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Abstract - In this paper we consider First–Order Hybrid Petri Nets (FOHPN), a
model that consists of continuous places holding fluid, discrete places containing a
non–negative integer number of tokens, and transitions, either discrete or continu-
ous. This Petri net model reveals to be particularly suited for modeling manufacturing
systems and its control can be efficiently framed as a conflict resolution policy that
aims at optimizing a given objective function. The use of linear algebra leads to
sensitivity analysis that allows one to study of how changes in the structure of the
model influence the optimal behavior. It further enables us to determine admissi-
ble ranges of variation for some design parameters in order to improve the optimal
myopic solution.

1. INTRODUCTION

First–Order Hybrid Petri Nets (FOHPN) are nets that consist of continuous places holding
fluid, discrete places containing a non–negative integer number of tokens, and transitions, either
discrete or continuous. This hybrid Petri net model has been introduced by the authors in [3, 4]
and follows the formalism described by David and Alla [2, 7].

In a previous work [3] the authors have shown that FOHPNs are well suited for modeling au-
tomated manufacturing systems characterized by unreliable machines, buffers of finite capacity,
general service time distributions and routing policies, where the continuous transitions model
the production of the machines. Continuous firing of these transitions corresponds to a contin-
uous production at rates determined by the current values of their instantaneous firing speeds
(IFS).

In [3] the focus was on conflict resolution policies, i.e. on the computation of IFSs, seen as the
decisions that a plant operator must take in oder to optimize the process. This can be done
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by solving a linear programming problem (LPP) of the form maxv{cTv|Av ≤ b,v ≥ 0} where
the set of admissible IFS vectors v can be characterized by the feasible solutions of a linear
constraint set S, and the different objective functions to be maximized can be associated to
different conflict resolution policies. The constraint set S is a function of the current marking of
the net, because it is characterized by the marking of the discrete places and by the set of non–
empty continuous places, i.e., it is characterized by the macro–state of the net. This formulation
leads to a myopic procedure which generates a piecewise optimal control policy during each time
interval of time in which the macro–state remains constant. As the system evolves through a
sequence of macro–states upon the occurrence of the macro–events, the myopic procedure will
be called repeatedly.

In this paper, as in [4] we adopt the optimal basis approach, i.e., the simplex method, to solve
LPP. We show how it is possible to efficiently applied sensitivity analysis techniques that pertain
to LPP in the FOHPN framework. Sensitivity analysis [8, 10] serves as a tool for studying of
how optimal solutions vary according to changes of the given linear program in terms of the
coefficients of the matrix, the right–hand side vector and the objective function coefficients.

Sensitivity analysis techniques have been proposed in this paper to obtain information about
the degrees of freedom that can be exploited when making performance optimization or optimal
design of the system parameters configuration. The FOHPN model of a multi–class production
system has been examined in detail. Two different control problems have been considered
and a local (myopic) optimal control policy has been derived by solving a sequence of linear
programming problems. Finally perturbations on the maximum machine production rates, on
the re–working factor and on the mix factor have been discussed along with different numerical
examples.

2. BACKGROUND

We recall the Petri net formalism used in this paper following [3, 4]. For a more comprehensive
introduction to place/transition Petri nets see [9]. The common notation and semantics for
timed nets can be found in [1].

An First–Order Hybrid Petri Nets (FOHPN) is a structure N = (P, T, Pre, Post,D, C).
The set of places P = Pd ∪ Pc is partitioned into a set of discrete places Pd (represented as
circles) and a set of continuous places Pc (represented as double circles). The cardinality of P ,
Pd and Pc is denoted n, nd and nc.

The set of transitions T = Td ∪Tc is partitioned into a set of discrete transitions Td and a set of
continuous transitions Tc (represented as double boxes). The set Td = TI ∪ TD ∪ TE is further
partitioned into a set of immediate transitions TI (represented as bars), a set of deterministic
timed transitions TD (represented as black boxes), and a set of exponentially distributed timed
transitions TE (represented as white boxes).

The pre- and post-incidence functions that specify the arcs are (here R+
0 = R+ ∪ {0}):

Pre, Post :

{
Pd × T → N
Pc × T → R+

0
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We require (well-formed nets) that for all t ∈ Tc and for all p ∈ Pd, Pre(p, t) = Post(p, t).

The function D : Tt → R+ specifies the timing associated to timed discrete transitions. We
associate to a deterministic timed transition tj ∈ TD its (constant) firing delay δj = D(tj).
We associate to an exponentially distributed timed transition tj ∈ TE its average firing rate
λj = D(tj), i.e., the average firing delay is 1

λj
, where λj is the parameter of the corresponding

exponential distribution.

The function C : Tc → R+
0 × R+∞ specifies the firing speeds associated to continuous transitions

(here R+∞ = R+ ∪ {∞}). For any continuous transition tj ∈ Tc we let C(tj) = (V ′
j , Vj), with

V ′
j ≤ Vj . Here V ′

j represents the minimum firing speed (mfs) and Vj represents the maximum
firing speed (MFS).

We denote the preset (postset) of transition t as •t (t•) and its restriction to continuous or
discrete places as (d)t = •t ∩ Pd or (c)t = •t ∩ Pc. Similar notation may be used for presets and
postsets of places. The incidence matrix of the net is defined as C(p, t) = Post(p, t)−Pre(p, t).
The restriction of C to PX and TY (X,Y ∈ {c, d}) is denoted CXY . Note that by the well-
formedness hypothesis Cdc = 0.

A marking

m :

{
Pd → N
Pc → R+

0

is a function that assigns to each discrete place a non-negative number of tokens, represented
by black dots and assigns to each continuous place a fluid volume; mi denotes the marking of
place pi. The value of a marking at time τ is denoted m(τ). The restriction of m to Pd and
Pc are denoted with md and mc, respectively. An FOHPN system 〈N,m(τ0)〉 is an FOHPN N

with an initial marking m(τ0).

The enabling of a discrete transition depends on the marking of all its input places, both discrete
and continuous.

Definition 2.1. Let 〈N,m〉 be an FOHPN system. A discrete transition t is enabled at m if
for all pi ∈ •t, mi ≥ Pre(pi, t). ¥
A continuous transition is enabled only by the marking of its input discrete places. The marking
of its input continuous places, however, is used to distinguish between strongly and weakly
enabling.

Definition 2.2. Let 〈N,m〉 be an FOHPN system. A continuous transition t is enabled at m
if for all pi ∈ (d)t, mi ≥ Pre(pi, t).

We say that an enabled transition t ∈ Tc is:

• strongly enabled at m if for all places pi ∈ (c)t, mi > 0;

• weakly enabled at m if for some pi ∈ (c)t, mi = 0.

¥

3. NET DYNAMICS

In this section we define the behaviour of a net. The overall hybrid behavior that combines
both time–driven and event–driven dynamics can be found in [5]. A macro event occurs when:
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(a) either a discrete transition fires, thus changing the discrete marking or enabling/disabling
a continuous transition; (b) or a continuous place becomes empty, thus changing the enabling
state of a continuous transition from strong to weak.

The instantaneous firing speed (IFS) at time τ of a transition tj ∈ Tc is denoted vj(τ). We can
write the equation which governs the evolution in time of the marking of a place pi ∈ Pc as

ṁi(τ) =
∑

tj∈Tc

C(pi, tj)vj(τ) (1)

where v(τ) = [v1(τ), . . . , vnc(τ)]T is the IFS vector at time τ . Indeed Equation 1 holds assuming
that at time τ no discrete transition is fired and that all speeds vj(τ) are continuous in τ .

The enabling state of a continuous transition tj defines its admissible IFS vj .

• If tj is not enabled then vj = 0.

• If tj is strongly enabled, then it may fire with any firing speed vj ∈ [V ′
j , Vj ].

• If tj is weakly enabled, then it may fire with any firing speed vj ∈ [V ′
j , V j ], where V j ≤ Vj

since tj cannot remove more fluid from any empty input continuous place p than the
quantity entered in p by other transitions.

We now characterize the set of all admissible IFS vectors.

Definition 3.1. (admissible IFS vectors) Let 〈N,m〉 be an FOHPN system. Let TE(m) ⊂ Tc

(TN (m) ⊂ Tc) be the subset of continuous transitions enabled (not enabled) at m, and PE =
{pi ∈ Pc | mi = 0} be the subset of empty continuous places. Any admissible IFS vector v at m
is a feasible solution of the following linear set:




(a) Vj − vj ≥ 0 ∀tj ∈ TE(m)
(b) vj − V ′

j ≥ 0 ∀tj ∈ TE(m)
(c) vj = 0 ∀tj ∈ TN (m)
(d)

∑
tj∈TE C(p, tj)vj ≥ 0 ∀p ∈ PE(m)

(2)

The set of all feasible solutions is denoted S(N,m). ¥
Constraints of the form (2.a), (2.b), and (2.c) follow from the firing rules of continuous tran-
sitions. Constraints of the form (2.d) follow from (1), because if a continuous place is empty
then its fluid content cannot decrease. Note that the set S is a function of the marking of the
net. Thus as m changes it may vary as well. In particular it changes at the occurrence of the
macro–events.

Let τk and τk+1 be the occurrence times of two consecutive macro–events; we assume that
within the interval of time [τk, τk+1), that we call macro–period, the IFS vector is constant and
we denote it v(τk). Then the continuous behavior of an FOHPN for τ ∈ [τk, τk+1) is described
by: {

mc(τ) = mc(τk) + Cccv(τk)(τ − τk)
md(τ) = md(τk)

(3)

On the other hand, the firing of a discrete transition tj at m(τ) yields the marking
{

mc(τ) = mc(τ−) + Ccdσ(τ)
md(τ) = md(τ−) + Cddσ(τ)

(4)

where σ(τ) is the firing count vector associated to the firing of the discrete transition tj .
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4. SENSITIVITY ANALYSIS FOR FOHPN

The formalism previously introduced can be used to define the concept of conflict in a net. We
will only treat conflicts at continuous places since the computation of an admissible IFS vector
is only affected by this type of conflicts. A conflict resolution policy can be obtained by solving
a linear programming problem (LPP) of the form

max cTv s.t.
v ∈ S(N,m)

(5)

aimed at a global optimization of the system resources. Obviously, many different performance
indices can be considered as the objective function in the LP formulation of the problem. All
these LPP may be solved taking into account only the constraints related to enabled transitions
since we know that the IFS of transitions that are not enabled are 0. Let It = {α1, . . . , αk} be
the set of indices of the enabled continuous transitions and Ip = {α2k+1, . . . , α`} be the set of
indices of the empty continuous places. Thus we can write:

max
∑

j∈It
cj vj s.t.




vα1 + s1 = Vα1

. . .

vαk
+ sk = Vαk

vα1 − sk+1 = V ′
α1

. . .

vαk
− s2k = V ′

αk∑
j∈It

C(pα2k+1
, tj) vj − s2k+1 = 0

. . .∑
j∈It

C(pα`
, tj) vj − s` = 0

sj ≥ 0

(6)

Defining vector x = [vα1 , . . . , vαk
, s1, . . . , s`]T we obtain the following standard form:

max
x
{cTx |Ax = b, x ≥ 0}. (7)

Here x is a vector with ` + k variables, A is the ` × (` + k) matrix constraints and we assume
that A has full rank, c is the (` + k)–vector of the objective coefficients, while b represents the
`–vector of the right–hand side constants.

In this work the simplex method will be used to solve LPP. This is an iterative method in which
at each step and in an efficient manner a new basis is computed. Each basis represents a vertex
of the feasible region. We denote an optimal basic solution xo, the corresponding optimal basis
B (a set of ` indices), and AB the optimal basis matrix obtained by taking only those columns
of A whose indices are in B. An optimal basic solution xo can always be written as:

xo =

[
xB
xN

]
=

[
A−1
B b
0

]
.

The variables with index in B are the basic variables while the others, whose index set is denoted
N , are called nonbasic. Note that the optimal solution may be degenerate, i.e. we have many
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basis associated with it. It may also be the case that more than one basic optimal solution
exists.

Sensitivity analysis refers to the study of how optimal solutions change according to changes of
the given linear program in terms of the coefficients of the matrix, the right–hand side and the
objective function. Suppose that the LPP (7) has an optimal solution. If there is any change in
the values of bj , cj or aij the optimal solution is likely to change in general.

In the next sections we will develop sensitivity analysis with respect to the design parameters
by assuming changes in the right–hand side vector and in the matrix coefficients. Perturbations
in the cost coefficients will not be considered in this work.

4.1. The perturbed model

The following perturbed LPP is treated:

max
x
{cTx |A(q)x = b(q), x ≥ 0} (8)

where q = [q0, . . . , qp]T is a vector of uncertain parameters. The nominal value is denoted q.

For a given value of q, the optimal solution of (8) is

xo(q) =

[
xB(q)
xN (q)

]
=

[
A−1
B (q) b(q)

0

]
.

We compute with the simplex method an optimal solution in q and the corresponding optimal
basis B. The sensitivity of the basic variables xB(q) with respect to qi can be computed, at
least within a certain domain where the optimal basis does not change, by taking the partial
derivatives

∂xB(q)
∂qi

= A−1
B (q)

(
∂b(q)
∂qi

− ∂AB(q)
∂qi

xB(q)
)

(9)

while the non–basic variables xN (q) do not change. It is only required first order differentiability
of AB(q) and b(q) with respect to qi. For simplicity in this presentation we make the following
assumptions:

1. Only one parameter qi varies at a time, that is q = q+ λei, where ei is the i–th canonical
basis vector. Under this assumption the sensitivity given by (9) can be regarded as function
of λ in the allowable range.

2. Matrix A and vector b are linear functions of the parameter λ. Then we can write:

AB(λ) = AB + λA∗
B

b(λ) = b + λb∗

where AB = AB(q), b = b(q).

3. The variation of each parameter qi influences only one column, say the j-th, of matrix
AB(λ). Then

AB(λ) = AB + λA∗
B = AB + λa∗eT

j .
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4.2. Perturbation of the right–hand side vector

Let us assume that the right–hand side constant vector b varies linearly with the parameter
λ ∈ R, that is b(λ) = b + λb∗. In the FOHPN framework, this perturbation corresponds
to changes in the entries of the vector V = [Vα1 , . . . , Vαk

]T , which denotes the MFS vector
and of the vector V′ = [V ′

α1
, . . . , V ′

αk
]T , which denotes the mfs vector. As an example, in a

manufacturing system we may want to add servers to a machine in order to increase the overall
productivity of the system.

Let xo be an optimal basic solution of (7) and B an associated optimal basis. The perturbed
optimal solution xo(λ) has basic components:

xo
B(λ) = A−1

B b(λ) = A−1
B (b + b∗λ) = xo

B + λx∗B (10)

where xo
B = A−1

B b = [β1, . . . , β`]T and x∗B = A−1
B b∗ = [β∗1 , . . . , β∗` ]T . The optimal value of the

objective function is
J(λ) = cT

Bx
o
B(λ) = cT

Bx
o
B + λcT

Bx
∗
B = J + λJ∗. (11)

Equations (10) and (11) hold only when λ belongs to a certain interval ΛB = [λB, λB] also called
the allowable range, where the optimal basis B remains unchanged. This requires non–negativity
of the basic variables, xo

B(λ) ≥ 0, and the bounds for the parameter λ can be computed as follows:

λB =

{
−∞ if I+ = ∅
maxi∈I+

{
− βi

β∗i

} (12)

and

λB =

{
+∞ if I− = ∅
mini∈I−

{
− βi

β∗i

} (13)

where I+ = {i ≥ 1 | β∗i > 0} and I− = {i ≥ 1 | β∗i < 0}. Since A−1
B is invertible, then A−1

B b∗ 6=
0, i.e. either λB or λB must be finite.

Much attention has been devoted in the literature [8, 10] to the case in which the optimal
solution xo of the nominal LPP is unique. In this case xo is not a degenerate solution and the
unique optimal basis remains constant within the allowable range, therefore the value of the
objective function is linear in λ. As λ reaches the boundary of the allowable range, a degenerate
solution is found, a new basis can be computed with an allowable range that will not overlap
the previous one except at the end point. As the basis changes, the derivative of the objective
function with respect to the parameter λ, i.e., dJ(λ)

dλ = J∗, may also change, thus it may not be
defined only at a finite number of points whereas we can instead provide right and left values.

In the manufacturing domain this non–differentiability behavior has been already observed in
tandem lines by Fu and Suri [11] when the average production rates of two machines are equal.
With our approach the result is immediately generalized to more general cases. However the
situation can be more complex when more than one optimal solution exists.

4.3. Perturbation of the matrix coefficients

We assume that the basis matrix AB varies linearly with the parameter λ ∈ R, according to
AB(λ) = AB + λA∗

B = AB + λa∗eT
j , i.e., we assume that only the j–th column of AB may vary.
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The results we present here also hold when a single row of AB varies linearly with the parameter
λ. Nevertheless this case is less relevant in the context of FOHPN. Basically perturbations
of the matrix coefficients A correspond in the FOHPN framework to variations of the arc–
weights between continuous places and transitions, as it can be seen from Equation (6). Multiple
variations of the coefficients along a column correspond to a redistribution of the inflow or outflow
of a single continuous transition. In a manufacturing system this situation is quite common and
it arises when we deal with changes of the percentage of parts that need to be reworked or with
changes of the routing coefficients.

Let xo be an optimal basic solution of (7) and B an associated optimal basis. We recall the
matrix equality:

A−1
B (λ) = A−1

B − A−1
B a∗eT

j A−1
B λ

1 + eT
j A−1

B a∗λ
.

Then the perturbed optimal solution xo(λ) has basic components:

xo
B(λ) = A−1

B (λ)b = xo
B −

λ

1 + vλ
x∗B (14)

where xo
B = A−1

B b, v = eT
j A−1

B a∗ and x∗B = A−1
B a∗eT

j A−1
B b. The relative cost coefficient vector

of the optimal solution xo(λ) is:

r(λ) =
(
cT
BA

−1
B (λ)A

)T − c = ro − λ

1 + vλ
r∗ (15)

where ro =
(
cT
BA

−1
B A

)T − c and r∗ =
(
cT
BA

−1
B a∗eT

j A−1
B A

)T . Finally the optimal value of the
objective function is given by

J(λ) = cT
Bx

o
B(λ) = cT

Bx
o
B −

λ

1 + vλ
cT
Bx

∗
B. (16)

Equations (14-16) hold only when the parameter λ belongs to a certain interval ΛB = [λB, λB]
wherein the optimal basis B remains unchanged. This requires: (1) non–singularity of the basis
matrix, i.e., 1 + vλ > 0, (2) non-negativity of the basic variables, xo

B(λ) ≥ 0, and (3) non-
negativity of the relative cost coefficients, r(λ) ≥ 0, i.e., the optimality condition. The bounds
for the parameter λ can be computed as follows. Let us define:

y =




1
xo
B

ro


 , y∗ =




0
x∗B
r∗




and let us consider the following sets of indices: I+ = {i ≥ 1 | (vyi − y∗i ) > 0} and I− =
{i ≥ 1 | (vyi − y∗i ) < 0}. Then we can easily find:

λB =

{
−∞ if I+ = ∅
maxi∈I+

{
− yi

vyi−y∗i

} (17)

and

λB =

{
+∞ if I− = ∅
mini∈I−

{
− yi

vyi−y∗i

} (18)

¿From Equations (14) and (16) we observe that the optimum IFS vector and the objective
function do not vary linearly with the parameter λ within the allowable interval ΛB = [λB, λB]
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as it does happen if the perturbations of the matrix coefficients are made infinitesimally small.
Therefore the gradient of the objective function with respect to the j-th column vector of A,
say aj = λa∗, is a non–linear function of the parameter λ. In particular, if v 6= 0, for each
value of λ ∈ ΛB such that λ 6= − 1

v , the derivative of the objective function with respect to the
parameter λ can be easily computed as

dJ(λ)
dλ

= − 1
(1 + vλ)2

cT
Bx

∗
B. (19)

Note that in the case of v = 0 the objective function J(λ) varies linearly with the parameter λ

within the allowable interval ΛB.

5. EXAMPLE: A MULTI–CLASS PRODUCTION SYSTEM

In this section we consider the model of an open production system consisting of two shaping
machines and an assembly machine with two classes of parts flowing through, as shown in
Figure 1.

Each part is required to be processed according to its production cycle that specifies the sequence
of machines it must visit and the operation performed by them. Parts of class 1 and 2, coming
from external independent sources, are queued in the buffers B1 and B2 which are both feeding
machine M1, and then start the processing at machine M1. Buffer B2 has a finite capacity
CB2 while buffer B1 has an unlimited capacity. At the exit of machine M1, parts of class 2 are
ready to enter the assembly machine Ma while parts of class 1 flow into the buffer B3 with finite
capacity CB3, then to machine M2, where after the processing some parts may be required to
be reworked on the same machine. At the exit of machines M1 and M2 parts of both classes are
respectively collected in the buffers Ba1 and Ba2 with unlimited capacity and then are packed
together by the assembly machine according to a specified production mix.

Since machines are unreliable, we must also take into account a certain failure model. In particu-
lar, we can consider either a time–dependent failure (TDF) model assuming that a machine fails
after a given time has elapsed since the previous repair operation, or an operation–dependent
failure (ODF) model assuming that a machine fails after a given production volume has been
processed since the previous repair operation [3].

Although this model may seem quite simple it captures the key difficulties of common control
problems arising in manufacturing systems. Problems of parts routing, admission and service
rate selection have been deeply studied in recent years but the determination of an explicit
solution is still an open problem even for very simple systems [6, 12].

In this paper we address the production rate selection problem as a constrained optimization
control problem within the linear algebraic framework offered by FOHPN model. In this way,
we can explicitly determine the optimal control policies with regard to the desired performance
measure. Furthermore we can also derive the sensitivity of the system design parameters, such
as maximum machine production rates, re-working factor, production mix factor, etc., with
respect to the performance measures.

For this purpose, let us model the production network depicted in Figure 1 by using in a modular
way some elementary manufacturing components described by basic FOHPN models as discussed
in [3].
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Figure 1: A multi–class production network.
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Initially, all buffers are assumed empty and all machines are assumed potentially operating
at their maximum production rate. Parts of class 1 arrive in the system at a bounded rate
V ′

in,1 ≤ vin,1 ≤ Vin,1 while parts of class 2 arrive in the system at a bounded rate vin,2 ≤ Vin2.
Parts of class 2 may be rejected upon arrival if buffer B2 is full. Machine M1 and Ma work on
parts of both classes with maximum production rates VM1 and VMa, while machine M2 works
on parts of class 1 with maximum production rate VM2. The FOHPN model of the production
system under consideration is shown in Figure 2, where the initial marking shown assumes that
all buffers are initially empty.

5.1. Numerical examples

In this section we show how to solve production control problems and make sensitivity analysis
by means of the FOHPN framework. In particular we show that our method can solve via
simulation intractable systems with classical methods.

We now highlight the main step followed by an FOHPN simulator, that makes use of a solver
to implement linear programming and sensitivity analysis algorithms. First of all, we define the
control problem that we want to solve in terms of a given performance measure that has to be
optimized. Then, the solver will provide the optimal machines production rates according to
the constraints defined by the current macro–state, by solving a sequence of linear programming
problems, at the occurrence of the macro–events. At each step, sensitivity analysis can be done
in order to make adjustment on the optimal myopic solution that represents the reference values
for the machine production rates within the next macro–period.

Let N be the final macro–event, T = ∪N−1
k=0 [τk, τk+1) a finite time horizon, where τk for k =

0, 1, 2, . . . , denote the occurrence times of the macro–events. The length of the k–th macro–
period is denoted ∆k = (τk+1 − τk). Let us define the instantaneous firing speed vector v(τk) =
[vin1(τk), vin2(τk), v1

M1(τk), v2
M1(τk), vM2(τk), vMa(τk)]T and let J = cTv(τk) be the performance

function to be optimized. Here τk denotes the occurrence in time of the macro–event. Finally,
let Vin1 = 5, V ′

in1 = 2, Vin2 = 4, VM1 = 7, VM2 = 5, VMa = 7, α = 0.2, β1 = 0.8 and β2 = 0.2.

5.1.1. Maximization of the machines utilization

The first problem we consider is the maximization of the machines utilization; thus the coeffi-
cients vector of the performance index is c = [0, 0, 1, 1, 1, 1]T . We show how to derive an optimal
control policy that myopically maximizes the machines utilization over a finite time horizon and
we describe the developments within the first three macro–periods: (MP1) all buffers are empty;
(MP2) machine M2 breaks down; (MP3) buffer B3 becomes full.

(MP1). At the beginning of the first macro–period of length ∆0, — at time τ0 all buffers are
empty and all machines are operational — we define and solve the following constrained linear
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optimization problem:

maxv(τ0)

[
v1
M1(τ0) + v2

M1(τ0) + vM2(τ0) + vMa(τ0)
]

s.t.



vin1(τ0) ≤ Vin1

vin1(τ0) ≥ V ′
in1

vin2(τ0) ≤ Vin2

v1
M1(τ0) + v2

M1(τ0) ≤ VM1

vM2(τ0) ≤ VM2

vMa(τ0) ≤ VMa

v1
M1(τ0) ≤ vin1(τ0)

v2
M1(τ0) ≤ vin2(τ0)

(1− α)vM2(τ0) ≤ v1
M1(τ0)

β2vMa(τ0) ≤ v2
M1(τ0)

β1vMa(τ0) ≤ (1− α)vM2(τ0)

(20)

The solver provides the following optimal solution: Jo(τ0) = 17 with vo(τ0) = [4, 3, 4, 3, 5, 5]T

which represents an optimal control policy for the machine production rates that may be adopted
during the first macro–period.

In particular, throughout the interval ∆0, Ba2 is increasing at a rate equal to 2, while the other
buffers content are constant and equal to 0. The sensitivity analysis of the right–hand side
vector reveals the following results:

ΛB[VM1] = [5, 8], g4 = dJ
dVM1

= 1
ΛB[VM2] = [3.75, 6.25], g5 = dJ

dVM2
= 2

where ΛB[γ] denotes the allowable range for the parameter γ and gi = dJ
dγ is the dual price

associated to the i–th constraint. This means that we can achieve a better performance if
we either improve the maximum production rate of machines M1 or M2 by changing their
values within their allowable ranges, since all other dual prices are equal to 0. In particular,
if we consider a linear perturbation on the parameter VM2, i.e., we set VM2(λ) = VM2 + λ for
λ ∈ [−1.25, 1.25], the objective function J(τ0) and the optimal basic solution vo(τ0) will vary
linearly with the parameter λ.

As an example, let VM2 = 5.1, (λ = 0.1). By solving the LP problem (20) we obtain J∗(τ0) =
17.2 with v∗(τ0) = [4.08, 2.92, 4.08, 2.92, 5.1, 5.1]T . We can easily derive the gradient of the opti-
mal basic solution with respect to λ as ∇λvo(τ0) = [0.8,−0.8, 0.8,−0.8, 1, 1], and the derivative
of the objective function with respect to λ (the dual price g5) as dJ

dλ = 2, evaluated for λ = 0.1,
that will remain both constant as long as λ ∈ [−1.25, 1.25].

Now suppose that at time τ1, after an interval of time that may depend on the production
volume performed by the machines, a failure occurs at machine M2.

(MP2). At the beginning of the second macro–period of length ∆1, — at time τ1 machine M2

breaks down — we define and solve the following constrained linear optimization problem, where

12



a new constraint set has been specified, i.e., the fifth constraint is now vM2(τ1) = 0.

maxv(τ1)

[
v1
M1(τ1) + v2

M1(τ1) + vM2(τ1) + vMa(τ1)
]

s.t.



vin1(τ1) ≤ Vin1

vin1(τ1) ≥ V ′
in1

vin2(τ1) ≤ Vin2

v1
M1(τ1) + v2

M1(τ1) ≤ VM1

vM2(τ1) = 0
vMa(τ1) ≤ VMa

v1
M1(τ1) ≤ vin1(τ1)

v2
M1(τ1) ≤ vin2(τ1)

(1− α)vM2(τ1) ≤ v1
M1(τ1)

β2vMa(τ1) ≤ v2
M1(τ1)

β1vMa(τ1) ≤ (1− α)vM2(τ1)

(21)

The solver provides the following optimal solution: Jo(τ1) = 7 with vo(τ1) = [3, 4, 3, 4, 0, 0]T

which represents an optimal control policy that may be adopted during the second macro–period.

The above solution means that the failure of machine M2 forces machine Ma to produce at a
rate vMa(τ1) = 0, thus increasing the content of buffer Ba2 at a rate equal to 4 and the content
of buffer B3 at a rate equal to 3. The sensitivity analysis of the right–hand side vector reveals
the following results:

ΛB[VM1] = [6, 9], g4 = dJ
dVM1

= 1
ΛB[VM2] = [0, 3.75], g5 = dJ

dVM2
= 2.

This means that we can achieve a better performance if we improve the maximum production
rate of machine M1 by changing its value within its allowable range, since all other dual prices
are equal to 0 and machine M2 is down. As an example if we set VM1(τ1) = 8 then we obtain the
optimal solution Jo(τ1) = 8 with vo(τ1) = [4, 4, 4, 4, 0, 0]T corresponding to a linear increment
of both objective function and basic solution. Since buffer B3 has a finite capacity CB3, it will
reach its maximum level after an interval of time

∆1 =
CB3 −mpB3(τ1)

v1
M1(τ1)− (1− α)vM2(τ1)

.

Therefore at time τ2 = τ1 + ∆1, assuming that machine M2 will be repaired at time τ3 > τ2,
buffer B3 will be full.

(MP3). At the beginning of the third macro–period of length ∆2, — at time τ2 buffer B3 is
full — we define and solve the following constrained linear optimization problem, where a new
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constraint set has been specified, i.e., the ninth constraint is now v1
M1(τ2) ≤ (1− α)vM2(τ2).

maxv(τ2)

[
v1
M1(τ2) + v2

M1(τ2) + vM2(τ2) + vMa(τ2)
]

s.t.



vin1(τ2) ≤ Vin1

vin1(τ2) ≥ V ′
in1

vin2(τ2) ≤ Vin2

v1
M1(τ2) + v2

M1(τ2) ≤ VM1

vM2(τ2) = 0
vMa(τ2) ≤ VMa

v1
M1(τ2) ≤ vin1(τ2)

v2
M1(τ2) ≤ vin2(τ2)

v1
M1(τ2) ≤ (1− α)vM2(τ2)

β2vMa(τ2) ≤ v2
M1(τ2)

β1vMa(τ2) ≤ (1− α)vM2(τ2)

(22)

The solver provides the following solution: Jo(τ2) = 4 with vo(τ2) = [2, 4, 0, 4, 0, 0]T which
represents an optimal control policy that may be adopted during the third macro–period.

Throughout the interval ∆2 the content of buffer buffers B1 is increasing at a rate equal to 2
and the content of buffer Ba2 is increasing at a rate equal to 4. The sensitivity analysis of the
right–hand side vector reveals the following results:

ΛB[Vin2] = [0, 8], g3 = dJ
dVin2

= 1
ΛB[VM2] = [0, 2.5], g5 = dJ

dVM2
= 2.8.

This means that we can achieve a better performance if we make a control action on the external
arrival of parts of class 2. This can be done by changing the arrival rate of parts of class 2 within
its allowable range, since all other dual prices are equal to 0 and machine M2 is down.

Therefore the optimal myopic control policy Vo = {vo(τ0),vo(τ1),vo(τ2), . . .} that provides the
maximization of the machines utilization is defined as follows:

vo(τ0) = [4, 3, 4, 3, 5, 5]T , Jo(τ0) = 17, [τ0, τ1)
vo(τ1) = [3, 4, 3, 4, 0, 0]T , Jo(τ1) = 7, [τ1, τ2)
vo(τ2) = [2, 4, 0, 4, 0, 0]T , Jo(τ2) = 4, [τ2, τ3)

· · ·

Note that the numerical tools that can be used for solving constrained linear optimization prob-
lems, such as LINDO, do only provide dual prices associated to the constraints and the allowable
ranges related to the perturbations made on the right–hand side vector and the objective func-
tion coefficients. The framework we propose in this paper allows designers to make more general
sensitivity analysis by also considering perturbations on the matrix coefficients.

5.1.2. Perturbation of the re–working and mix factors

Let us now consider the following questions that may arise during the simulation of this produc-
tion network. What if we change the re–working factor α? What if we change the mix factors
β1 and β2? We can answer all these questions.
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The control problem we consider here is the maximization of the system outflow; thus the
coefficients vector of the performance index is c = [0, 0, 0, 0, 0, 1]T . If we assume that at time
τk all buffers are empty and all machines are operational, we define and solve the following
constrained linear optimization problem:

maxv(τk)

[
vMa(τk)

]
s.t.




vin1(τk) ≤ Vin1

vin1(τk) ≥ V ′
in1

vin2(τk) ≤ Vin2

v1
M1(τk) + v2

M1(τk) ≤ VM1

vM2(τk) ≤ VM2

vMa(τk) ≤ VMa

v1
M1(τk) ≤ vin1(τk)

v2
M1(τk) ≤ vin2(τk)

vM2(τk) ≤ v1
M1(τk)

β2vMa(τk) ≤ v2
M1(τk)

β1vMa(τk) ≤ (1− α)vM2(τk)

(23)

The solver provides the following optimal solution: Jo(τk) = 4 with vo(τk) = [4, 3, 4, 3, 4, 4]T .
By the same developments as in the previous subsection we can easily state that machine M2 is
the bottleneck in this production system. The sensitivity analysis of the right–hand side vector
reveals the following results:

ΛB[VM2] = [3, 5], g5 = dJ
dVM2

= 1.

This means that we can achieve a better performance if we improve the maximum production
rate of machine M2 by changing its value within its allowable range, since all other dual prices
are equal to 0.

The sensitivity analysis of the matrix coefficients provides the following optimal basic solution
xo
B = [vin1, vin2, v

1
M1, v

1
M1, vM2, vMa, s2, , s3, s4, s5, s7]T with corresponding optimal basis B. The

allowable range for the re–working factor α that appears in the matrix coefficients, is:

ΛB[α] = [−0.4, 0.2].

Note that for physical reasons we should consider ΛB(α) = [0, 0.2], since 0 ≤ α ≤ 1. Let us now
consider a linear perturbation on the matrix coefficient a = (1 − α), i.e., we set a(λ) = a + λ.
As an example, let α = 0.1, (λ = 0.1). By solving the LP problem (23) we obtain J∗(τk) = 4.5
with v∗(τk) = [4, 3, 4, 3, 4, 4.5]T . This is a particular case in which the parameter v introduced
in Section is equal to 0. Therefore the objective function J(τk) and the optimal basic solution
vo(τk) vary linearly with parameter λ as long as λ ∈ [0, 0.2]. Thus, we can easily derive the
gradient of the optimal basic solution with respect to λ as ∇λvo(τ0) = [0, 0, 0, 0, 0, 5], and the
derivative of the objective function with respect to λ (by applying Eq. (19)) as dJ(λ)

dλ = 5,
evaluated for λ = 0.1, that will remain both constant as long as λ ∈ [0, 0.2].

Finally, let us now consider the mix factors β1 and β2. The sensitivity analysis provides the
following allowable ranges for the mix factors β1 and β2 that appear in the matrix coefficients:

ΛB[β1] = [0.5161, 0.8]
ΛB[β2] = [0.2, 0.4839].
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As an example, let β1 = 0.6, β2 = 0.4, (λ = 0.2). By solving the LP problem (23) we obtain
J∗(τk) = 5.3333 with v∗(τk) = [4, 3, 4, 3, 4, 5.3333]T . In this case we have v = −1.25, therefore
the derivative of the objective function with respect to the mix factors is a non–linear function
of the perturbation λ. However we can apply Eq. (19) and obtain the derivative of the objective
function with respect to λ, evaluated for λ = 0.2, as dJ(λ)

dλ = 8.8889.

6. CONCLUSIONS

In this paper we have considered First–Order Hybrid Petri Nets. We have shown how the control
of the first–order continuous behaviour can be framed as a conflict resolution policy that aims
to optimize a given objective function. Since the set of all possible behaviours of the net during
a macro–state can be represented by a convex set defined by a system of linear inequalities, an
IFS vector can be selected among all admissible ones by solving a linear programming problem.
Sensitivity analysis enabled us to study how optimal solutions change according to changes of the
linear program in terms of the coefficients of the matrix, the right–hand side and the objective
function.

An FOHPN model of a multi–class production system has been considered and two different
production control problems have been studied. The sensitivity of the system design parame-
ters, such as maximum machine production rates, re–working and production mix factors, with
respect to the performance measure have also been derived.
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