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Email: (giua,seatzu)@diee.unica.it

Abstract

In this paper we present a hybrid formulation for the modelling and control of automated
manufacturing systems. We define a hybrid manufacturing system as a dynamical system
that combines both discrete and continuous dynamics. Each service (a machine coupled
with a finite buffer) is described as an elementary hybrid automaton and the whole network
of services, that is subject to configuration–based specifications, is described in a modular
fashion as the concurrent composition of elementary services. The paper focuses on essential
questions associated with regularization and composition of hybrid automata as related to
the possibility of efficiently dealing with complex hybrid systems.

1 Introduction

In this paper we develop a hybrid model of discrete event dynamic processes that combines
aspects of automata and systems theory, thus exploring potential interconnections between those
classes of systems. We consider automated manufacturing systems with unreliable machines,
buffers of finite capacity, arbitrary service time distributions and routing policies, where several
parts of a single class of products are circulated and processed. A machine coupled with a buffer
for storing arriving parts defines an elementary service (ES).

The main contribution of this work is to develop a mathematical description of the process which
specifies a mechanism for composing elementary services. Each elementary service is described
as a hybrid automaton (HA) [1, 7]. A general queueing network is obtained by combining ES in
a modular fashion by means of the concurrent composition operator which allows the definition
of the hybrid automaton representing the whole network of services.

The dynamics of a hybrid manufacturing system is described by splitting the discrete event
processes into two hierarchical layers and defining what we call macro–events and macro–states.
At the lower level, the microscopic behavior of arrivals and departures of parts to(from) each
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machine is modeled using first order fluid approximations. Such model allows the mathematical
formulation of the continuous dynamics of the system. At the higher level a discrete event model
will represent the transitions through a sequence of macro–states at the occurrence of a limited
number of events, the macro–events. Both levels of the process are represented by a hybrid
automaton which exhibits both continuous and discrete changes.

2 Description of the Model

The production process considered in this work consists of a set of n single–server stations,
denoted Mi, for i = 1, . . . , n, serving a single class of products. Parts move from machine Mi to
Mj according to their production cycle and are queued in buffers, one for each machine, with
the initial one (input buffer) acting as an unlimited supply of parts and the final buffer acting as
a limited storage area for collecting finished products, thus representing the production target.
The buffers have finite capacity Ci and the machines are unreliable.

We consider operation-dependent failures and we define for each machine the production vol-
umes before a machine fails and the repair times, denoted wi and di respectively, both assumed
independent identically distributed random variables. Machine service times are assumed in-
dependent random variables with identical distribution with finite mean and variance. The
maximum average production rate of machine Mi is denoted Vi.

The evolution in time of the production process is discussed within a framework that distin-
guishes two levels of aggregation. The lower layer represents the microscopic behavior of arrivals
and departures of parts to/from each machine (micro–events). It will be modeled in an aggregate
view by using first order fluid approximations [3]. At the higher layer a discrete event model will
represent the transitions of the process through a sequence of macro–states, at the occurrence
of the macro–events.

2.1 The Microscopic Layer

Let ∆k = [tk, tk+1), for k = 0, 1, 2, . . ., be the interval of time between the occurrence of consecu-
tive macro–events at time tk and tk+1, that we call macro–period, and let vi,j(k) be the constant
average flow rates of parts from machines Mi to Mj .

The microscopic behavior of a production system during a macro–period can be approximated
by the following three processes defined for each machine Mi:
(I) the buffer levels

xi(t) = xi(tk) + [vin,i(k)− vout,i(k)](t− tk), (1)

(II) the production volume processed by the machine since the last repair (used to evaluate the
machine breaking time)

χi(t) = χi(tk) + vout,i(k)(t− tk), (2)

(III) the time spent by the machine under repair since the last failure

si(t) = si(tk) + (t− tk) (3)
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where t ∈ [tk, tk+1) for all these processes, and

vin,i(k) =
∑

h

vh,i(k), vout,i(k) =
∑

j

vi,j(k)

are the inflow and outflow rates of parts of each machine.

Note that the value of χi(t) in Equation (2) will be reset to 0 after each failure and its value
will not increase until the machine is repaired. Similarly, the value of si(t) in Equation (3) will
be reset to 0 after each repair and its value will not increase until the machine fails again.

2.2 The Macroscopic Layer

At the macroscopic level the evolution in time of the system through a sequence of macro–states
can be described by a finite automata with states given by a finite set of admissible configurations
of machines status (operational or broken) and buffer status (full, not full–not empty, empty) and
with transitions represented by the macro–events (failure, repair, buffer full and buffer empty).

We denote the set of macro–event types by Ei = {fi, ri, bei, bfi, bne,i, bnf,i} whose elements are
defined as follows:

• fi (failure of machine Mi). After a machine is repaired, failures will occur after the
production volume wi.

• ri (repair of machine Mi). When a machine fails, it will be repaired after di time units.

• bfi (buffer full at machine Mi). The buffer level reaches its capacity Ci while vin,i(t) ≥
vout,i(t).

• bei (buffer empty at machine Mi). The buffer level reaches 0 while vout,i(t) ≥ vin,i(t).

• bne,i (buffer not empty at machine Mi). Upon the occurrence of exogenous macro–events,
apart from the machine status, changes will occur in the inflow and outflow rates of parts
of machine Mi, thus changing its buffer content.

• bnf,i (buffer not full at machine Mi). Upon the occurrence of exogenous macro–events,
when the machine is operational changes will occur in the inflow and outflow rates of parts
of machine Mi, thus changing its buffer content.

The machine status takes the following symbolic values: O (machine operational) and B (machine
broken). Note that when a machine breaks down then its production rate is vout,i = 0, while
it must result vout,i ≤ Vi if Mi is operational. The buffer status takes the following symbolic
values: F (buffer full), E (buffer empty) and N (Buffer not full–not empty).

Let M = {O, B} and B = {F, E,N} be the machine status and the buffer status set types
respectively. The finite set of admissible macro–states (operational modes) is denoted by Q =
{(mb1, . . . , mbn) | m ∈ M, b ∈ B}. Each element q ∈ Q combines the functional status of
all services and may only change due to the occurrence of the macro–events e ∈ E . In Fig. 1
we have depicted the finite automata Z = (Q, E , δ, q0) for the elementary service Si. Here
Q is the finite set of admissible macro–states as previously defined, E is the input alphabet,
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OFi ONi OEi

bnf,i : vin,i<vout,i

bne,i : vin,i>vout,ibfi : vin,i>vout,i

bei : vin,i<vout,i

BFi BNi BEi

bne,i : vin,i>vout,ibfi : vin,i>vout,i

fi fi firiri ri

Figure 1: The finite automaton of an elementary service.

E = {. . . , fi, ri, bfi, bei, bne,i, bnf,i, . . .}, δ : Q × E → Q is the transition function and q0 ∈ Q is
the initial state.

The transitions of the finite automaton define the interlacing of Equations (1)–(3) and drive the
evolution of the system whose macro–behavior can be described by a hybrid automaton with
inputs. The continuous dynamics of the HA is given by Equations (1)–(3). We define an input
vector

u(k) = [. . . , vi,j(k), . . .]T (4)

with entries given by the constant average machine flow rates.

A macro–event leads from one discrete state to another. When a machine fails or gets repaired
then it must result χi(tk+1) = wi or si(tk+1) = di. When a buffer gets full or empty then
the condition xi(tk+1) = Ci or xi(tk+1) = 0 will be satisfied. For simplicity of presentation we
consider in this work production systems with a single class of parts flowing through and in
what follows we do not take into account fluctuations in the average values of state variables
xi, χi and si due to the approximations introduced by the fluid model. The complete stochastic
state variable model can be found in [2].

Note that each macro–state defines the feasible region, denoted S(k), for the average machine
production rates vi,j(k) that enter this model as input variables. We indicate with Io(k) and
Id(k) the sets of indices of operational and down machines, If (k) and Ie(k) the sets of indices
of full and empty buffers, during the k–th macro–period, respectively.

Definition 2.1 An input vector u(k) ∈ S(k) is admissible if it is a feasible solution of the
following set of linear inequalities:





(a) 0 ≤ ∑
j vi,j(k) ≤ Vi, ∀i ∈ Io(k)

(b)
∑

j vi,j(k) = 0, ∀i ∈ Id(k)
(c)

∑
h vh,i(k) ≤ ∑

j vi,j(k), ∀i ∈ If (k)
(d)

∑
j vi,j(k) ≤ ∑

h vh,i(k), ∀i ∈ Ie(k)
vi,j ≥ 0

(5)

The consistency constraint set (CCS) (5) will be denoted g(k,u(k)) ≤ 0. ¥
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Constraints (a) and (b) bound the machine production rates according to the current machine
status, while constraints (c) and (d) bound the inflow and outflow rates of parts according to
the current buffer status. The region S(k) defined by g(k,u(k)) ≤ 0 is a convex polyhedron
whose vertices are basic solutions of any linear programming problem with objective function of
the form J = aT (k)u(k) and subject to the CCS. Any admissible input vector u(k) corresponds
to a point within the feasible region S(k) and the boundary represents all those input policies
aimed at maximizing a given linear objective function.

Let us now consider a dynamic control policy that generates a solution for the average machine
production rates obtained for each macro–period. Any solution represents the average flow rates
vector u(k) to be expected for the macro–period ∆k.

3 Hybrid Automata Model

In this section we show how it is possible to derive a HA [1, 7, 4] model of the manufacturing
system described in the previous sections.

We consider a system with a continuous state vector x ∈ Rn and a continuous input vector
u ∈ Rp. The system may be in a finite number of discrete states called locations. In each
location the state is constrained to belong to a subset of Rn called X invariant.

As in the standard definition of HA we consider a guard g ⊂ Rn and a jump relation j ⊂ Rn×Rn.
An edge is enabled when x ∈ g and the state jumps from x to y according to the jump condition,
i.e., if (x,y) ∈ j.

While in the standard definition of HA the activity function associates to each location a differ-
ential inclusion, in our definition we associate to each location a differential equation ẋ = f(x,u).
However, the input vector u may take values in a set S ⊂ Rp called U invariant. Thus we still
have that the set of all possible derivatives is not a single vector but, for a given value of x̄, may
take values in a subset of Rn defined by {f(x̄,u) | u ∈ S}.
The set of differential equations, X invariants, U invariants, guards and jump relations of interest
are called Diff Eq, X inv, U inv, Guard and Jump respectively.

Definition 3.1 A HA is a structure H = (L,Σ, act, x inv, u inv, E) where:

• L is a finite set of locations.

• Σ is a finite alphabet of symbols used to label the edges.

• act : L → Diff Eq specifies the dynamics at each location. We denote act(l) = f(x,u) the
differential equation ẋ = f(x,u) at location l.

• x inv : L → X inv specifies the set of all admissible state vectors at each location.

• u inv : L → U inv specifies the set of all admissible input vectors at each location.

• E ⊂ L × Σ × Guard × Jump × L is the set of edges. An edge e = (l, σ, g, j, l′) is an edge
from location l to l′, labelled with the symbol σ, with guard g and jump relation j.
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Figure 2: The hybrid automaton H of an elementary service.

3.1 The model of an elementary service

We now consider an elementary service Si composed of a buffer of finite capacity and of an
unreliable machine.

Note that in this model we use vin,i and vout,i to denote the input/output flows: this is the case
of a single-input single-output service. In the case of multiple-input multiple-output services we
would also need to specify each single input flow vh,i from machine h to machine i, and each
single output flow vi,j from machine i to machine j.

Such a service can be described by the HA Hi = (Li, Σi, acti, x invi, u invi, Ei) shown in Fig. 2.

The continuous state is x = [xi, χi, si]T while the input vector is u = [vin,i, vout,i]T .

The set of locations is L = {OFi, ONi, OEi, BFi, BNi, BEi} with obvious notation as described
in section 2.2 and Fig. 1. Each location represents the discrete state of the service (machine and
buffer).

The alphabet Σ = {fi, ri, bei, bfi, bne,i, bnf,i} corresponds to the set of macro–events E described
in section 2.2.

The dynamics at each location act(l) can be obtained by differentiating Equations (1)-(3). In
particular

act(l) = Blu + Cl

where

Bl =




1 −1
0 α

0 0


 where α =

{
1 if l ∈ {OFi, ONi, OEi}
0 if l ∈ {BFi, BNi, BEi}

Cl =




0
0
β


 where β =

{
0 if l ∈ {OFi, ONi, OEi}
1 if l ∈ {BFi, BNi, BEi}

We note that in this hybrid automaton there is no explicit dependency of the activity set from
the state x.
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The set x inv of admissible state vectors changes from one location to another. As an example
in location ONi this set takes the form:

x inv(ONi) =





0 ≤ xi ≤ Ci

0 ≤ χi ≤ wi

si = 0

since this location represents the discrete state in which the buffer is not full–not empty and the
machine is operational.

The set u inv of admissible input vectors also changes from one location to another. It corre-
sponds to the feasible solutions S of the constraints set (5). As an example in location OFi this
set takes the form:

u inv(OFi) =

{
0 ≤ vout,i ≤ Vi

vin,i ≤ vout,i

since this location represents the discrete state in which the buffer is full and the machine is
operational.

Each edge in the set E is represented as an arrow with associated its symbol, its guard (between
brackets) and its jump relation. As an example the edge from location OFi to location BFi

has symbol fi, guard [χi = wi] and jump relation χi := 0 because it resets the continuous state
variable χi.

This model represents exactly the hybrid counterpart of the finite automaton depicted in Fig. 1.
It should be noted that a reduced HA equivalent to this may be obtained by removing locations
OFi, BFi, OEi, BEi. In the reduced HA, the constraints in u inv that derive from the fact that
the buffer can be full or empty are implicitly enforced by the x inv constraints. As an example
when the buffer is full, i.e., xi = Ci, no input vector with vin,i > vout,i is allowed since this
will lead to ẋi > 0 and it would violate the x inv constraint xi ≤ Ci. In spite of the simpler
structure of the reduced HA, we think that the complete model with six locations is better
because it allows a neat separation between control inputs and state variables. In fact u inv

does not depend on the state values and the state constraints x inv are only used to validate
the guards and force the transitions among locations.

3.2 Dynamic control policy and execution

The dynamic control policy adopted in this work assumes that in each location l ∈ L the choice
of the input vector u is obtained as the solution of a linear programming problem of the form

maxu cT
l · u

s.t. u ∈ u inv(l)

where the objective function vector cl as well as the constraint set u inv(l) depend on the
current location. The optimal solution uo

l will always lay on the boundary of the feasible region
defined by the linear constraint set, and it is usually unique (if it is not we may always introduce
additional constraints to resolve the ambiguity). The input vector will be maintained constant
at the value uo

l until the system leaves the current location. Such a control policy is called locally
optimal since it provides the optimal solution for a single time step within a given location.
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This dynamic control policy results in an activity set act(l) = f(uo
l ) that consists only of a single

point in Rn. Such an hybrid automaton is called in the literature multirate automaton [4]. Thus
we can state this proposition.

Proposition 3.2 The hybrid automaton of an elementary service controlled with a locally op-
timal policy is a multirate hybrid automaton.

Another property of a HA is that of being initialized. An automaton is said to be initialed if
for each event step l

σi→ l′ the j–th component of the state vector x is reset whenever the j–th
component of act(l) is different from the j–th component of act(l′). Initialed multirate automata
are a special class of HA that can be easily analyzed [4]. As an example it has been shown that
the reachability problem is decidable for this class of HA.

Unfortunately, it can be easily seen that the HA in Fig. 2 is not initialized. In fact, let us
consider the event step ONi

fi→ BNi. The activity set of each state variable changes. However,
while si and χi may be initialized to a constant value, this is not possible for xi which may have
any values in the interval [0, Ci]. The same reasoning applies to the event step BNi

ri→ ONi.

3.3 Regularization

A step of an hybrid automaton H is a transition denoted by σ from state (l,x) ∈ L × Rn to
(l′,x′)

(l,x) σ→ (l′,x′).

An event step σ ∈ Σ corresponds to the occurrence of a discrete event: there is an edge e =
(l, σ, g, j, l′) ∈ E, x ∈ g and (x,x′) ∈ j. A time step σ ∈ R+ corresponds to a continuous time
evolution where l = l′ and x′ is an admissible solution for the differential inclusion act(l). An
execution of length k of an hybrid automaton is a sequence of steps

ν = (l0,x0)
σ1→ (l1,x1) · · · (lk−1,xk−1)

σk→ (lk,xk).

Its duration is

d(ν) =
k∑

i=1

d(σi) where d(σi) =

{
0 if σi ∈ Σ
σi if σi ∈ R+

We say that an infinite execution does not diverge if it holds

lim
k→∞

k∑

i=1

d(σi) < ∞

Such an execution is called a Zeno execution. An hybrid automaton is called Zeno if it possesses
Zeno executions [5]. Otherwise is called non–Zeno. Clearly Zeno HA may execute an unbounded
number of transitions in a finite time interval.

The HA of an elementary service is Zeno since it can have an infinite execution consisting only
of event steps. As an example consider the cycle from location ONi to OFi and back.

There exist several techniques to regularize a Zeno automaton H, i.e., to convert it into a non–
Zeno automaton [6]. The idea is that of adding a small perturbation ε > 0 to H to make the
system non–Zeno. The regularized automaton is denoted Hε and we assume that Hε → H as
ε → 0.
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Figure 3: The regularized hybrid automaton Hε of an elementary service with hysteresis.

To regularize the HA shown in Fig. 2 we add an hysteresis to the two cycles

ONi
bfi→ OFi

bni→ ONi, ONi
bei→ OEi

bni→ ONi

Thus we assume that the buffer is full when Ci − ε ≤ xi ≤ Ci and that it is empty when
ε ≤ xi ≤ 0. The resulting automaton Hε is shown in Fig. 3.

4 Composition of hybrid automata

We now want to describe with a single HA a general manufacturing system composed of m

single–server stations with arbitrary routing. As it is difficult to write a hybrid automaton
model of a complex system directly, a modeling strategy must be elaborated. Let us consider
a modular approach, which models a complex system by sub–models. To do this we need to
introduce the concurrent composition operator and to give the formal rules to compose two or
more HA by concurrent composition.

4.1 The concurrent composition operator

As in the case of classic automata we assume that the set of locations of a concurrent composition
is given by the cartesian product of the locations of all composed automata. Furthermore if a
symbol belongs to the alphabet of two or more automata, it represents a synchronized event
that must be executed simultaneously by all corresponding automata. However in the case of
HA we must also take into account the possibility that a continuous state variable and/or an
input variable may be shared among two or more automata.

To formalize this, we define the set of all continuous states and input variables of the automaton
H as X (H) and U(H) respectively. Note that if H is obtained as the concurrent composition of
two HA H1 and H2, we have that X (H) = X (H1)∪X (H2) and if there are shared state variables
cardX (H) < cardX (H1) + cardX (H2) (the same holds for the input variables).

We also need the following definition 1.
1Here RX is the set of real vectors that have as many components as there are elements in X .
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Definition 4.1 Let X and Y be two sets of state variables with X ⊃ Y. Given a set A ⊆ RX
and a set B ⊆ RY we denote the projection of A over Y as the set

A ↑Y=
{
y ∈ RY | (∃z ∈ RX−Y) : y × z ∈ A

}

and the counterimage of B over X the set

B ↓X=
{
y × z ∈ RX | y ∈ B, z ∈ RX−Y}

We now define the concurrent composition of hybrid automata.

Definition 4.2 Let Hi = (Li,Σi, acti, x invi, u invi, Ei), for i = 1, . . . , m, be HA as in Def-
inition 3.1. Their concurrent composition denoted H = H1 ‖ · · · ‖ Hm is a HA H =
(L,Σ, act, x inv, u inv, E), where:

• The continuous state and input variable sets are

X (H) = ∪m
i=1X (Hi) and U(H) = ∪m

i=1U(Hi),

respectively.

• The set of locations L = L1 × · · · × Lm is given by the cartesian product of all Li. Note
that some of these locations may be unreachable in H and thus may be deleted.

• The dynamics at location l = l1 × · · · × lm is given by

act(l) =
(
act(l1) ↓X (H)

) ∩ · · · ∩ (
act(lm) ↓X (H)

)

• The set of admissible state vectors at location l = l1 × · · · × lm is given by

x inv(l) =
(
x inv(l1) ↓X (H)

) ∩ · · · ∩ (
x inv(lm) ↓X (H)

)

• The set of admissible input vectors at location l = l1 × · · · × lm is given by

u inv(l) =
(
u inv(l1) ↓U(H)

) ∩ · · · ∩ (
u inv(lm) ↓U(H)

)

• For a given σ ∈ Σ we define Iσ = {i ∈ {1, . . . ,m} | σ ∈ Σi} be the set of indices of the
automata that have σ in their alphabet, and let Xσ = ∪i∈IσX (Hi) be the union of the state
variables of all these automata.

Then there will be an edge e = (l, σ, g, j, l̄) ∈ E if:

– l = l1 × · · · × lm and l̄ = l̄1 × · · · × l̄m.

– For all i 6∈ Iσ, li = l̄i, i.e., the event σ does not change the state of an automaton
that does not have σ in its alphabet.

– For all i ∈ Iσ, there exists an edge ei = (li, σ, gi, ji, l̄i) ∈ Ei, i.e., the event σ is defined
at location li for each automaton Hi that has σ in its alphabet and its occurrence
changes the location to l̄i.

– The guard g must satisfy:
g = ∩i∈Iσ

(
gi ↓Xσ

)
.
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– If we write the jump relation of each edge ei as ji = Ai × Bi then the jump relation
j must satisfy

j = ∩i∈Iσ

(
Ai ↓Xσ ×Bi ↓Xσ

)
.

This definition implies that the activity set act of the concurrent composition automaton H is
given by the intersection of the counterimages of the activity sets of all Hi. Note that if these
sets are defined by a collection of constraints Ci , the corresponding set of H will be defined by
a set of constraints C = ∪iCi. The same applies also to the admissible state set x inv and to the
admissible input set u inv.

On the contrary, the guard g of H, enabling the event step σ ∈ Σ, is given by the intersection of
the counterimages of the guards gi and this intersection is taken over the automata that have σ

in their alphabet. The jump relation j is given by the intersection of the cartesian products of
the counterimages of the start and target sets that define the jump relation of each automaton
Hi and this intersection is taken over the automata that have σ in their alphabet. Thus, when
computing the guard and the jump relation of the automaton H relative to a given σ ∈ Σ, only
those automata that have σ in their alphabet have to be taken into account. In fact, for all
other automata, both the guard and the jump relation are not defined (they can be considered
as R∅), thus their counterimages over Xσ are equal to RXσ and introduce no constraint on the
corresponding set.

4.2 Composition of elementary services

As an example we consider a simple transfer line composed of two services S1 and S2, and a
final buffer B3 for the collection of finished products. The initial buffer is B1 that is filled up at
the production target volume. This system is shown in Fig. 4.

In this example, for sake of simplicity we have assumed that no failure may occur (i.e., in the
continuous state we disregard the variables χi and si, i = 1, 2). Thus, the continuous state
variable set of the two elementary services are X (H1) = {x1}, X (H2) = {x2} and for the
composed automaton H = H1 ‖ H2 we have X (H) = {x1, x2}.
The input variable sets for the two ES are U(H1) = {vin,1, vout,1}, U(H2) = {vin,2, vout,2}. The
interconnection between the two ES and the fact that the first one is not fed, pose the following
constraints:

vin,1 = 0
vout,1 = vin,2.

If we disregard vin,1 and rename v1 = vout,1 = vin,2, v2 = vout,2, we have that U(H) = {v1, v2}.
By applying the concurrent composition operator to the elementary services connected in series,
we obtain the hybrid automaton H represented in Fig. 5.

Obviously, the cardinality of L, the set of locations of H, is nine, being card L1=card L2 = 3.
The initial location is OF1,OE2.

The sets act, xinv and uinv of H have been obtained by combining the constraints that define
the corresponding sets for H1 and H2. As an example, the set uinv(ON1, OF2) contains the
constraint 0 ≤ v1 ≤ V1 that defines the set act(ON1) and the constraints 0 ≤ v2 ≤ V2, v1 ≤ v2,
that define the set act(OF2).
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Figure 4: A 2–services transfer line.
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Figure 5: Composition.

In the composed automaton some edges correspond to event steps that can never be executed,
regardless of the choice of the input vector. In fact, it may be possible that for all x0 ∈ xinv(l)
there exists no u ∈ uinv such that in a time step we reach a value of the continuous state x ∈ g.
As an example, because the first buffer is not fed, it is not possible to go from a location in
which the buffer B1 is empty (OE1) to a location in which it is not empty (ON1). This type of
edges are shown with dashed arcs in Fig. 5.

Note also that the location OF1, OF2 can never be reached (all edges leading to it are dashed)
and thus it is shown as an empty dashed box.

Now, let us examine some possible evolution of the composed system. We first observe that
at the initial location OF1, OE2, the only admissible input vector is u = 0, i.e., v1 = v2 = 0,
and two event steps may fire: bne,2 and bnf,1. If bne,2 fires, thus reaching the discrete location
OF1, ON2, the input vector u is once again the null vector, thus producing no variation on the
continuous state. At this point, the firing of bnf,1 leads to ON1, ON2 and at this location both
a time step and an event step (be2) are possible. If a time step is executed, depending on the
chosen objective function vector at location ON1, ON2 and on the value of the buffer capacities
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C1 and C2, the next event step will be bf2 (buffer B2 is filled up), or be1 (buffer B1 becomes
empty). If the event step be2 is executed the system will reach the state ON1, OE2 where a time
step is possible with v1 = v2. Note that a similar discussion can be repeated if bnf,1 is the first
event step to fire when the system is in its initial location OF1, OE2. Eventually, the HA will
reach the home state OE1, OE2.

5 Conclusions

In this paper a hybrid formulation for the modelling and control of automated manufacturing
systems has been developed. In particular, automated manufacturing systems with unreliable
machines, buffers of finite capacity, arbitrary service time distributions and routing policies,
where several parts of a single class of products are circulated and processed, have been consid-
ered. Each machine coupled with a finite buffer constitutes an elementary service (ES) and is
described as a hybrid automaton. A general queueing network is obtained by combining ES in
a modular fashion. The concurrent composition operator allowed us the definition of the hybrid
automaton representing the whole network of services.

The evolution in time of the production process has been discussed within a framework that
distinguishes two levels of aggregation. The lower layer represents the microscopic behaviour
of arrivals of parts to/from each machine (micro–events). It has been modeled in an aggregate
view by using first order fluid approximations. At the higher layer a discrete event model has
been used to represent the transitions of the process through a sequence of macro–states, at the
occurrence of the macro–events.
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