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Abstract

In this paper we present a novel formulation for the optimal control of discrete event dynamic
processes which represent production systems with unreliable machines and buffers of finite ca-
pacity. We derive an optimum control strategy that is critically based on the fact that the discrete
event dynamic behavior of the system is approximatively represented with a hybrid model. We
introduce a deterministic fluid network model where the average flow rates through the machines
are the control variables and with an original approach we show that the dynamics of the sys-
tem easily translate into a discrete–time, time–varying state variable model, where the optimum
machine production rates can be easily obtained by solving a sequence of linear programming
problems.

1 Introduction

In this paper we consider manufacturing systems consisting of unreliable machines and buffers
of finite capacity in the most general multi–class multi–machine setting. The process allows the
simultaneous production of several part types (classes) with general service time distributions
and routing policies. Each part has to perform its own orderly sequence of operations (production
cycle), different for each class, in order to be completed. The production cycle specifies for each
part the sequence of machines it must visit and the operation performed by them. The same
machine can perform operations on different part classes (sequencing), eventually with different
service times. The same operation can be performed on alternative machines (routing).

Machine breakdowns, planned and unplanned maintenance, operator unavailability, setup times,
etc., make the manufacturing environment stochastic. Therefore the general problem setting is
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a stochastic discrete event dynamic process. In this paper we present a preliminary result where
we assume deterministic fail and repair events, such as in the presence of planned maintenance
programs, and we assume that the uncertainty of the service times is small enough so that it
does not affect the sequence of a limited number of events that we call macro–events.

We derive an optimum control strategy that is critically based on the fact that the discrete event
dynamic behavior of the production system is approximatively represented with a hybrid model.
This model is characterized by two layers of aggregation. At the lower layer the behavior of the
system is approximated by the average flow of each part through each machine. At the higher
layer a discrete event model will represent the transitions of the system through a sequence of
operational states, that we call macro–states, at the occurrence of the macro–events (machine
starvation, blockage, breakdown and repair, material release times and due dates). The control
is composed of two parts: a dispatcher and a planner. During the permanence into each macro–
state, between the occurrence of two consecutive macro–events, the dispatcher will take care
of the sequencing of parts waiting in the buffers and of the routing of them at the exit of
the machines according to their class. This will be done in order to accomplish average flows
according to a planner which implements an optimum control strategy over a finite time horizon
that will be discussed in this paper.

By this approximation approach, described in [2] and briefly outlined in the next section, the
discrete event dynamics of the system easily translate into a discrete–time, time–varying state
variable model, where the average flows of parts through the machines enter the model as non–
linear control variables.

The optimum control problem of maximizing productivity over a finite time horizon while guar-
anteeing at the final time a desired production mix, has a necessary condition which lends itself
to the evaluation of the optimum machine production rates for each sample period through
a sequence of linear programming problems. This result is particularly interesting because it
formally confirms the intuition resulting from the myopic approach described in [2] where each
sample period is treated independently from the others. Moreover the resulting control pol-
icy easily allows the computation of the sensitivity functions of the optimum control system
with respect to the design parameters, i.e., buffer capacity, maintenance period and machine
productivity, to be used during the design of the manufacturing system.

A multi-class discrete production is usually seen as the problem of scheduling parts to the ma-
chines subject to release times and due dates for a set of lots of different classes while optimizing
a certain performance index. If the production model is approximated by a fluid network model,
individual parts in a lot do not exist anymore, and the average flow rates through the machines
for the different lots become the decision variables. A discrete time optimum control problem
can be formalized where release times and due dates can be easily accounted for by introducing
appropriate constraints in the state variable model at the occurrence of certain macro–events.
In this paper we present the technique for the special case of constraining the production mix
at the final time.
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1.1 Previous Work

Optimal control formulations have been developed and applied to a number of automated man-
ufacturing systems. Gershwin [6] developed a general model suggesting a hierarchical approach
for scheduling and planning. Sethi and Zhou [9] established a graph–theoretic framework for a
dynamic jobshop that describes the system dynamics along with state and control constraints.
In [8] Presman et al. considered the problem of choosing the production rates of an N–machine
flowshop by formulating a stochastic dynamic programming problem. Akella and Kumar [1]
proposed an optimal control of a continuous–time system with jump Markov disturbances and
with an infinite horizon discounted cost criterion for an unreliable manufacturing system pro-
ducing a single class of product that has to meet a given demand. Yao et al. [5] considered the
problem of scheduling manufacturing systems based on a deterministic fluid network model. In
a recent work Balduzzi and Menga [2] developed a discrete–time, time–varying linear stochas-
tic state variable model for the fluid approximation of flexible manufacturing systems. Then,
by using perturbation analysis techniques they obtained average values and variances of both
performance measures and their gradients with respect to the system parameters to perform
optimal design of the system configuration. The results presented in this paper follow the model
developed in [2].

2 Description of the Model

The production process considered in this work consists of a set of n single–server stations,
denoted by Mi, for i = 1, . . . , n, serving ` classes of products, indexed by r = 1, . . . , `. Parts of
different classes move from machine Mi to Mj according to their production cycle and are queued
in buffers, one for each machine, with the initial one (input buffer) acting as an unlimited supply
of parts and the final buffer acting as a limited storage area for collecting finished products, thus
representing the production target. The buffers have finite capacity Ci and the machines are
unreliable.

We consider operation-dependent failures and we define for each machine the production volumes
before a machine fails and the repair times, denoted by the sequences wi = (wi,1, wi,2, . . .) and
fi = (fi,1, fi,2, . . .), for i = 1, . . . , n, respectively. In a general problem setting these sequences
have been considered as stochastic processes [2]. In this paper a preliminary result is approached
and these sequences are assumed deterministic values as in the case of planned maintenance
programs. Machine service times are assumed independent random variables with identical
distribution with finite mean and variance. The maximum average production rate for parts of
class r of machine Mi is denoted V r

i .

The evolution in time of the production process is discussed within a framework that distin-
guishes two levels of aggregation. The lower layer represents the microscopic behavior of arrivals
and departures of parts to/from each machine (micro–events). It will be modeled in an aggregate
view by using first order fluid approximations [7]. At the higher layer a discrete event model will
represent the transitions of the process through a sequence of macro–states, at the occurrence
of the macro–events.

In [3] the authors have shown for the single–class multi–machine case that it is possible to make
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an efficient analysis of this hybrid system by defining a suitable discrete linear inclusion that
describes the transitions of the associated finite automata through a sequence of admissible
macro–states, and thus studying the stability of the production process.

2.1 The Microscopic Layer: Fluid Model

Let τk = [tk, tk+1), for k = 0, 1, 2, . . ., be the interval of time between the occurrence of consecu-
tive macro–events at time tk and tk+1, that we call macro–period, and let vr

i,j(k) be the constant
average flow rates of parts of class r from machines Mi to Mj .

The microscopic behavior of a production system during a macro–period can be approximated
by the following three processes defined for each machine Mi:
(I) the buffer levels for parts of class r

xr
i (t) = xr

i (tk) + [vr
in,i(k)− vr

out,i(k)](t− tk), (1)

(II) the production volume processed by the machine since the last repair (used to evaluate the
machine breaking time)

χi(t) = χi(tk) + vout,i(k)(t− tk), (2)

(III) the time spent by the machine under repair since the last failure

si(t) = si(tk) + (t− tk) (3)

where t ∈ [tk, tk+1) for all these processes, and

vr
in,i(k) =

∑
h vr

h,i(k), vin,i(k) =
∑

r vr
in,i(k),

vr
out,i(k) =

∑
j vr

i,j(k), vout,i(k) =
∑

r vr
out,i(k)

are the inflow and outflow rates of parts of each machine. We also define the process pr
i (t) that

represents the cumulative production of parts of class r at the exit of each machine Mi as

pr
i (t) = pr

i (tk) + vr
out,i(k)(t− tk), t ∈ [tk, tk+1). (4)

Note that Equations (2) and (4) are similar but while χi(t) will be reset to 0 after each failure,
pr

i (t) will keep on accounting for the cumulative volume currently processed by the machine.

2.2 The Macroscopic Layer:
State Variable Model

At the macroscopic level the evolution in time of the system through a sequence of macro–states
can be described by a finite automata with states given by a finite set of admissible configurations
of machines status (operational or down) and buffer status (full, not full–not empty, empty for
parts of class r) and with transitions represented by the macro–events (failure, repair, buffer full
and buffer empty for parts of class r).

The transitions of the finite automata define the interlacing of Equations (1)–(3) and drive the
evolution of the system whose macro–behavior can be described by the following discrete–time,
time–varying state variable model:

{
x(k + 1) = A

(
k,u(k)

)
x(k) + b

(
k,u(k)

)
d(k + 1)

x(0) = x0

(5)
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whose samples are the occurrence of the macro events at time tk, for k = 0, 1, 2, . . .. The state
variable vector is

x(k) = [. . . , xr
i (tk), χi(tk), si(tk), . . .]T (6)

with entries given by the values of the processes (1)–(3) at the occurrence of the macro–events.
The control input vector is

u(k) = [. . . , vr
i,j(k), . . .]T (7)

with entries given by the constant average flow rates. The disturbance input sequence d(k) is a
deterministic sequence of values 0, Ci, wi,α ∈ wi, fi,β ∈ fi, for i = 1, . . . , n, and α, β ∈ N+. With
this model any macro–event happens when an appropriate component of the state vector reaches
a specified value given by the sequence d(k). The detailed derivation of this state variable model
can be found in Appendix A.

Note that each macro–state defines the feasible region, denoted by U(k), for the average machine
production rates vr

i,j(k) that enter model (5) as non–linear control variables.

We define an auxiliary system linked with model (5) that will be used in the optimization
problem introduced in the next section:





p(k + 1) = p(k) + Bu(k)∆
(
u(k),x(k)

)

p(0) = p0

y(k) = Cp(k)

(8)

where p(k) = [. . . , pr
i (tk), . . .]

T describes the cumulative production of parts, i.e., its entries are
given by the values of (4) at the occurrence of the macro–events. Matrices B and C are of
appropriate dimensions and have entries 0 or 1. The scalar function ∆

(
u(k),x(k)

)
=

(
tk+1− tk

)

is defined by Eq. (5) (see Appendix A for details) and y(k) is a vector of dimension ` whose
components represent the level of each part class in the output buffer, i.e., the cumulative
production of finished parts.

We indicate with Io(k) and Id(k) the sets of indices of operational and down machines, If (k)
and Ie(k) the sets of indices of full and empty buffers for parts of class 1, . . . , r ≤ `, during the
k–th macro–period, respectively.
Definition 2.1. A control u(k) ∈ U(k) is admissible if it is a feasible solution of the following
set of linear inequalities:





(a) 0 ≤ ∑
j vr

i,j(k) ≤ V r
i , ∀i ∈ Io(k)

(b)
∑

r

∑
j vr

i,j(k) = 0, ∀i ∈ Id(k)
(c)

∑
r

∑
h vr

h,i(k) ≤ ∑
r

∑
j vr

i,j(k),
∀i ∈ If (k)

(d)





∑
j v1

i,j(k) ≤ ∑
h v1

h,i(k)
. . .∑

j vr
i,j(k) ≤ ∑

h vr
h,i(k)

∀i ∈ Ie(k)
vr
i,j ≥ 0

(9)

The consistency constraint set (CCS) (9) will be denoted g(k,u(k)) ≤ 0. ¥
Constraints of the form (9.a) bound the machine production rates at their maximum values and
apply for all operational machines. Constraints of the form (9.b) apply for all machines under
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repairing. Constraints of the form (9.c) have to be satisfied for all machines with full buffers
and constraints (9.d) for all machines whose buffer level for parts of class 1, . . . , r ≤ ` is 0.

The region U(k) defined by g(k,u(k)) ≤ 0 is a convex polyhedron whose vertices are basic
solutions of any linear programming problem with objective function of the form J = aT (k)u(k)
and subject to the CCS. Any admissible control policy u(k) corresponds to a point within the
feasible region U(k) and the boundary represents all those control policies aimed at maximizing
a given linear objective function. Thus the optimum solution denoted uo(k) will always lay on
the boundary of the feasible region.

3 The Dynamic Control Problem

The dynamic control policy adopted in this work provides the machine production rates u(k) as
the solution of an optimal control problem aimed at maximizing the productivity of the system
while guaranteeing a given production mix at the final event.

Let N be the final event, T = ∪N−1
k=0 [tk, tk+1] the finite time horizon, and

ytot(k) = 1TCp(k) =
∑̀

r=1

yr(k) (10)

the cumulative production of finished parts over all classes up to the time horizon [0, tk].

We now introduce our definition of production mix.
Definition 3.1. The production y(k) satisfies the production mix m = [m1, . . . , m`]T if:





y1(k) = m1ytot(k)
· · ·
y`(k) = m`ytot(k)

⇔ (M− I)Cp(k) = 0 (11)

and
∑`

r=1 mr = 1. ¥
Here mr denotes the mix factor of parts of class r and M = m ·1T is a real matrix of dimension
`× `.

The optimum control problem is to determine the control sequence uo =
(
uo(0), . . . ,uo(N −1)

)
,

for uo(k) ∈ U(k), which maximizes the performance functional J(u) = ytot(N) over the finite
time horizon T . This problem can be formulated as follows:

max
u

ytot(N) = min
u

[−1TCp(N)
]

subject to:

(a)

{
p(k + 1) = p(k) + Bu(k)∆

(
u(k),x(k)

)

p(0) = p0

(b)

{
x(k + 1) = D(k)

[
x(k) + Ru(k)∆

(
u(k),x(k)

)]

x(0) = x0

(c) u(k) ∈ U(k), ∀k = 0, . . . , N − 1

(d) (M− I)Cp(N) = 0

(12)

Equations (12.a) and (12.b) represent the dynamics of the systems (8) and (5). Equation (12.c)
is the control constraints (9) and Equation (12.d) is the terminal condition of an assigned
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production mix at the final event. Note that we do not aim at guaranteeing the assigned mix
at each macro–event.

To solve this problem, we introduce the Hamiltonian sequence

Hk = λT (k + 1)
[
p(k) + Bu(k)∆

(
u(k),x(k)

)]

+ µT (k + 1)
{
D(k)

[
x(k) + Ru(k)∆

(
u(k),x(k)

)]}

where λ(k) and µ(k) are the costate vectors, and the scalar function

Φ = νT (M− I)Cp(N)− 1TCp(N)

with a set of ` multipliers νT = (ν1, . . . , ν`). Let us assume the existence of optimal trajectories
po =

(
po(0), . . . ,po(N−1)

)
and xo =

(
xo(0), . . . ,xo(N−1)

)
and corresponding control sequence

uo, that satisfy a number of technical assumptions. Then, for the maximum principle [4], in order
that uo be optimal, there exists a costate vector λ(k), such that λ(k) and po(k) are a solution
of the system {

po(k + 1) = po(k) + Buo(k)∆
(
uo(k),xo(k)

)

λT (k) = λT (k + 1) ⇒ λT (k) = λT

with boundary conditions




λT (N) =
∂Φ

∂po(N)
=

[
νT (M− I)− 1T

]
C

po(0) = p0

and there exists a costate vector µ(k), such that µ(k) and xo(k) are a solution of the system




xo(k + 1) = D(k)
[
xo(k) + Ruo(k)∆

(
uo(k),xo(k)

)]

µT (k) = µT (k + 1)D(k)
[
I + Ruo(k)

· ∇xo(k)[∆(uo(k),xo(k))]
]

with boundary conditions 



µT (N) =
∂Φ

∂xo(N)
= 0

po(0) = p0

and such that Hk is minimized, i.e.,

Ho
k =min

u(k)

{
λT

[
po(k) + Bu(k)∆

(
u(k),xo(k)

)]

+ µT (k)D(k)
[
xo(k) + Ru(k)∆

(
u(k),xo(k)

)]}

subject to: g(u(k)) ≤ 0

for k = 0, . . . , N − 1. Note that this problem is a non–linear programming problem with linear
constraints, which is difficult to solve analytically even if there exists several tools for dealing
with this kind of problem, e.g., active sets, primal, and gradient projection methods. In the
next section we will consider a linearized version of this problem.

This class of optimal control formulation has been applied to a number of flexible manufacturing
systems, e.g., Akella and Kumar [1]. The major difficulty is that there is no available technique
to solve this control problem analytically. However, as it will be clear in the following sections,
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a general finding is that the optimal control sequence uo can be seen as a switching policy
over the control variables. Control takes place when the macro–events do occur. Each solution
uo(k) corresponds to an extreme point of the CCS, i.e., the desirable operating point, and the
controller always attempts to drive the system there and keep it.

4 The Linear Optimization Problem

Since problem (12) is analytically untractable, we consider a linearized version. Let us assume
the existence of an optimum solution: po and xo are the optimal trajectories and uo is the
corresponding control sequence for the problem (12).

We consider perturbations from the optimal trajectories po and xo produced by admissible
infinitesimal perturbations δu(k) in the optimal control sequence that, in turn, gives rise to
the perturbations δp(k) and δx(k) obtained by linearizing (8) and (5) around their optimal
trajectories. Furthermore we assume that the perturbation δu(k) is small enough so that is
does not change the sequence of the macro–events. Thus we can write the two linear perturbed
system dynamics as follows:





p̃(k + 1) = p̃(k) + Apx(k)x̃(k) + Bp(k)ũ(k) + Gp(k)
p̃(0) = p0

ỹ(k) = Cp̃(k)

and {
p̃(k + 1) = Axx(k)x̃(k) + Bx(k)ũ(k) + Gx(k)
p̃(0) = x0

where p̃(k) = po(k) + δp(k), x̃(k) = xo(k) + δx(k) and ũ(k) = uo(k) + δu(k). The complete
derivation of these models can be found in Appendix B.

Now the optimal control problem is to find the control sequence ũo =
(
ũo(0), . . . , ũo(N − 1)

)
,

for ũo(k) ∈ U(k), which maximizes the performance functional J(ũ) = ỹtot(N) over the finite
time horizon T . This optimization problem can be formulated as follows:

max
ũ

ỹtot(N) = min
ũ

[−1TCp̃(N)
]

subject to:
{

p̃(k + 1) = p̃(k) + Apx(k)p̃(k) + Bp(k)ũ(k) + Gp(k)
p̃(0) = p0{
p̃(k + 1) = Axx(k)x̃(k) + Bx(k)ũ(k) + Gx(k)
p̃(0) = x0

ũ(k) ∈ U(k), ∀k = 0, . . . , N − 1

(M− I)Cp̃(N) = 0

(13)

We observe that the objective function and the constraints are linear in the states and control
variables. Thus we are dealing with a linear programming problem and the optimum solution,
if it exists, will always require the control variables to be laying on the boundary of the feasible
region. This approach can be seen as an extension of the bang–bang principle [4] to the multi–
dimensional case.
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4.1 Optimum Control: a Linear Programming Approach

An optimum solution of the problem (13) can be obtained by solving a sequence of linear
programming problems, one for each sample period. By the same developments as in Section 3
we introduce the Hamiltonian sequence

Hk = λT (k)
[
Aλ(k)z(k) + Bλ(k)ũ(k) + Gλ(k)

]
(14)

where we have defined

z(k) =

[
p̃(k)
p̃(k)

]
, Aλ(k) =

[
I Apx(k)
0 Axx(k)

]
,

Bλ(k) =

[
Bp(k)
Bx(k)

]
, Gλ(k) =

[
Gp(k)
Gx(k)

]
,

and the scalar function
Φ = −1TCp̃(N) + νT

(
M− I

)
Cp̃(N). (15)

The costate dynamics is given by
{

λT (k) = λT (k + 1)Aλ(k)
λT (N) =

[
νT (M− I)− 1T

]
C

(16)

which yields
λ(k) = AT

λ (k) · · ·AT
λ (N − 1)

[
νT (M− I)− 1T

]
C.

The optimal solution of problem (13) can be obtained by computing the optimal values Ho
k , for

k = 0, . . . , N − 1, as follows:

Ho
k =min

ũ(k)

{
λT (k)

[
Aλ(k)z(k) + Bλ(k)ũ(k) + Gλ(k)

]}

subject to: g(ũ(k)) ≤ 0
(17)

We observe that, since the optimal trajectories are assumed to be known, matrices Aλ(k) are also
known. This fact allows us to compute λ(k) and thus solve problem (17) iteratively. Finally, we
note that the Hamiltonian sequence is linear in ũ(k), thus problem (13) reduces to the solution
of a sequence of linear programming problems of the following form:

min
ũ(k)

{
aT (k) ũ(k)

}
subject to:

g(ũ(k)) ≤ 0
(18)

for k = 0, . . . , N − 1, where the cost coefficient vectors are defined as aT (k) = λT (k)Bλ(k).

With the following theorem we demonstrate that the optimum solution of the linear problem (13)
is also a solution for the non–linear problem (12).
Theorem 4.1. Consider the following constrained non–linear programming problem

min
u

J(u) subject to:

g(u) ≤ 0
(19)

9



and the following constrained linear programming problem

min
u

cTu subject to:

g(u) ≤ 0
(20)

Let U be the feasible region for both problems, uo an optimal solution for the problem (20) and
suppose uo is a regular point of the constraints g(u) ≤ 0. If

∇uJ(uo) 6= 0, ∀u ∈ U (21)

∇uJ(uo) = cT (22)

then uo satisfies the necessary conditions for the solution of the problem (19).

Proof. If uo satisfies the necessary condition for the solution of problem (19), then there exists
a vector µ̃ ≥ 0 such that (Kuhn-Tucker conditions)

∇uJ + µ̃T∇u g(uo) = 0
µ̃Tg(uo) = 0.

(23)

However by hypothesis uo is a solution for the problem (20), then it must satisfy for a certain
µ ≥ 0

cT + µT∇u g(uo) = 0
µTg(uo) = 0.

(24)

From condition (22) it is immediate to verify that (23) is equal to (24) with µ̃ = µ.
This completes the proof. ¥

The previous theorem provides a necessary condition for the optimum solution of problem (12),
i.e., if uo is an optimum solution of problem (13) then it is also a solution of problem (12).
In fact if the linear problem admits a unique optimum solution uo, and condition (21) of the
previous theorem allows us to avoid degenerate solutions, then uo must be a stationary point
for the problem (12).

Finally, to obtain the optimum solution for the problem (12) we may choose any starting values
for the multiplier sequence νT and solve the sequence of linear programming problems. Then
we can tune νT such as to satisfy the terminal conditions and the optimum solution obtained by
solving problem (13), if it is unique, for Theorem 4.1 is also the optimum solution of problem (12).

5 Summary and Conclusions

In this paper we have approached the control problem of determining optimal machines produc-
tion rates so as to maximize the total production while guaranteeing a given production mix
over a finite planning horizon. We have shown that this problem has a necessary condition which
lends itself to the evaluation of the optimum machine production rates for each sample period
through a sequence of linear programming problems. A discrete time optimum control problem
has been formalized and more general constraints, such as release times and due dates, can be
easily accounted for. Our main future goal will be to extend the results obtained for the control
of deterministic production system to the stochastic case.
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Appendix A

Here we briefly develop the discrete–time, time–varying state variable model which describes
the evolution in time of the hybrid system introduced in Section 2.2 and that can be expressed
in matrix notation as:

{
x(k + 1) = D(k)

[
x(k) + Ru(k)∆

(
u(k),x(k)

)]

x(0) = x0

(25)

where:

• ∆
(
u(k),x(k)

)
= (tk+1 − tk) is the length of the k–th macro–period,

• x(k) = [. . . , xr
i (tk), χi(tk), si(tk), . . .]T is the state vector, as given in (6),

• u(k) is the average machine production rates vector,

• D(k) is a diagonal matrix with entries 0 and 1,

• R is the weight matrix for the machine outflow rates with entries 0, 1, −1.

With this model any macro–event happens when an appropriate component of the state vector
reaches a specified value given by the sequence d(k). Precisely when a machine fails or gets
repaired then it must result χi(tk+1) = wi,α or si(tk+1) = fi,β. When a buffer gets full or empty
for parts of class r then the condition

∑
r xr

i (tk+1) = Ci or xr
i (tk+1) = 0 will be satisfied.

Let us define h(k) = eT
j (k)D(k), q(k) = eT

j (k)D(k)Ru(k) and K(k) = 1
q(k) . Then we have:

d(k + 1) = eT
j (k)x(k + 1)

= h(k)x(k) + q(k)∆
(
u(k),x(k)

) (26)

and the length of the k–th macro–period is given by

∆
(
u(k),x(k)

)
= K(k)

[
d(k + 1)− h(k)x(k)

]
(27)

where eT
j (k) is a unit vector which selects the state variable within x(k) that has generated the

macro–state transition. Equation (25) can be rewritten as:
{

x(k + 1) = A
(
k,u(k)

)
x(k) + b

(
k,u(k)

)
d(k + 1)

x(0) = x0

where A
(
k,u(k)

)
= D(k)

[
I−K

(
k,u(k)

)
Ru(k)h(k)

]
and b

(
k,u(k)

)
= D(k)K

(
k,u(k)

)
Ru(k).

Appendix B

We consider perturbations from the optimal trajectories po and xo produced by admissible
infinitesimal perturbations δu(k) in the optimal control sequence uo.

By linearizing (8) around po we have:




δp(k + 1) = δp(k) + B∆
(
uo(k),xo(k)

)
δu(k)

+ Buo(k)
[∇uo(k)∆

(
uo(k),xo(k)

)
δu(k)

+∇xo(k)∆
(
uo(k),xo(k)

)
δx(k)

]
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where the gradients in the last expression can be easily obtained from the results presented in
Appendix A. If we let

Apx(k) = Buo(k)∇xo(k)∆
(
uo(k),xo(k)

)

Bp(k) = B
[
∆

(
uo(k),xo(k)

)
I

+ uo(k)∇uo(k)∆
(
uo(k),xo(k)

)]

then we simply obtain

δp(k + 1) = δp(k) + Apx(k) δx(k) + Bp(k) δu(k).

Let us define p̃(k) = po(k) + δp(k), x̃(k) = xo(k) + δx(k) and ũ(k) = uo(k) + δu(k). The linear
perturbed system dynamics is given by





p̃(k + 1) = p̃(k) + Apx(k)p̃(k)

+ Bp(k)ũ(k) + Gp(k)
p̃(0) = p0

ỹ(k) = Cp̃(k)

(28)

where Gp(k) =
[
B∆

(
uo(k),xo(k)

)−Bp(k)
]
uo(k)−Apx(k)xo.

By linearizing (25) or (5) around the optimal trajectory xo we have:




δp(k + 1) = D(k)δx(k) + D(k)R∆
(
uo(k),xo(k)

)

· δu(k) + D(k)Ruo(k)
[∇uo(k)∆

(
uo(k),xo(k)

)

· δu(k) +∇xo(k)∆
(
uo(k),xo(k)

)
δx(k)

]

and if we let
Axx(k) = D(k)

[
I + Ruo(k)∇xo(k)∆

(
uo(k),xo(k)

)]

Bx(k) = D(k)R
[
∆

(
uo(k),xo(k)

)

+ uo(k)∇uo(k)∆
(
uo(k),xo(k)

)]

then we simply obtain
δx(k + 1) = Axx(k)δx(k) + Bx(k) δu(k).

The linear perturbed system dynamics is given by




p̃(k + 1) = Axx(k)p̃(k)

+ Bx(k)ũ(k) + Gx(k)
p̃(0) = x0

(29)

where

Gx(k) =
[
D(k)R∆

(
uo(k),xo(k)

)−Bx(k)
]
uo(k)

−D(k)Ruo∇xo(k)∆
(
uo(k),xo(k)

)
xo.
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