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Abstract: - In this paper, Hybrid Petri Nets are proposed as a modelli ng methodology to control production in a
large class of manufacturing processes. A hybrid Petri net (HPN) is a combination of a ‘classical’ Petri net and a
continuous Petri net, the ‘f luid’ version of a timed Petri net. The two parts of an HPN can affect each other. In
the particular model proposed, the discrete part of the HPN ‘ regulates’ the continuous Petri net. In fact,
whenever an event occurs which changes the present system behavior, the discrete Petri net manages the
provoked changes adapting the production process functioning, that is, the continuous Petri net functioning, so as
to cope with the new conditions and still fulfil the production requirements. The introduced model allows to
realize the control of production by solving suitable optimization problems. The characteristic of the model that
makes it specially interesting for analysis and optimization purposes is the special structure of its discrete part,
which turns out to be a Timed Event Graph (TEG). TEG’s are Petri nets with peculiar structural characteristics,
which makes them be analytically represented by means of state equations linear in the Max-Plus algebra. This
capabili ty is exploited to state the constraints imposed by the manufacturing system behavior on the cost
functionals to be optimized to solve  the control problems of interest.
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1 Introduction
The growing attention that researchers have been
paying to hybrid systems since some years has
resulted in the development of several approaches to
their modelli ng, analysis, and control. A large
interesting class of hybrid systems consists of those
systems made up of continuous-time and discrete-
event components. In such a hybrid system, the
presence of a discrete-event subsystem results in the
possibili ty to design and implement control strategies
embedded in the system itself. Significant works of
survey are [1,2,3].

On the other hand, a growing interest is
focused on using Petri nets to model, analyze, and
control Discrete Event Systems (DES) [4,5,6],
considered to be standing-alone systems or
components of more complex systems, e.g., hybrid
systems. In fact, Petri nets are able to capture the
precedence relations and interactions among the
concurrent and asynchronous events typical of DES.

As a result, Petri nets provide not only advantageous
modelli ng capabili ties and helpful structural
properties, but also powerful tools for design,
analysis, and control.

This paper makes the two above mentioned
research streams join by proposing to use a special
class of Petri nets, the Hybrid Petri Nets  (HPN’s)
[7],[8], to model large-scale systems, and in
particular manufacturing processes, which can be
considered to be hybrid systems. In such systems,
the functioning is meant ‘ regular’ whenever no
variation in the system behavior occurs, whereas the
changes in the system behavior are modelled by
means of discrete events. As a result, the system
functioning is always regular between the
occurrences of two subsequent events.

A Hybrid Petri net, as first introduced in [7],
is composed of a discrete part and a continuous part,
so that it can be viewed as a combination of an usual
(discrete) Petri net and a continuous Petri net, the



‘f luid’ version of usual timed Petri nets [9]. The
states of the two Petri nets making up a HPN, i.e.,
the continuous one and the discrete one, can affect
each other. HPN’s are used in this paper to define a
modelli ng framework that can be effectively applied
to those large-scale systems in which not only is it
important to model suitably any deviation from the
‘nominal’ system behavior , but it is also necessary
to act somehow so as to recover from degraded
situations and restore the nominal functioning of the
system as soon as possible. Special attention is
payed to the application of the proposed model to the
description of manufacturing processes with the aim
of controlli ng production [10,11].

The characteristic of the proposed model
that makes it specially interesting for analysis and
optimization purposes is the peculiar structure of the
discrete-event part of the HPN, which turns out to be
a Timed Event Graph (TEG). A TEG is a particular
kind of a Petri net essentially characterized by the
property that every place has a unique input
transition and a unique output transition.  A major
feature of TEG's lies in the fact that they can be
analytically represented by means of state equations
linear in the particular algebra called Max-Plus
algebra [12,13].

A variety of optimization problems can be
considered within the proposed hybrid modelli ng
framework. The example treated in this paper
consists in an on-line control problem regarding a
manufacturing process, with the objective of
minimizing the deviation between the actual system
behavior  and a specified nominal behavior , while
taking into account some contrasting cost
proportional to the production speed. The
capabili ties of TEG’s are exploited to state the
constraints imposed by the manufacturing system
behavior  on the cost functional in a compact,
convenient way. The resulting optimization problem
is a quadratic programming problem, the solution of
which provides time after time the production speeds
of all the resources involved in the manufacturing
process.

2 Modelling Large-Scale Systems via
Hybrid Petri Nets

To introduce the modelli ng capabili ties peculiar to
hybrid Petri nets (HPN’s), some basic issues are
reported in the following. The reader can refer to [7]
and [8] to find details.

A marked hybrid Petri net is formally
defined as a triplet H = < H*, h, M0> in which:
- H* is an unmarked Petri net, i.e., an oriented

bipartite graph H* = < P, T, Pre, Post > where:
• P is a finite set of places;
• T is a finite set of transitions;
• Pre : P  × T  → { 0,1} is the input incidence

function defining the existence of an arc
joining a place with a transition;

• Post : P × T  → { 0,1} is the output incidence
function defining the existence of an arc
joining a transition with a place ;

- h : P × T → { D, C} is the so-called hybrid
function  which indicates if a node is a discrete
node (D) or a continuous one (C);

- M0 is the initial marking of the net.
It is worth noting that Pre(pi, tj) and Post

(pi, tj) are positive integer numbers if pi is a D-place
and positive real numbers if pi is a C-place. The set
of places is spli t into two subsets CP and DP
gathering the C-places and the D-places,
respectively, CP ∪ DP = P. Moreover, also
transitions are divided into C-transitions and D-
transitions, making up the sets CT and DT,
respectively, CT ∪ DT = T. In timed Petri nets
delays can be associated with places and/or
transitions; in the same way, it is possible to assign
delays to places and/or transitions in HPN’s. In the
proposed model, the timing is associated with D-
transitions, being their firing times stochastic
(depending on given probabili ty distributions) or
immediate.

The states of the two Petri nets making up a
HPN, i.e., the continuous one and the discrete one,
can affect each other. HPN’s are used in this paper
to define a modelli ng framework that can be
effectively applied to those large-scale systems in
which not only is it important to model suitably any
deviation from the ‘nominal’ system behavior , but it
is also necessary to act somehow so as to recover
from degraded situations and restore the nominal
functioning of the system as soon as possible.

To this end, in the proposed model the
continuous part of the HPN represents the
functioning of the system whenever no changes
occur in its behavior , that is, in time intervals
between two subsequent event occurrences, whereas
the changes in the system operating framework are
represented and managed through the discrete part of
the net. In particular, an event corresponds to a
variation in the system behavior  that can require the
execution of a suitable control procedure, with the
objectives of modifying the functioning of the
continuous part of the system in order to take into
account the degraded behavior , reducing its impact
on the overall system performance, and restoring the
nominal system functioning. In this sense, it is
possible to state that the discrete part of the HPN
‘regulates’ the functioning of the continuous part,
through a particular definition of D-transitions.

More specifically, the set DT of D-
transitions can be divided into three subsets, DT=
DTe ∪ DTc ∪ DTr, according to the different
functions assigned: occurrences of events are
represented by D-transitions belonging to set DTe,
D-transitions corresponding to the executions of



control actions make up set DTc, whereas             D-
transitions gathered in set DTr represent the
resuming of the system functioning after an event
occurrence or after the completion of the control
procedure. According to the definition of the
different types of D-transitions, only those
representing the occurrences of events, which take
place based on a-priori given probabili ty
distributions, have stochastic firing times. The firing
of other D-transitions is immediate.

To describe a large-scale system using the
proposed hybrid model, consider it to be divided into
N sections, being N the number of its parts that need
separate modelli ng, due to different characteristics.
In a manufacturing system, for instance, a section
can model a resource of any kind.

Consider the modelli ng of the generic section
i, i=1,..,N, as depicted in Fig. 1. In this figure, the C-
places are represented by dotted circles, the C-
transitions by gray rectangles, the    D-places by
white circles, and the D-transitions by black lines.
C-transition Cti, Cti∈CT, represents the flow
through section i, i=1,..,N. The input C-place with
respect to Cti, Cpi,in, represents the enabling for
section i to work. In analogy with continuous Petri
nets [9], the firing speed vi associated with   C-
transition Cti models the relevant working speed.

Fig. 1

A token is present in D-places Dpi,1 and
Dpi,2 as far as no event occurs, that is, the
corresponding  D-transition Dti,e does not complete
a firing. The end of its firing means the occurrence
of an event, which makes the token in Dpi,1 move to
places Dpi,e and Dpi,c. The token in place Dpi,e is
immediately available for the firing of transition
Dti,r,1 and ,thus, one token is immediately restored
in place Dpi,1. Instead, the token in place Dpi,c
enables the firing of transition Dti,c which removes
the token from place Dpi,2, thus temporarily
stopping the functioning of the continuous part of

section i. Moreover, transition Dti,c represents the
execution of a suitable control procedure which, on
the basis of the event occurred, modifies the firing
speeds of C-transitions optimizing some predefined
cost functional. As soon as the control procedure has
completed, D-transition Dti,r,2 is enabled and its
firing moves one token to Dpi,2, thus resuming the
system functioning. It is worth remarking that the
execution time of the control procedure is definitely
negligible.

With reference to Fig.1, two different
discrete parts of the HPN can actually be identified.
The right part models the event occurrences whereas
the left part is the structure implementing the control
procedure. The presence of these two different
portions of the discrete part of the net is motivated
by the fact that the control structure of the generic
section i can also be activated by an event
occurrence in a section j, j≠i. In this way, it is
possible to define the portion of the system that is
affected by a perturbation occurring in a generic
section. Each continuous section included in such
portion of the net is stopped by the occurrence of the
considered perturbation and the corresponding
control procedure is run to define a new firing speed.
The part of the net influenced by each perturbation
must be identified when designing the structure of
the HPN modelli ng the considered system and, of
course, a perturbation can also affect the whole net.
Thus, the presence of two discrete parts in the
proposed model is necessary to correctly consider,
and especially recover from, significant
perturbations to the regular system functioning, as it
will be clarified in next section dealing with the
application of the proposed model to manufacturing
systems.

3 Application to Manufacturing
Processes

To characterize the above introduced model to the
description of manufacturing processes, consider
each section i, i=1,..,N, to represent a resource Mi,
i=1,..,N, of the system. Then, the firing speed
associated with C-transition Cti models the working
speed of the resource.

The proposed model is here described by
means of a simple example relevant to a
manufacturing system composed of two failure-prone
machines M1 and  M2 processing one product class.
The HPN relevant to the considered system is
depicted in Fig.2.
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Fig. 2

The manufacturing system functioning is
defined by the production speeds of the two
machines. It is assumed that two ‘nominal’ speeds
v1*  and v2*  are defined by means of an off- line
planning phase of the system behavior . The regular
system functioning is, thus, identified by the
machines  working at their nominal speeds.
Moreover, the continuous place Cpout corresponds to
final products exiting the system.

For the sake of simplicity, in this case it is
assumed that the only events affecting the system
functioning are related to machine failures. The time
interval between two subsequent failures and the
duration of each failure are stochastic variables with
known probabili ty density functions. The firing times
of D-transitions Dt1,e and Dt2,e are just defined by
such stochastic times. Moreover, it can be noted that
each machine failure enables the firing of both
transitions Dt1,c and Dt2,c, thus executing the control
procedure for both resources. This means that, as it is
necessary in this case, the speeds of the two machines
are actually changed whenever a failure event occurs
in the system. The way in which the control
procedure can be defined when dealing with
manufacturing processes is defined in next section.

4 Control Issues: Use of Max-Plus
Algebra

This section is devoted to the definition of a control
problem aiming at restoring the nominal functioning
of the system fulfilli ng some contrasting constraints.
To state this problem, it is worth noting that the
discrete part of the HPN representing the proposed
model has the structure of a particular kind of Petri
net, a Timed Event Graph (TEG). From a structural
point of view, a TEG is a Petri net with unitary arcs
in which every place has a unique input transition
and a unique output transition.

A major feature of TEG's lies in the fact that
they can be analytically represented by means of
equations formally similar to those of linear systems,
provided that some tools peculiar to Max-Plus
algebra [12],[13] are used. The fundamental
operations in this algebraic structure are maximum
and sum. For each generic transition i, i=1,..,NT,
(NT= number of transitions in the discrete part of
the HPN), xi(k) denotes the time of its k-th firing. A
TEG with no input nor output transitions as the one
representing the discrete part of the HPN can be
described by state equations of the type

x = A⊗x  (1)
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where:
- the operator ⊗ implements the sum  operation;
- x is the state vector, x=col[xi, i=1,..,NT];
- matrix A, dimA=(NT × NT), represents the

relations between each pair of transitions.

It is important to remark that equations (1)
depend not only on the TEG topological structure,
but also on the firing times of transitions. Moreover,
to make the TEG representation unambiguous, every
token in the initial marking is assumed to be
immediately available.

It is known that the application of the
algebraic tools peculiar to Max-Plus algebra makes
workable a compact analysis of TEG's [12,13]. In
particular, it is here described a suitable control
procedure to be applied in the TEG representing the
discrete part of the HPN modelli ng manufacturing
systems as described in previous section. The control
procedure to be executed at the occurrence of each
perturbation consists in an on-line control problem.
The solution of such a control problem yields, at the
occurrence of a machine failure, the new values of
the production speeds of all the machines affected by
the failure, i.e., related to the one which has failed.
The considered cost functional takes into account the
square deviation from the nominal speeds, upper
bounds to be imposed on the machine speeds, and a
cost depending on the machine speeds and on the
length of the time interval during which such speeds
must be maintained.

The control problem to be solved at the
occurrence of the h-th failure of a generic machine
Mk can be stated as follows.

Problem
Find

(2)
subject to constraints

x(2h) = A(2h-1) ⊗ x(2h-1) (3)

where:
- αi and βi, i=1,…,N,  are suitable weighting

coeff icients which take on constant values;
- j is the index associated with transition Dtk,e;
- vimax, i=1,…,N, are the maximum values of the

machine speeds in the new perturbed system
conditions.

�

In the above problem formalization, xj(2h-1)
and xj(2h) are the time instants of beginning and end
of the h-th failure of machine Mk, respectively. Note
that the control procedure is run at the beginning of
the failure and, thus, xj(2h-1) is known, whereas
xj(2h) is determined through constraint (3).

Moreover, the optimization problem
addressed is a quadratic programming problem, since
constraints (3), which contain maximum operations
in the standard algebra, can be suitably rewritten as
linear disequali ties. Actually, Max-Plus algebra is
here used only as a formalism to represent in an
aggregate form the constraints on the system
behavior , and not to take advantage of the
mathematical tools arising from the related theory.

The above formalized control problem refers
to the occurrence of a machine failure. It is quite
obvious that the control procedure consists in the
solution of such a problem only at the beginning of a
failure. The event corresponding to the end of a
perturbation is processed by the control part of the
net simply by restoring the nominal speed values on
all the machines previously affected by the failure
event.

5  Conclusions
Joining some results from the two research streams
relevant to hybrid systems and Petri nets, this work
has introduced the use of a special class of Petri
nets, the Hybrid Petri Nets  (HPN’s), to model
large-scale systems, and in particular manufacturing
processes, which can be considered to be hybrid
systems. In such systems, the functioning is meant
‘ regular’ whenever no variation in system behavior
occurs, whereas the changes in the system behavior
are modelled by means of discrete events.

A hybrid Petri net (HPN) is a combination
of a ‘classical’ Petri net and a continuous Petri net,
the ‘f luid’ version of a timed Petri net. In the
particular model proposed, the discrete part of the
HPN ‘ regulates’ the continuous Petri net, allowing to
realize the control of production by solving suitable
optimization problems. The characteristic of the
model that makes it specially interesting for analysis
and optimization purposes is the special structure of
its discrete part, which turns out to be a Timed Event
Graph. TEG’s are Petri nets with peculiar structural
characteristics, which makes them to be analytically
represented by means of state equations linear in the
Max-Plus algebra. This capabili ty is exploited to
state the constraints imposed by the manufacturing
system behavior  on the cost functionals to be
optimized to solve  the control problems of interest.
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