example, if we consider that
paper is defined as follows: some servers are shifted from transitigrto #; or vice versa,
then we haveV,,, = V,, + AandV,, = V,, — A, hence
b" = e; — e,. Similar considerations apply when the mfs of a
continuous transition is perturbed.
whereg = [go - -+ gp]* is a vector of uncertain parameters. The Let z° be an optimal basic solution of (10) a#tlan asso-
nominal value is denotegl For a given value o, the optimal ciated optimal basis. The perturbed optimal soluti6f\) has

whereAz = Ag(g), b = b(g).
3) The variation of each parametgrinfluences only one
column, say theth, of matrixAz(\). Then

max {c"'z| A(q)x = b(q), > 0} (12)

solution of (12) is basic components
o A (@b 2 = AZT6(N\) = AZH (b + b)) = 2% + Az} 15
2°(q) = [::f/((qq))} — [ 3 (g) (4)} (13) zi(A) 5 0(2) 5 (b+0° ) =z + Az (15)
where 2 = Ag'b = [A1--- 3% and =y = AZ'b"

We compute with the simplex method an optimal solution i [3; --- 3;]”. The optimal value of the objective function is
g and the corresponding optimal ba#isThe sensitivity of the

basic variabless(g) with respect tog; can be computed, at J(A) = cgxg(N) = iz + Aegxy = J + AJ*. (16)
least within a certain domain where the optimal basis does not
change, by taking the partial derivatives Whenbd* = ¢;, the derivative of the objective function with

respect to the parametgyi.e.,(dJ(A)/d\) = J*, is also called
oz5(q) 1, (Ob(@) 0As(Q) ,_ dual priceof thesth resource. It represents the amount by which
=45 (@) <a—% g B(Q)) (14) the optimum will increase if the availability of the resource as-
sociated to théth constraint (i.e., the right-hand side of the con-
while the nonbasic variabless (g) do not change. Equation straint) is increased by one unit.
(14) shows the effect on the optimal solution caused by a smallEquations (15) and (16) hold only wharbelongs to a certain
change ofg;. It is only required first-order differentiability interval Az = [As, As], also called thallowable rangewhere
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the optimal basi#s remains unchanged. This requires nonnegassociated to the optimal badfs and 53, respectively. Then,
tivity of the basic variabless%(\) > 0, and the bounds for the the derivatived./(A)/dX of the objective function (16) with re-

parametep can be computed as follows: spect to the parameteris continuous and constant over all the
interval A = Ag, UAg, U Ag,.
—00, if It=10 Proof: Over each intervahg, , fori = 1, 2, 3, the deriva-
A5 = 9 o {_&} (17) tive d.J(\)/dX is continuous and constant, sd, J5, and.J5.
icI+ 3F SinceA g, NAg, is an interval of nonzero length, theii = J3.
and A similar reasoning shows thaf’ = J; and this complete the
400, if I—=490 proof. O
o {_E} C. Perturbation of the Matrix Coefficients

We assume that the basis matdg varies linearly with the
whereIt = {i > 1|3; > 0} andI~ = {i > 1|3} < 0}. Since parameter\ € R, according tadz(\) = Az + A\Aj = Ag +
Ay' is invertible, thend;'b* # 0, i.e., either\s or Az must Aa*el,i.e., we assume that only thith column ofAs may vary.
be finite. Inthe FOHPN framework, this perturbation of tjta column

Much attention has been devoted in the literature [18], [18brresponds to changes in the weights of the arcs between con-
to the case in which the optimal soluties? of the nominal tinuous places and transitiop, as it can be seen from (9). Mul-
LPP is unique. In this case;” is not a degenerate solutiontiple variations of the coefficients along a column correspond
and the unique optimal basis remains constant within the @ a redistribution of the inflow or outflow of a single contin-
lowable range, therefore the value of the objective function igus transition. In a manufacturing system, this situation is quite
linear in A. As A reaches the boundary of the allowable ranggommon and it arises when we deal with changes of the per-
a degenerate solution is found, a new basis can be compuieditage of parts that need to be reworked or with changes of the
with an allowable range that will not overlap the previous onguting coefficients. The results we present here also hold when
except at the end points. As the basis changes, the derivaivsingle row ofA varies linearly with the parametar Never-
of the objective function with respect to the parametgi.e., theless, this case is less relevant in the context of FOHPN.
(dJ(X)/dX) = J*, may also change, thus it may not be defined Let z° be an optimal basic solution of (10) afidan associ-
only at a finite number of points whereas we can instead provigéed optimal basis. We recall the matrix equality
right and left values. In the manufacturing domain, this non-
differentiability behavior has been already observed in tandem | . =1 1 Agla*e]TAgl
lines by Fu and Suri [20] when the average production rates oAz (V) = (AB + Aa’e; ) =4z - 1t A lan
two machines are equal. With our approach, the result is imme- E
diately generalized to more general cases. The perturbed optimal solutiaf (A) has basic components

However, the situation can be more complex when more
than one optimal solution exists, as we show in the following
example. Multiple optimal solutions represent the degrees of
freedom in the optimization procedure.

Example 19: Let us consider again the net in Example 18vherezy; = Ag'b, o = Ag'a*el Az'b, andv = el Ag'a*.
There are two optimal basic solutior{s}) and(B), and three The relative cost coefficient vector of the optimal solutiigA)
optimal bases. We apply the previous methodology to eaish
basis to obtain the following allowable rangéss:,, = [—1, 4], \

Ag,, =10, 4], andAg,, = [-5, 0]. As expected, the intervals r(\) = (chgl()\)A)T —e=7r"— — _¢* (20)
Ag,, and Ag,.,, corresponding to the same optimal basic 1+vA
terval A, ortesponding 16 he optimal basic solua) | MTEET = (A AT — 6 5 = (chAg'a'el Az A"
overlaps béth of them. This observation allows us to state thFa{Pa"y’ the optimal value of the objective function is given by
the interval in which the derivative of the objective function A

remains constant id = [—5, 4], hence, it is larger than the J(N) = cxap(N) = cpap — H—Mcgiﬂ?s- (21)
allowable range associated to each basis. |

Motivated by the previous example, we can state the nextEquations (19)—(21) hold only when the parametéelongs
proposition that applies to the case in which there are two dp-a certain interval\s = [As, A] wherein the optimal basis
timal basic solutions of a given LPP and that can be naturalyremains unchanged. This requires the following: 1) nonsingu-
extended to the case of more than two solutions. larity of the basis matrix, i.eL+wvA > 0; 2) nonnegativity of the

Proposition 20: Let 3¢ andzg be the optimal basic solu- basic variablesg%(\) > 0; and 3) nonnegativity of the relative
tions of the LPP (10), and let the perturbed solutions take thest coefficientsy-(A) > 0, i.e., the optimality condition. Note
form given by (15). Lez3¢ be a nondegenerate optimal soluthat the first condition can be written dst(As +)\a*eJT) # 0.
tion with allowable range\s, = [As,, As,] associated to the Moreover, it holdslet(Az + Aa*e] ) = (1+wvA) det Ap. Since
unique optimal basi#,, andz¢ be a degenerate optimal solu-our interest is in the behavior arougd= g, condition (1) be-
tion with allowable ranged s, = [As,, 0] andAs, = [0, As,] comes thadlet(As + Aa*e]) # 0 has the same sign dst A

A

T3V = A5 (Wb =2 — 1

g5 (19
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050.8 From the given marking, being plapeempty, the constraint
4 (D) 008 set associated to this net is
(A) \ ©
o=0 0<0<0.8 U1+ 81 =W
®) v2 + 52 =V (25)
o : Ve v3 + S3 =V

—v1+v2(l—a)+vs+ss =0.
Fig. 5. FOHPN model of a re-entrant service and its feasible regions.
Now solving formax{vs +vs } subject to (25), we obtain the
optimum firing speed allocation (production rates) which maxi-
and this condition is equivalent b+ vA > 0. The bounds for mjzes the machine utilization. As discussed in the previous sec-
the parametek can be computed as follows. Let us define  tjons, this LP formulation allows us to make sensitivity analysis,
that is, we can make perturbations of the elements of the LPP,
e.g., the reworking factat, the maximum machine production
y=|Z5 y = | Ts rateVy, and the maximum outflow ratd$ and Vs, to perform
o - optimization. First, we consider the case in whicis changed
to a+Aa and then the case in whidfy are changed to; + AV;.
LetV; = 5,V, = 5,andV; = 4. InFig. 5, we have shown the
feasible regions in the plang = 5 for this LPP. The thin lines
labeled by the different values af represent the fourth con-
straint. Note that forv = 0, we obtain the same results already
developed in Example 18, where we have two optimal basic so-

and let us consider the following sets of indicés: = {i >
Woy; — yf) > 0} andI— = {¢ > 1|(vy; — y) < 0}. Then,
we can easily find

—0, | it It =0 lutionsw(y) = [Vi, V2 — Vs, Va]” andup) = [V, Va, 0],
As = max {_L*} (22) i.e., points (A) and (B), and the optimal value of the objective
icrr VUi — Y function J is equal toV,. For0 < a < (V3/V3), there is a
and unique nondegenerate optimal basic solution [point (C)]
B +o0, if I—=90
)\B: Inin {—yiz*} (23) 1'.08(,' :[Via Vv?a Vi—(l—a)‘/?’ V’g_v’l+(1_a)V'2]T
iel= VY —Y;

with an associated optimal badtg: = {v1, v2, v3, s3}, which

From (19) and (21), we observe that the optimum IFS vectgje|ds an optimal objective function value equalitp+ a'Va.
and the objective function do not vary linearly with the pagorq = (V5/V4), we have a degenerate optimal basic solution
rameterA within the allowable interval\s = [As, Ag] as it [point (D)]. Finally, for o > (V3/V3), the fourth constraint be-
does happen if the perturbations of the matrix coefficients agmes redundant and the unique optimal basic solution [point
made infinitesimally small. Therefore, the gradient of the oyp)] is simply given byzg, = [Vi, Va, V3, Vi—(1—a)Va—
jective function with respect to thgh column vector ofA, say  v4]7 with optimal basi®3, = {v1, vz, vs, s4} and optimal ob-

a; = Aa”, is a nonlinear function of the parameterin partic-  jective function value equal t&; + V5. Therefore, we will only
ular, if v # 0, for each value oh € A such thath # —(1/v),  consider perturbations of the parametdor o € (0, (Vs/V2)),
the derivative of the objective function with respect to the pgghich yield nontrivial sensitivity analysis for the objective func-
rameterA can be easily computed as tion J = vy + vs.

Now computing the bounds for the parameteo obtain the
allowable range\s,. for the optimal basid3-, we must con-
sider/t = {3} andI~ = {4}, wherev = 0 andz}; =
[00 =V, Vu]%. Then, it follows

dJ(N) 1

A (I+on2®

5. (24)

Note that in the case af = 0, the objective function/( )

varies linearly with the paramet&within the allowable interval Mg, = |(1—a) = W (1—a)+ Vs—W1
As. Vol V2

within which we can calculate the partial derivative of the objec-
tive function.J with respect to the reworking factarby making

In this section, we consider a simple FOHPN which repréise of (24). In this simple case, it does regal/ /0a) = Va,
sents a re-entrant service, as shown in Fig. 5, that will clarifyhich is constant over the intervals,..
our developments. In this net transitidn,models the produc-  Now let us suppose that the MRS is perturbed, that isy
tion of a machine whose maximum production rate is boundétianges td; + A. Then, applying the method developed in the
by the MFSV;, while the maximum outflow rates cannot ex{revious sections, we compute the characteristic intekyal
ceedV;, and Vi, respectively. The routing coefficient, with ~ for the design parametéf; as follows:
0 < « < 1, represents the percentage of parts that are required
to be reworked on the machine (reworking factor). Ap, = [max((1 —a)Vo — V1, =V1), V5 = V1 + (1 — o) V3]

D. Example: Sensitivity Analysis for a Re-Entrant Service
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Pani class 1 . Prui Such amachine is described by the following set of equations:
v < Vi (a)

.
opi =Y vl (b)
g=1

(26)

Equation (26b) warrants comment. It is derived from two in-

equalities
”
UM 2 Z Vi
classt 7 g=1
Fig. 6. The FOHPN model of a multiclass machine. v < Z U?\h"
q=1

within which the IFS vector and the objective function vary lin-

. . : The firstinequality is imposed by the empty continuous place
early with \. As a numerical example, it = 0.5, then we have Irstinequalty1s Imp y Py inuousp

pu; thathas aninput arc from,; and an output arc to eacly,, .

AVy =[Vi — 25, Vi +1.5] for V; The second one is imposed by the empty continuous plgce
AV, = [Va — 3, {/2 + 5], ’ for V, that is complementary to plage,;. These two places form a
AVs = [V — 1.5, 400, for Va structure that we caltero-capacity bufferNote that removing

vasi, (26) can be simplified to

which represent the allowable right-hand side ranges for the
basisB. to remain unchanged. ~

Z Unri S V]\h‘. (27)

V. MODELING MANUFACTURING SYSTEMS WITH FOHPN =t

We show in this section how FOHPN's can be used to model

manufacturing systems by means of first-order fluid approximB Example: Network Layout

the literature, and the readers are referred to Chen and Man@gting of two shaping machines and an assembly machine with
baum [11] for references on tlikeid approximation theory  twq classes of parts flowing through, as shown in Fig. 7. Parts of
classes 1 and 2, coming from external independent sources, are
gueued in bufferd3; and B;, which are both feeding machine

We consider an FMS consisting of a setafingle-server sta- My, and then start the processing at machifig
tions among which different classes of continuous flows (fluids) The arrival flow of parts of class 1 may be controlled by the
are circulated and processed as in [5]. A machitfigis rep- plant operator within the rand&’! |, Vin1]; the arrival flow of
resented in an FOHPN by a continuous transitign € 7., parts of class 2 may be controlled within the rad@eVi, .
whose firing corresponds to a continuous production at a r&effer B, has a finite capacit¢’'g» while buffer B; has an un-
var- A buffer B; is represented in an FOHPN by a continuoulimited capacity. At the exit of maching/; parts of class 2 are
placepg; € F., whose marking represents the current buffeeady to enter the assembly machit®, while parts of class
content. Parts of different classes are routed from machinesltéiow into the bufferB3 with finite capacityCg3, then to ma-
buffers and vice versa according to their production cycles. ¢ghineM,, where after the processing some parts may require to
transition associated to the routing, say, frafa to B;, is de- be reworked on the same machine (paramejeAt the exit of
noted¢,s;, ;. The occurrence of discrete fail/repair events ismachines\/; andM,, parts of both classes are respectively col-
modeled by discrete transitiong ;; andt,. az;. lected in the buffer$,; and B,» with unlimited capacity and

To describe multiclass machines and buffers, it may be neben are packed together by the assembly machine according to
essary to impose synchronization constraints among continuauspecified production mix (parametg). The maximum ma-
transitions. As an example, let us consider a multiclass sing#tines production rates are denotég , V2, andV,,,. Since
input/single-output machiné/;, where parts of clasg arrive machines are unreliable, we must also take into account a cer-
from buffer B, and after being processed are routed to bufféain failure model.
B.,4. Such a machine is modeled by the net in Fig. 6. Here, theAlthough this model may seem quite simple, it captures the
continuous transition?,, (¢ = 1, ---, r) represents the flow key difficulties of common control problems arising in manufac-
of parts of clasg machined byM;, and transitiort,;;, whose turing systems, such as dynamic scheduling and routing policies
MFS isVy;, represents the total flow of parts processedfly as well as production rate selection. Problems of parts routing,
We assume that the production of any part class is not singulaalygmission, and service rate selection have been deeply studied
bounded, i.e., the MFS of eac}y,; is co, while we assume that in recent years. In fact, for a simpler production network model
the machine has an overall maximum production rate, denotbdn the one proposed here (e.g., a tandem two-station network
Vs with two part classes—parts of class 2 visit machide only,

A. Notation and Machine Model
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class 2
arrival rate Vi,»

BufferB,

CBZ

Buffer B;

class 1 class 1

arrival rate
Vi, Vian)

class 2

Machine M,

Fig. 7. A production network.

o
Buffer Buffer B,
=15
Ces Machine M, B
?uffer B.: -8
Assembly machine (M,)

class 1 arrivals -
tinl E i
o)
, U
V'iat ~ Vinl i Pe |
Buffer B,

PoPe2

class 2 arrivals | !

tin : i | Machine M,

Buffer B,

Ve | PRl BN
? é i Pra2 @ E A

Fig. 8. FOHPN model of the production network in Fig. 7.

while parts of class 1 visit both machines in sequence), the de-
termination of an explicit solution is still an open problem (see
Chenet al.[12], Wein [23], Phillis and Zhang [24]).

C. Example: PN Model

Let us now model the production network depicted in Fig. 7
by using in a modular way some elementary manufacturing
components described by basic FOHPN models.

The FOHPN model of the production system under consid-
eration is shown in Fig. 8, where the initial marking shown as-
sumes that all buffers are initially empty and that the machines
are operational. There are a few points we would like to discuss.

MachineM; is a multiclass machine. Transitisk,, and

t2,, represent the processing of parts of classes 1 and 2,
respectively. The overall processing is represented by tran-
sition tas.

MachinesM- and M, are single class machines, repre-
sented by a single transitiomg, and¢,,,, respectively).
Buffers of unlimited capacity are represented by contin-
uous places, i.e., plagg;; represents the buffds;, while
finite buffers are represented by a couple of continuous
places, i.e., placeg: is the buffer and placgy; is the
co-buffer.

The failure model of the machines is represented by two
discrete places and two discrete transitions. As an ex-
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ample, for machiné{, placepo_ a1 is marked when the  In a second example (problem LP2), we choose to maximize
machine is operative, plage, ;1 is marked when the machines utilization and study the marking evolution during
machine is down. The fail/repare of the machine corréew macro-periods by constructing the corresponding phase di-
spond to the firing of transitions, ;1 and¢,. a1. agram.

» The input flow of parts of class 1 is represented by the The numerical values used in the examples &fg; = 5,
continuous transitioy,; characterized by an mfg! ;, VI, =2, Vipo =4, Va1 =7, Vars =5, Vare = 7, = 0.2,
and an MFSV;, ;. This represents the fact that the plant = 0.8. Let us define the instantaneous firing speed vector
operator may take some control actions on the external= [vi,1 vin2 vi; V3 vz vme]t and letJ = cf'v be the
flow of parts of class 1 but cannot block the arrival operformance function to be optimized. For problem LP1, we
parts. AlthoughV;’ ; > 0, transitiont;,; is mfs-free (see sete = [0 0 0 0 0 1]%, and for problem LP2, we set =
Definition 8), thus an admissible IFS always exists for thif) 0 1 1 1 1]*. The initial markingm(7o) of the net shown
net. in Fig. 8 represents an initial macro-state in which all machines

» The input flow of parts of class 2 is represented by th&re operational and all buffers are empty. Such a marking has
continuous transitioty, ». The plant operator may choosediscrete component
to discard parts that arrive, hence this transition has an mfs
equal to zero.

» Some parts of class 1 after being processed by machine
M> may require to be reworked at the same machine ac-
cording to a given reworking factak. This fact is rep-
resented in the FHOPN model by the weiglits- « on
arcs(pps, tare), (tar, Dps), and(tare, praz). If we as-  and continuous component
sume that defective parts are scrapped, rather than being
reworked, then ard® gs, tas2) and(tas2, Pgs) Will have m®(19) = [mpB1 MpB2 MpB2 MYpB3 MHBE3
a unitary weight. Note that machidé, can be considered
as a re-entrant line, and it can be modeled as depicted in
Fig. 3(a).

 Parts of both classes are finally assembled by machine S ) )
M, according to a given production mix. The mix fac- To this initial macro-state, we can associate the following set

tors of part of classes 1 and 2 are dengfednd1 — 3 of constraints in standard form (nonnegativity constraints are
and are represented as weights on 4fgs,1, ty,) and Oomitted):
(PBa2, taa), rEespectively.

md(TO) Img = [mpo, M1 MpD, M1 Mpo, M2
MpD, M2TMp0, Ma MpD, J\la]T
=[101010*

T
MpBal MpBa2 MpA1 mﬁ]\ll]

=[00CpE20CE30000]%.

( Vin1 +s1 = Viar 1
D. Numerical Examples Vin1 —s2 = Vi 2
In this section, we highlight the main steps followed by an Vin2 L2 183 - “f’” j
FOHPN simulator and show how to solve production control Va1 T —i—&f _ VMl -
problems and make sensitivity analysis by means of the FOHPN UMz 5= YM2oo
Sot § VUMa +s¢ = Vma 6 (28)
framework. T " - 0 -
First of all, we have to define the control problem that we U’Q‘“ B Uf‘“l +S7 B 0 '8
want to solve in terms of a given performance measure that has E}i”i a;;‘“ _ +zs B 0 '9
to be optimized. Then, at the occurrence of the macro-events, a p; . J(‘?_ )Ml " o7 0 '10
linear programming solver is invoked to provide the optimal ma- YMa @yM2 TS0 = :
\ (1 — /3)1}]\4,,, — Uy +s11 = 0 11

chines production rates, i.e., the instantaneous firing speeds of
the continuous transitions, according to the constraints dgfmedl) Problem LP1: Maximization of the System Outflofhe
by the current macro-state. At each step, sensitivity analysis can . : S

) . ) .~ first control problem we consider is the maximization of the
be done in order to make adjustment on the optimal myopic so- . S

. . sxstem outflow. For the macro-state corresponding to the initial
lution that represents the reference values for the machine pro- . - . .

. o . marking shown in Fig. 8, this control problem translates into the
duction rates within the next macro-state. The marking evoIP- . . o )
. oHowmg constrained optimization problem:
tion over several macro-states can be represented by a phase di-
agram.

In a first example (problem LP1), we assume that the goal is
the maximization of the system outflow within a macro-period,
i.e., the maximization of the production rate of machilg whereSy is given by (28). The solver provides the following
corresponding to the throughput of the network. We show thaptimal solution:J° = 5 with v* = [4 3 4 3 5 5]7. The
among all possible optimal solutions it is also possible to choosptimal basis iSB = {vin1, Vin2, Vs, Va1, VM2, UMa,
one (by applying the global priority algorithm) that minimizes;, sz, s3, s¢, S11}-
the buffer content. We also give examples of sensitivity analysis a) Sensitivity of the Machine Production RateEo obtain
with respect to machine production rates, the reworking factimformation about the network bottlenecks, we can perform sen-

«, and the production mix factgs. sitivity analysis with respect to the machine production rates.

max [vpma] St vweE S (29)
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For theith constraint{ = 1, ---, 6), we compute thalual A perturbation of parameter changes just one element of
pricesJ; and the allowable ranges, as described in Section IV+Batrix A, namely the element = —(1 — «) in constraint
o 10, in the column corresponding to variahlg;.. Thus, we
Ap[Vin1] = [4, o0), Ji = =0 definea(A) = « + A. In this particular case, the parameter
WVin1 introduced in Section IV-C i = 0. Therefore, the objective
As[VE ] =10, 4], I = oJ -0 function./(A) and the optimal basic solutia{ ) vary linearly
" Vi with the parametek as long as it remains within the allowable
. range
MslVasl =8, %), = o =0 ’
n2 Ag[\] = [-0.32, 0]
= * aJ
As[Van] =[5, 8], Ji= Vs 0 but for physical reasons we should considgf\) = [-0.2, 0],
aJ since0 < « < 1. Within this range, the derivative of
Ap[Var2] = [3.75,6.25],  Jf=—=1 the objective function with respect td [by applying (24)]
af\]n is (dJ(\)/d\) = —6.25 and the partial derivative of
As[Vaie] =[5, 0), Jg = 57 =0. the optimal basic solution with respect to is (dv/9\)
M2 =1[000 00 —6.25Y. Thus, we may obtain a better perfor-
Considery € {Vin1, Vi1, Vin2, Va1, Va2, Vae}. As  mance by reducing the percentage of scrapped parts that fail

long asv varies within its allowable rangaz[v], the optimal their processing at machiné.,.

basis of the nominal model remains unchanged. In particular, ¢) Sensitivity of the Production MixWe now consider
we observe that the dual price associated to constraint (28.53émsitivity analysis with respect to the production mix factor
J# = 1 and all other dual prices are 0. Thus, in this configurdparameter3). We write 3(A\) = 8 + A, and we observe that
tion, machineM; represents the bottleneck of the system. If wa perturbation of3 changes two elements of matrik given
increase the maximum production rate of machide—i.e., by (28) (constraints 10 and 11) in the column corresponding to
the maximum firing speed/;;» of transition ¢y,,—within  variablev,,. In this case, the parameteiintroduced in Sec-

its allowable range, we can proportionally increase the valtien IV-C is v = 1.25, and therefore, the optimal basic solu-
of the objective functionJ/. Within this range, the partial tion and the objective function do not vary linearly with the pa-
derivative of the objective function with respect 19,2 is rameter\. Sensitivity analysis provides the following allowable
(8J/8Vam) = J& = 1 and the partial derivative of the range forA:
optimal basic solution with respect tBy2 is (Gv/8Ve)

= [0.8 —0.8 0.8 —0.8 1 1]*. These two derivatives are

constant With_".] Fhe allowable ran%[VM 2]- . showing that3 cannot be increased if the optimal basis has to
b) S§n3|t|V|ty ,Qf.the Reworkmg/Scrappmg Factae _remain unchanged. Applying (24), we obtain the derivative of
now consider sensitivity ana_lly5|s with respect tp the rewqulqge objective function with respect oas (d.J(A)/dA)|xeo =
factor (parametera). We first observe that if we define g 55" this case, we may obtain a better performance by re-
Va2 = (1 — ajuyre, the constraint set (28) can be rewritteny, cing the factoys, i.e., by changing the production mix so as

Ag[A] = [-0.1333, 0]

changing constraints 5, 9, and 10 as follows: to increase the ratio of parts of class 2 with respect to parts of
119\42 +55 = (1 — Oé)V]wg .04, class 1. . .
Vhyy— VY, +S9 = 0 9a  (30) As an example, conside# = 0.7, i.e, A = —0.1. By
Burta — vy +s10 = O 10a solving LPP (28) for the updated value ¢f, we obtain

J()\)|)\:_0.1 = 5.7143 (Whlle Jo = J()\)|)\:0 = 5) and
This shows that the net in Fig. 8 is equivalent to a net With(\)|,= o1 =[5 2 52 5 5.7143]7.
no reworking factor and where transitiefy, has MFS(1 — d) Maximum Outflow with Minimal Buffers ContenThe
a)Vuz = 4. In this case, the sensitivity analysis with respect teontrol problem defined by (29) admits more than one optimal
« reduces to the sensitivity analysis with respect to a right-habdsic solutions, e.gfd 1 4 1 5 57, [4 4 4 1 5 5]* and
side coefficient and can be carried out as previously describgd. 4 5 1 5 5|7 are other optimal basic solutions. Thus, the
Let us consider instead a more interesting case. \We assustiht operator may use the global priority algorithm given in
that parts of class 1 are scrapped after failing their processingaffinition 15 to derive a control law in order to minimize, in
machineMs,. In this case, the ard® s, tar2) and(tar2, Pg3) a second step, the overall buffers content by maximizing the
in the net depicted in Fig. 8 will have unitary weight, whilegverall buffer outflows
the parameted in the arc(tar2, pp.1) IS NOw calledscrapping
factor. These changes correspond to rewriting the constraint set J' = [Uma = Vin1 — Vin>2]

(28) changing constraint 9 as subject to the constraint set (28) with the additional con-

(31) straint: vy, = 5. As a solution, we obtai’® = 0 and
v’ =[41415 5] that allows all buffers to have their content
The solver provides the following optimal solution:equal to 0.
J° = 5withw® = [5 2 5 2 5 5|7 and optimal basis 2) Problem LP2: Maximization of Machines Utiliza-
B = {vin1, Vin2, v}m, v?m, UM2, UMa, S1, S2, S3, S6, S111. tion: The second problem we consider is the maximization of

{vpoa— v, +s9 = 0 9b
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the machines utilization. We show how to derive an optimal If we assume that no discrete transition fires before, at time
control policy that myopically maximizes the machines utilizar, = = + A;, buffer B; will be full and this macro-event ends
tion, and we describe the developments within the first fotine current macro-period.

macro-periods{MPy] all buffers are empty[MP;] machine [MP,]: The third macro-period, of length,, starts at
M, breaks down;[MP,] buffer B; becomes full;[MP3] time . Atthe beginning of the macro-period, the marking has
machineM; gets repaired. discrete and continuous components

[MPo]: The firstmacro-period, of length,, starts attime
7. The initial marking has discrete and continuous components ~ m*(m2) =m§ =[1001 1 0]¥
m°(m2) =[00 Cpa Cp3 00 (249 + 4A;) 0 0]
m?(79) =mi =[101010]%
m°(70) =[00 Cpz 0 Cp3 000 0] i.e., all machines—bud/,—are operational, buffeB; is full,
buffer B,z is not empty, all other buffers are empty. The set of

i.e., all machines are operational and all buffers are empty. TA@Mmissible IFS is defined by the new constraintSgtthat is
set of admissible IFS is defined by the constraint&geiven obtained fromSy in (28) removing constraint 11 because buffer
by (28). We solve the following constrained linear optimizatio#.2 is not empty, and changing constraints 5 and 9 to:

roblem:
P { VN2 = 0 .5”
1 _ '
max [v}m + vy +une vMa] s.t. So. (32) (I-aumz —wvyy =9 = 0 9
because machin&/, is down and buffeB; is full (i.e., place

The solver provides the following optimal solutiof; = 17 7 is empty). We solve the following constrained linear opti-
andvo = [4 3 4 3 5 5|7, which represents an optimal controly;zation problem:

policy to be adopted during the first macro-period. In particular,

throughout the intervad,, B, is increasing at a rate equal to max [vi;; + 3y + Uz + Uaa) st So. (34)

2, while the other buffers content are constant and equal to 0. *

We assume that machidé: fails, i.e., transitiort s ys2 fires, at  The solver provides the following optimal solutios; = 4,

time ;. This macro-event ends the current macro-period.  andwv, = [2 4 0 4 0 0]”. Throughout the interval\,, the
[MP;]: The second macro-period, of length, starts at content of bufferB; is increasing at a rate equal to 2 and the

time 1. At the beginning of the macro-period, the marking hagontent of bufferB,, is increasing at a rate equal to 4. Buffer

discrete and continuous components Bs is full, while all other buffers are empty. We assume that
machinel; is repaired, i.e., transitioty ;. fires, at timers.
d aad T . ’ .
m®(r) =m; =[100110] This macro-event ends the current macro-period.
m®(11) =[00 Cpy 0 Cps 024, 0 0]F [MP3]: The fourth macro-period, of length;, starts at

time 73. At the beginning of the macro-period, the marking has
i.e.,, all machines—but AM,—are operational and all discrete and continuous components
buffers—but B,,—are empty. The set of admissible IFS
is defined by the new constraint s8t, that is obtained from m®(73) =m3 =[101010]"
So in (28) removing constraint 11 because bufféy, is not  m¢(73) =[2A5 0 Cpy Cps 00 (240 + 44, + 4A,) 0 0]
empty and changing constraint 5 to
i.e., all machines are operational, buffgg is full, buffers B;
{vm2 = 0 5 and B,. are not empty, all other buffers are empty. The set of
admissible IFS is defined by the new constraintSgtthat is
because machiné/, is down. We solve the following con- obtained fromS, in (28) removing constraints 7 and 11 because
strained linear optimization problem: buffers B; and B, are not empty, and changing constraint 9 to

max [vy; + Vi +vm2 +vva] St S (33) {l-vpz—vjy, =59 = 0 .97

The solver provides the following optimal solutiof; = 7 because buffeBs is full. We solve the following constrained

andv;, = [3 4 3 4 0 0]”. This solution means that the failure ofin€ar optimization problem:
machineM, forces machiné/,, to produce at a ratey;, = 0,
thus increasing the content of buffels, and B,». In partic-
ular, throughout the intervah,, the content of buffei3,. is . . . .
increasing at a rate equal to 4 and the content of blffeis in- The solver provides the following optimal solutiof = 17

— = =17 i
creasing at a rate equal to 3. All other buffers are empty. Sin%@d"?’(T?’) =234 3 5 5" Throughout the intervah;, the
buffer B has a finite capacity’ss, it will reach its maximum content of bufferB; is decreasing at a rate equal to 2 and the
level after an interval of time content of bufferB,» is increasing at a rate equal to 2. Buffer
Bs is full, and all other buffers are empty.
Cps Cpa Macro-Behavior and Phase Diagramn the pre-

Al:v}m—(l—a)vMQ: 3 vious evolution, the myopic optimal control policy

max [visr + V31 + vm2 + Vara) s.t. Ss. (35)




398

Discrete part
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Continuous part

“(1o) =[00 Cp 0 Cp3 00 007"
m((i) =[10101 O]T m(7p) =[ B2 B3 1 A
v=[434355]"
v _ v
(M, failure)
(1,)=[0 0 Cg, 0 Cp3 0 2:A, 0 0]
m{ ={100110]" m(1)=10 0 C2 0 Cp3 02:40 0.0 Ar
vi=[343400]"
y FB3
) Bsful)
m°(1,)=[0 0 Cgy Cyz 0 0 (2-Ay+4-A,) 0 01"
mi=[100110]" N
v=[240400]"
t1‘,M2 Yy
(M, repair) |
m°(13)=[2:A, 0 Cg, Cgsz 0 0 (2:Ag+4-A+4-A OO]T
m§=[101010] (13)=[2+A7 0 G Cp3 0 0 (2:Ag+4+4,+4-A2) A
v;=[234355]"

Fig. 9. Phase diagram of the FOHPN in Fig. 8.

Ve =

of the machines utilization is defined as follows:

Jo=17, vo=1[434355]"
J1=7 w1 =[343400]"
Jo=4, wy,=[240400]%
J3=17, w3 =[234355]"

The developments discussed so far can be graphically shown,

throughout Ag
throughout A,
throughout A,
throughout Ag

{wo, v1, v2, w3, ---} that allows the maximization manufacturing different finished products according to an ar-
bitrary production mix. We have shown examples of how dif-
ferent control policies may be enforced by different objective
functions, of sensitivity analysis with respect to different design
parameters (machine production rates, reworking or scrapping
factor, production mix factor), and of evolution over more than

one macro-period.
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VI. CONCLUSIONS

We have considered in this paper FOHPN's, and we have set
up a linear algebraic formalism to study the first-order contin- 11} . ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
uous behavior of this model, thus showing how its control can
be framed as a conflict resolution policy that aims to optimize a
given objective function. Assuming that the instantaneous firing
speeds of continuous transitions are piecewise constant, we haye
shown that the set of all possible behaviors of the net during
a macro-state can be represented by a convex set defined kKl/]
linear inequalities. The computation of the instantaneous firing
speed—and the associated problem of conflict resolution—car®!
be seen as the net counterpart of a performance optimization

with global or local objective functions.

Sensitivity analysis techniques have been also proposed ifff]
this paper to obtain information about the degrees of freedom
that can be exploited when making performance optimization or
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