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Abstract

First–Order Hybrid Petri Nets are a model that consists of continuous places holding fluid,
discrete places containing a non–negative integer number of tokens, and transitions, either
discrete or continuous. This paper provides a framework to describe the overall hybrid net
behavior that combines both time–driven and event–driven dynamics. The resulting model
is a linear discrete–time time-varying state variable model, that can be directly used by an
efficient simulation tool.

1 Introduction

First–Order Hybrid Petri Nets (FOHPN) are nets that consist of continuous places holding
fluid, discrete places containing a non–negative integer number of tokens, and transitions, either
discrete or continuous. This hybrid Petri net model has been introduced by the authors in [3, 4]
and follows the formalism described by David and Alla [2, 6].

As in all hybrid models, in FOHPN we distinguish two behavioral levels: time–driven and
event–driven.

The continuous time–driven evolution of the net is described by first–order fluid models, i.e.,
models in which the continuous flows have constant rates and the fluid content of each continuous
place varies linearly with time. Each model is relative to a given macro–state that defines the set
of admissible instantaneous firing speed (IFS) vectors of continuous transitions. Any admissible
IFS vector represents a possible mode of operation of the net. Since we consider the first–order
behavior, we assume that the IFS vector remains constant within a macro–state. The set of all
admissible IFS vectors is characterized by the feasible solutions of a linear constraint set S as
discussed in details in [3, 4].

A discrete–event model describes the behavior of the net that, upon the occurrence of macro–
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events, evolves through a sequence of macro–states. The interval of time between the occurrence
of two consecutive macro–events is called macro–period. In [3] the authors have considered two
types of macro–events: (a) the firing of a discrete transition; (b) the emptying of a continuous
place. In fact, the occurrence of any such event modifies the set S. However, the timing structure
associated to the macro–event occurrence has not been explicitly examined in [3].

In this paper we extends previous results in several ways.

We use timers to describe the timing structure associated to the transition firings. This implies
that the set of macro–events has to be augmented to take into account those events that modify
the timer values. In this paper we adopt a single–server enabling–memory timer policy. This
policy is quite common when dealing with timed Petri nets [1]. However other policies may also
be associated to FOHPN with minor changes.

We provide an algebraic framework to describe the overall net behavior that combines both
time–driven and event–driven dynamics. The resulting overall model is a linear discrete–time
time–varying state variable model whose sampling instants are given by the occurrence of the
macro–events.

The state vector x(k) is given by the marking of all places (continuous and discrete) and by the
value of all timers associated to timed transitions. The input vector u(k) is given by the length
of the current macro–period and by the characteristic vector that specifies which transition (if
any) fires at the end of the current macro–period. First we derive an open–loop formulation of
this model and then, by explicitly writing the relation between the input vector and the state,
we derive a closed–loop model, in which a reference input is used. Finally we provide the core
of a simulation tool, i.e., the algorithm to determine which macro–event will occur next from
the given current state.

We see two main advantages in the proposed formulation. Firstly, the linear state variable
model can be directly implemented to construct an efficient hybrid simulation tool. Secondly,
this algebraic formalism allows one to describe hybrid systems with a well–understood linear
(albeit time–varying) state variable model to which classical control theory may be applied (see
[5] for a similar approach in the manufacturing domain).

The rest of the paper is structured as follows. In Section 2 we recall the definition of First–Order
Hybrid Petri Nets. Section 3 describes the continuous and discrete event dynamics of the net.
Section 4 shows how a linear discrete–time time–varying state variable model can be derived.
Section 5 presents an algorithm to compute, from a given state, which macro–event will occur
next.

2 Background

We recall the Petri net formalism used in this paper following [3, 4]. For a more comprehensive
introduction to place/transition Petri nets see [7]. The common notation and semantics for
timed nets can be found in [1].

A First–Order Hybrid Petri Net (FOHPN) is a structure N = (P, T, Pre, Post,D, C).
The set of places P = Pd ∪ Pc is partitioned into a set of discrete places Pd (represented as
circles) and a set of continuous places Pc (represented as double circles). The cardinality of P ,
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Pd and Pc is denoted n, nd and nc.

The set of transitions T = Td ∪Tc is partitioned into a set of discrete transitions Td and a set of
continuous transitions Tc (represented as double boxes). The set Td = TI ∪ TD ∪ TE is further
partitioned into a set of immediate transitions TI (represented as bars), a set of deterministic
timed transitions TD (represented as black boxes), and a set of exponentially distributed timed
transitions TE (represented as white boxes). The cardinality of T , Td and Tc is denoted q, qd and
qc. We also denote the cardinality of the set of timed transition Tt = TD ∪ TE as qt. We assume
that the transition labelling is such that: Tt = {tj | j = 1, . . . , qt}, TI = {tj | j = qt + 1, . . . , qd},
Tc = {tj | j = qd + 1, . . . , qd + qc}.
The pre- and post-incidence functions that specify the arcs are (here R+

0 = R+ ∪ {0}):

Pre, Post :

{
Pd × T → N
Pc × T → R+

0

.

We require (well-formed nets) that for all t ∈ Tc and for all p ∈ Pd, Pre(p, t) = Post(p, t).

The function D : Tt → R+ specifies the timing associated to timed discrete transitions. We
associate to a deterministic timed transition tj ∈ TD its (constant) firing delay δj = D(tj).
We associate to an exponentially distributed timed transition tj ∈ TE its average firing rate
λj = D(tj), i.e., the average firing delay is 1

λj
, where λj is the parameter of the corresponding

exponential distribution.

The function C : Tc → R+
0 × R+∞ specifies the firing speeds associated to continuous transitions

(here R+∞ = R+ ∪ {∞}). For any continuous transition tj ∈ Tc we let C(tj) = (V ′
j , Vj), with

V ′
j ≤ Vj . Here V ′

j represents the minimum firing speed (mfs) and Vj represents the maximum
firing speed (MFS). In the following, unless explicitly specified, the mfs of a continuous transition
will be V ′

j = 0.

We denote the preset (postset) of transition t as •t (t•) and its restriction to continuous or
discrete places as (d)t = •t ∩ Pd or (c)t = •t ∩ Pc. Similar notation may be used for presets and
postsets of places. The incidence matrix of the net is defined as C(p, t) = Post(p, t)−Pre(p, t).
The restriction of C to PX and TY (X,Y ∈ {c, d}) is denoted CXY . Note that by the well-
formedness hypothesis Cdc = 0.

A marking

m :

{
Pd → N
Pc → R+

0

is a function that assigns to each discrete place a non-negative number of tokens, represented
by black dots and assigns to each continuous place a fluid volume; mi denotes the marking of
place pi. The value of a marking at time τ is denoted m(τ). The restriction of m to Pd and
Pc are denoted with md and mc, respectively. An FOHPN system 〈N,m(τ0)〉 is an FOHPN N

with an initial marking m(τ0).

The enabling of a discrete transition depends on the marking of all its input places, both discrete
and continuous.
Definition 1. Let 〈N,m〉 be an FOHPN system. A discrete transition t is enabled at m if for
all pi ∈ •t, mi ≥ Pre(pi, t). ¥
A continuous transition is enabled only by the marking of its input discrete places. The marking
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of its input continuous places, however, is used to distinguish between strongly and weakly
enabling.
Definition 2. Let 〈N,m〉 be an FOHPN system. A continuous transition t is enabled at m if
for all pi ∈ (d)t, mi ≥ Pre(pi, t).

We say that an enabled transition t ∈ Tc is:

• strongly enabled at m if for all places pi ∈ (c)t, mi > 0;

• weakly enabled at m if for some pi ∈ (c)t, mi = 0. ¥

In the following we will also often use ei,n to denote the i–th canonical basis vector of dimension
n, i.e., the vector

eT
i,n = [

i︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

n

]

3 Net dynamics

We describe the hybrid dynamics of an FOHPN considering first the time–driven behavior
associated to the firing of continuous transitions, and then the event–driven behavior associated
to the firing of discrete transitions.

3.1 Continuous dynamics

The instantaneous firing speed (IFS) at time τ of a transition tj ∈ Tc is denoted vj(τ). We can
write the equation which governs the evolution in time of the marking of a place pi ∈ Pc as

ṁi(τ) =
∑

tj∈Tc

C(pi, tj)vj(τ) = eT
i,nc

Cccv(τ) (1)

where v(τ) = [v1(τ), . . . , vnc(τ)]T is the IFS vector at time τ . Indeed Equation 1 holds assuming
that at time τ no discrete transition is fired and that all speeds vj(τ) are continuous in τ .

The enabling state of a continuous transition tj defines its admissible IFS vj .

• If tj is not enabled then vj = 0.

• If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V ′
j , Vj ].

• If tj is weakly enabled, then it may fire with any firing speed vj ∈ [V ′
j , V j ], where V j ≤ Vj

since tj cannot remove more fluid from any empty input continuous place p than the
quantity entered in p by other transitions.

We now characterize the set of all admissible IFS vectors.
Definition 3. (admissible IFS vectors)
Let 〈N,m〉 be an FOHPN system. Let TE(m) ⊂ Tc (TN (m) ⊂ Tc) be the subset of continuous
transitions enabled (not enabled) at m, and PE = {pi ∈ Pc | mi = 0} be the subset of empty
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continuous places. Any admissible IFS vector v at m is a feasible solution of the following linear
set: 




(a) Vj − vj ≥ 0 ∀tj ∈ TE(m)
(b) vj − V ′

j ≥ 0 ∀tj ∈ TE(m)
(c) vj = 0 ∀tj ∈ TN (m)
(d)

∑
tj∈TE C(p, tj)vj ≥ 0 ∀p ∈ PE(m)

(2)

The set of all feasible solutions is denoted S(N,m). ¥
Constraints of the form (2.a), (2.b), and (2.c) follow from the firing rules of continuous transi-
tions. Constraints of the form (2.d) follow from (1), because if a continuous place is empty then
its fluid content cannot decrease.

Note that the set S is a function of the marking of the net. Thus as m changes it may vary as well.
In particular it changes at the occurrence of the following macro–events: (a) a discrete transition
fires, thus changing the discrete marking and enabling/disabling a continuous transition; (b) a
continuous place becomes empty, thus changing the enabling state of a continuous transition
from strong to weak.

Let τk and τk+1 be the occurrence times of two consecutive macro–events of this kind; we assume
that within the interval of time [τk, τk+1) the IFS vector is constant and we denote it v(τk). Then
the continuous behavior of an FOHPN for τ ∈ [τk, τk+1) is described by

{
mc(τ) = mc(τk) + Cccv(τk)(τ − τk)
md(τ) = md(τk)

(3)

3.2 Discrete event dynamics

We associate to each timed transition tj ∈ Tt a timer νj .
Definition 4. Let 〈N,m〉 be an FOHPN system and [τk, τ) be an interval of time in which the
enabling state of a transition tj ∈ Tt does not change. If tj is enabled in this interval then

νj(τ) = νj(τk) + (τ − τk), (4)

while if tj is not enabled in this interval then

νj(τ) = νj(τk) = 0. (5)

Whenever tj is disabled or it fires, its timer is reset to 0. ¥
With the notation of [1], we are using a single–server semantics, i.e., only one timer is associated
to each timed transition, and an enabling–memory policy, i.e, each timer is reset to 0 whenever
its transition is disabled.

The vector of timers associated to timed transitions is denoted ν ∈ Rqt . Note that the timer
dynamics is piecewise constant and may change at the occurrence of the following macro–events:
(a) a discrete transition fires, thus changing the discrete marking and enabling/disabling a timed
transition; (b) a continuous place reaches a fluid level that enables/disables a discrete transition.

An enabled timed transition tj ∈ Tt fires when the value of its timer reaches a given value
νj(τ) = ν̂j . In the case of a deterministic transition ν̂j = δj is the associated delay. In the
case of a stochastic transition, ν̂j is the current sample of the associated random variable. An
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immediate transition fires as soon as it is enabled, i.e., it can be considered as a deterministic
transition with ν̂ = 0.

The firing of a discrete transition tj at m(τ) yields the marking
{

mc(τ) = mc(τ−) + Ccdσ(τ)
md(τ) = md(τ−) + Cddσ(τ)

(6)

where σ(τ) = ej,qd
is the firing count vector associated to the firing of transition tj .

4 Macro–behaviour: a linear model

In this section we show how it is possible to combine the continuous and discrete event dynamics
described in the previous section to obtain a linear time-varying discrete-time state variable
model.

4.1 Macro–events, macro–period and state vector

If we consider both continuous and discrete event dynamics, the system evolution is driven by
four types of macro-events.

• πi: a continuous place pi becomes empty. This may change the enabling state of a set of
continuous transitions from strong to weak, thus modifying the set S.

• γj : a discrete transition tj fires. This changes the discrete marking and may enable or
disable a set of continuous (discrete) transitions, thus modifying the set S (the vector of
timers).

• εi: a continuous place pi whose marking is increasing, reaches a flow level that enables a
set of discrete transitions. This will enable the corresponding timers.

• ε̄i: a continuous place pi whose marking is decreasing, reaches a flow level that disables a
set of discrete transitions. This will disable and reset the corresponding timers.

In [3, 4] only the first two types of macro-events have been taken into account, since they are
the only ones to produce a variation on S.

The possible effects of each macro-event on the marking m, the timer vector ν, the constraint
set S are summarized in the table below.

Jump Jump Change Timer
in m in ν in S enab disab

πi ×
γj × × × × ×
εi ×
ε̄i × ×

Let τk be the occurrence time of the k–th macro–event. The interval [τk, τk+1] is called a macro–
period and its length is denoted ∆(k) = (τk+1 − τk). Note that a macro–period may have a null
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length whenever an immediate transition fires. As an example, suppose that a continuous place
pi reaches a fluid level that enables an immediate transition tj . Then the sequence of events
will be ”εi at time τk” and ”γj at time τk+1”, with τk = τk+1. This is similar to the notion of
vanishing state in [1].

Our aim is that of obtaining a discrete–time state variable model of the system where each
sampling instant k corresponds to the occurrence of the k–th macro–event, i.e, to the time
instant τk. The overall state of the system is given by the marking of all places and by the
values of all timers. Because of the choice of the single–server semantics only one timer is
associated to each timed transition. Thus, we can define the state vector of the system as

x(k) =




mc(τk)
md(τk)
ν(τk)



} nc

} nd

} qt

(7)

i.e., x(k) ∈ Rs, where s = nc + nd + qt.

4.2 Discrete–time open–loop dynamics

We now derive a discrete–time state evolution law for the state vector (7) that can be expressed
in matrix notation as:

x(k + 1) = A(k)x(k) + B(k)u(k), (8)

where u(k) ∈ Rqd+1 is the input vector, A(k) and B(k) are matrices of appropriate dimensions.

To show this, we first observe that the behaviour of an FOHPN can be described within a
macro–period [τk, τk+1] by the following equations:





mc(k + 1) = mc(k) + Cccv(k)∆(k)
+Ccdσ(k + 1)

md(k + 1) = md(k) + Cddσ(k + 1)
ν(k + 1) = D(k)ν(k) + f(k)∆(k).

(9)

where we have written all vectors as functions of k instead of τk. Here σ(k+1) is the firing count
vector that specifies the event occurring at time τk+1 and ∆(k) is the length of the macro–period.

The first two equations follow from the combination of the net dynamic equations (3), (6).

The third equation follows from (4) and (5). Here matrix D(k) ∈ Rqt×qt and vector f(k) ∈ Rqt

depend on the macro–event occurring at the sampling instant k +1. In particular, the following
definitions, whose validity can be easily verified, hold:

• Macro-events πi, εi. There will be no jump in ν and each timer associated to an enabled
transition increases with unitary rate. Therefore for all t̄ ∈ Tt

f̄(k) =

{
1 if t̄ is enabled at m(k)
0 otherwise

D(k) = diag {f(k)}

(10)

i.e., D(k) is a diagonal matrix with entries Di,i = fi.
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• Macro-event γj . Let T j ⊂ Tt be the subset of timed transitions disabled by the firing of
tj . For all t̄ ∈ T j , ν̄(k +1) will be reset to 0 regardless of the value of ν̄(k). Furthermore
the timer of tj will also be reset to 0 after its firing. Therefore for all t̄ ∈ Tt

f̄(k) =





1 if (j 6= ̄) ∧ (t̄ 6∈ T j)
∧ t̄ is enabled at m(k)

0 otherwise

D(k) = diag {f(k)}

(11)

• Macro-event ε̄i. Let T i ⊂ Tt be the subset of timed transitions disabled by the decreasing
marking of the continuous place pi. The timers of all these transitions will be reset to 0.
Therefore for all t̄ ∈ Tt

f̄(k) =





1 if (t̄ 6∈ T j)
∧ t̄ is enabled at m(k)

0 otherwise

D(k) = diag {f(k)}

(12)

Finally, we observe that equation (9) is in the form of equation (8) if we consider (7) and let

A(k) =




Inc×nc 0nc×nd
0nc×qt

0nd×nc Ind×nd
0nd×qt

0qt×nc 0qt×nd
D(k)


 , (13)

B(k) =




Cccv(k) Ccd

0nd
Cdd

f(k) 0qt×nd


 , (14)

and

u(k) =

[
∆(k)

σ(k + 1)

]
. (15)

The input vector u specifies: (a) the length ∆(k) of the current macro–period; (b) which tran-
sition (if any) will fire at the end of the current macro–period. Note that ∆(k) and σ(k + 1)
depend on the state vector x(k) and on the macro–event occurring at the end of the current
macro–period. We can explicitly write their value as follows.

• Macro-event πi. The length of the macro–period is the time it takes to empty the contin-
uous place pi, i.e., the ratio between its actual marking and its variation with respect to
time (changed of sign). The firing count vector is equal to the null vector since no discrete
transition fires. Therefore,

∆(k) =
−mi(k)
ṁi(k)

=
−eT

i,sx(k)

eT
i,nc

Cccv(k)
; (16)

σ(k + 1) = 0qd
. (17)
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• Macro-event γj . If tj is a timed transition, the length of the macro–period is the residual
lifetime of the transition timer, i.e.,

∆(k) = ν̂j − νj(k) = ν̂j − en+j,sx(k). (18)

else if tj is an immediate transition, then ∆(k) = 0. Finally,

σ(k + 1) = ej,qd
. (19)

• Macro-events εi, ε̄i. The length of the macro–period is the time it takes the marking mi

to reach the value C(pi, tj) thus enabling (disabling) some discrete transition tj . As in the
first case, the firing count vector is equal to the null vector, since no discrete transition
fires. Therefore,

∆(k) =
C(pi, tj)−mi(k)

ṁi(k)

=
C(pi, tj)− eT

i,sx(k)

eT
i,nc

Cccv(k)
;

(20)

σ(k + 1) = 0qd
. (21)

4.3 Discrete–time closed–loop dynamics

In this subsection we derive a closed–loop form of equation (8) by substituting the values of
∆(k) and σ(k + 1) in equation (15).

We can write
u(k) = r(k)−K(k)x(k)

where r(k) ∈ Rqd+1 is the set point vector and K(k) ∈ Rs×(qd+1) is the feedback gain matrix.

The set point vector r(k) depends on the macro-event occurring at the sampling instant k + 1
and is defined as follows:

• Macro-event πi. All components of r(k) are zero.

r(k) =

[
0

0qd

]
. (22)

• Macro-event γj . The first component of r(k) is the firing delay ν̂j of transition tj — we
assume ν̂j = 0 is tj is an immediate transition — while σ(k + 1) = ej,qd

is the firing count
vector associated to the firing of tj .

r(k) =

[
ν̂j

ej,qd

]
. (23)

• Macro-events εi, ε̄i. For macro event εi the first component of r(k) is the time the con-
tinuous place pi takes to reach the fluid level C(pi, tj) that causes the event occurrence if
its initial marking were zero and the IFS vector were v(k). For macro event ε̄i the first
component of r(k) is the time changed of sign the continuous place pi takes to reach the
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fluid level zero if its initial marking had the value C(pi, tj) that causes the event occur-
rence and the IFS vector were v(k). In both cases, vector 0qd

indicates that no discrete
transitions fires.

r(k) =




C(pi, tj)
eT

i,nc
Cccv(k)
0qd


 . (24)

If we let Ā(k) = A(k)−K(k)B(k) we obtain the following closed–loop equation

x(k + 1) = Ā(k)x(k) + B(k)r(k). (25)

We observe that B(k) is the same as in the open–loop equation and its expression is given by
(14).

Matrix Ā(k) depends on the macro-event occurring at the sampling instant k +1 and is defined
as follows:

• Macro-events πi, εi, ε̄i.

Ā(k) = A(k) +




−Cccv(k)eT
i,s

eT
i,nc

Cccv(k)
0nd×s

−f(k)eT
i,s

eT
i,nc

Cccv(k)




. (26)

• Macro-event γj :

Ā(k) = A(k) +



−Cccv(k)eT

n+j,s

0nd×s

−f(k)eT
n+j,s


 . (27)

5 Macro-behaviour: a simulation algorithm

In the previous section a linear time-varying, discrete-time state variable model has been derived
to describe the macro-behaviour of an FOHPN. However, the above model has been obtained
under the assumption that at each discrete sampling instant k, the occurrence of the next macro-
event is known. For this purpose, we provide a simulation algorithm to determine, given the
actual state x(k), which is the next macro–event to occur.

1. Let Ψk = ∅. This set will contain all pairs (α, ∆α), where α is an event that may potentially
occur and ∆α is its residual lifetime.

2. For each immediate transition tj enabled at x(k), add to Ψk the pair (γj , 0).

3. If Ψk 6= ∅, then goto 8.

4. For each timed transition tj enabled at x(k), add to Ψk the pair (γj , ν̂j − eT
j,sx(k)).

5. For each non-empty continuous place pi, if ṁi(k) = eT
i,nc

Cccv(k) < 0 then add to Ψk the

pair (πi,
−ei,sx(k)

eT
i,nc

Cccv(k)
).
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6. For each discrete transition tj that is not enabled at x(k), let

Pj = {p` ∈ (c)tj | m`(k) < C(p`, tj)};

be the set of continuous places that have not enough fluid content to enable tj . This
transition may become enabled at the end of the current macro–period if the following two
conditions are both verified.

(a) md(k) ≥ Cdd(·, tj), i.e., tj is enabled in the discrete sub–net;

(b) ∀p` ∈ Pj , ṁ`(k) = eT
`,nc

Cccv(k) > 0, i.e., the marking of all places in Pj is increasing.

The time it takes for tj to become enabled is

∆ = max
p`∈Pj

C(p`, tj)− e`,sx(k)
e`,ncCccv(k)

and we denote pi the place for which this value is maximum. However, tj will not be
enabled if any place p¯̀ in the set

P̄j = {p` ∈ (c)tj | m`(k) ≥ C(p`, tj),
ṁ`(k) < 0},

will go below the fluid level C(p¯̀, tj) in the meantime. Thus we let

∆̄ = min
p`∈P̄j

C(p`, tj)− e`,sx(k)
e`,ncCccv(k)

with ∆̄ = ∞ if P̄j = ∅.
If ∆̄ > ∆, add (εi,∆) to Ψk.

7. For each enabled discrete transition tj , let

P̄j = {p` ∈ (c)tj | ṁ`(k) < 0}

be the set of continuous places whose marking is decreasing. If P̄j 6= ∅, transition tj may
become disabled. In this case let

∆ = min
p`∈P̄j

C(p`, tj)− e`,sx(k)
e`,ncCccv(k)

,

and let pi be the place corresponding to this minimum. The macro–event ε̄i will occur not
at time ∆, but an instant later when mi will go below the value C(pi, tj). Thus we add
(ε̄i, ∆+) to Ψk.

8. Choose from Ψk the pair (α, ∆α) where ∆α is the minimum over all pairs. Event α is the
next to occur.

Note that if two pairs (α1, ∆) and (α2, ∆+) are in Ψk, then ∆ < ∆+) and α1 should be
chosen.

9. Let
x(k + 1) = Ā(k)x(k) + B(k)r(k)

where matrices Ā(k), B(k) and vector r(k) are defined in accordance with the previous
results and depend on the type of macro-event α.
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6 Conclusions

We have considered in this paper First–Order Hybrid Petri Nets, and we have shown how it is
possible to describe the overall hybrid net behavior that combines both time–driven and event–
driven dynamics with a linear discrete–time time-varying state variable model. This model can
be directly used by an efficient simulation tool. Furthermore, using this formulation, classical
control theory results may potentially be applied to study properties of hybrid systems and this
will be the subject of future work.
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