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Abstract

In this paper we adopt the fluid approximation theory to
describe the dynamic behavior of Flexible Manufacturing
Systems that we model with Hybrid Stochastic Petri Nets,
a class of nets in which some places may hold fluid rather
than discrete tokens. The continuous transitions of the net
are fired with speeds that are piecewise constants over the
entire time horizon and their instantaneous values can be
obtained by solving a sequence of linear programming
problems. Conflicts among continuous transitions cor-
respond to scheduling decisions, and we discuss several
optimization schemes that can be used to resolve them.

1 Introduction
We considerFlexible Manufacturing Systems(FMS) con-
sisting of a set of a stations with unreliable machines and
buffers of finite capacity, among which several parts of a
certain class are circulated and processed. To describe the
dynamic behavior of such systems we adopt the Petri Net
(PN) formalism. Since in practical problems the num-
ber of reachable states may explode, we develop a hybrid
(discrete–event and continuous–flow) model.

Fluid Stochastic Petri Netshave been introduced by
Kulkarni and Trivedi in [8] in order to extend the stochas-
tic Petri nets framework of [1]. They proposed a model
with places holding continuous tokens and arcs represent-
ing fluid flows, defining rules for transitions enabling and
firing. In this paper we define ahybrid model of the net
in which places and transitions may be either continuous
or discrete, following the hybrid framework introduced
by Alla and David in [2], and we allow fluids to move
smoothly through the net. Hybrid Petri nets whose con-
tinuous places may contain negative real tokens have also
been defined in the literature (e.g., [7]) but will not be
considered here.

In the Hybrid Stochastic Petri Netframework
(HSPN), a net consists of continuous places holding fluid,
discrete places containing a non–negative integer number
of tokens and transitions, either discrete or continuous.
Enabled continuous and discrete transitions may then fire
according to their firing speeds or time delays, respec-
tively. We describe the dynamics of an HSPN by set-
ting up a linear discrete–time state variable model. Thus
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hybrid Petri nets allows us to model manufacturing sys-
tems by means of first–order fluid approximations, where
the marking of continuous places are piecewise linear and
continuous functions of time.

The main motivation of this paper is to put modelling
issues encountered when dealing with manufacturing sys-
tems in the context of hybrid stochastic Petri nets. Pre-
cisely we propose a neat formulation of the fluid model
which describes the evolution in time of an FMS that is
driven by the occurrence of a limited number of events,
that we call macro–events. Then the system evolves
through a sequence ofmacro–statescharacterized by the
functional status of each service.

Conflict resolutionis an important issue in the study
of (discrete) timed nets. We have a conflict when a lim-
ited number of tokens enables more than one transition
but it is only sufficient to fire a subset of them. Sev-
eral schemes have been devised to tackle this problem,
including token reservations[2], re-sampling rulesand
priorities [1]. In the present work, we use hybrid nets
to model FMSs, and conflicts arise at continuous places,
where production flows must be routed in the system.
The conflict resolution policy represents the decision that
a plant operator must take in order to optimize the pro-
cess. This decision may be based on local or global infor-
mation and requires computing the instantaneous firing
speeds of continuous transitions. We will provide a for-
mal description for the calculation of the instantaneous
firing speeds of the continuous transitions, obtained by
solving a linear programming problem. The different ob-
jective functions of this optimization problem correspond
to different policies.

Briefly, the rest of the paper is structured as follows.
In section 2 we introduce the Petri net formalism used in
the following sections and we develop the hybrid model
of stochastic Petri nets. In Section 3 we show how HSPNs
can be used to derive a first–order fluid model of an FMS.
Section 4 introduces the concepts of macro–states and
macro–events. Section 5 is concerned with the computa-
tion of the instantaneous firing speed of continuous tran-
sitions and with different conflict resolution schemes.

2 Background
We recall the Petri net formalism used in this paper. For a
more comprehensive introduction to place/transition Petri
nets see [10], while the common notation and semantics
for GSPNs can be found in [1]. The first approach to-
wards continuous Petri nets was carried out by Alla and
David and then extended to hybrid nets in [2]. The HSPN



model we use follows [2, 1]. Another class of hybrid
stochastic Petri nets was also defined in [8].

An HSPN is a structureN = (P, T, Pre, Post,F).
The set ofplacesP = Pd ∪ Pc is partitioned into a
set of discreteplacesPd (represented as circles) and a
set of continuousplacesPc (represented as double cir-
cles). The set oftransitionsT = Td ∪ Tc is partitioned
into a set of discrete transitionsTd and a set of contin-
uous transitionsTc (represented as double boxes). The
setTd = TI ∪ TD ∪ TE is further partitioned into a set
of immediatetransitionsTI (represented as bars), a set of
deterministic timedtransitionsTD (represented as black
boxes), and a set ofexponentially distributed timedtran-
sitionsTE (represented as white boxes).

Pre :
{

Pd × T → N
Pc × T → R+ ∪ {0}

and

Post :
{

Pd × T → N
Pc × T → R+ ∪ {0}

are thepre- andpost-incidence functionsthat specify the
arcs. We require (well-formed nets) that for all t ∈ Tc

and for allp ∈ Pd, Pre(p, t) = Post(p, t). The function
F is defined for continuous and discrete timed transitions
so thatF : T \ TI → R+. We associate to a continu-
ous transitionti ∈ Tc its maximum firing speed(MFS)
Vi = F(ti). We associate to a deterministic timed tran-
sition ti ∈ TD its (constant) firing delayδi = F(ti). We
associate to an exponentially distributed timed transition
ti ∈ TE its average firing rateλi = F(ti), i.e. the av-
erage firing delay is1

λi
, whereλi is the parameter of the

corresponding exponential distribution.
We denote the preset (postset) of transitiont as •t

(t•) and its restriction to continuous or discrete places
as (d)t = •t ∩ Pd or (c)t = •t ∩ Pc. Similar no-
tation may be used for presets and postsets of places.
The incidence matrixof the net is defined asC(p, t) =
Post(p, t) − Pre(p, t). The restriction ofC to PX and
TY (X,Y ∈ {c, d}) is denotedCXY . Note that by the
well-formedness hypothesisCdc = 0.

A marking

m :
{

Pd → N
Pc → R+ ∪ {0}

is a function that assigns to each discrete place a non-
negative number of tokens, represented by black dots and
assigns to each continuous place a fluid volume;mp de-
notes the marking of placep. The value of a marking at
time τ is denotedm(τ). The restriction ofm to Pd and
Pc are denoted withmd andmc, respectively. AnHSPN
system〈N,m(0)〉 is a HSPNN with an initial marking
m(0).

A discrete transitiont is enabled atm if for all
p ∈ •t, mp ≥ Pre(p, t). An enabled discrete transition
t fires (after the associated delay) yielding the marking
m′ = m + C(·, t).

A continuous transitiont is enabled atm if for all
p ∈ (d)t, mp ≥ Pre(p, t). Note that the enabling of
a continuous transition does not depend on the marking
of its continuous input places. We distinguishstrongly
enabledand weakly enabledcontinuous transitions. A

Figure 1: Firing of a continuous transition.

transitionti ∈ Tc is strongly enabled atm(τ) if for all
placesp ∈ (c)t, mp(τ) > 0. Then it may fire with an
instantaneous firing speed(IFS)vi(τ) = Vi. A transition
ti ∈ Tc is weakly enabled atm(τ) if for somep̄ ∈ (c)t,
mp̄(τ) = 0. Thus its IFS may resultvi(τ) < Vi because
it cannot remove more fluid from placēp than the quantity
entered inp̄ by other transitions. Moreover ifti ∈ Tc is
not enabled atmp(τ) thenvi(τ) = 0.

We can now define the macro–behavior of a net. A
macro–eventoccurs when: (a) either a discrete transi-
tion fires, thus changing the discrete marking and en-
abling/disabling a continuous transition; (b) or a contin-
uous place becomes empty, thus changing the enabling
state of a continuous transition from strong to weak. Let
τk and τk+1 be the occurrence in time of consecutive
macro–events; the interval of time∆k = [τk, τk+1)
is called amacro–period. We will assume that the IFS
of continuous transitions are piecewise constant during
a macro–period. Thus the discrete marking and the IFS
vector during a macro–period define amacro–statethat
correspond to theinvariant behavior statesof [2]. These
settings are illustrated in the example below.
Example 1. Transitionst1 andt2 in Figure 1 have asso-
ciated MFSsV1 andV2. We assumeV1 · a < V2 · b and
mp(0) = lp > 0. As long asp is not empty transitions
t1 andt2 fire at their maximum speed, that isv1(τ) = V1

andv2(τ) = V2. The marking ofp is given by:

{
mp(0) = lp
dmp

dτ = v1 · b− v2 · a

At time τe = lp
v2·b−v1·a , t2 cannot fire at its maximum

speed becausep is empty. Hence forτ > τe transition
t2 is weakly enabled with IFSv2(τ) = V1 · a

b . The event
“placep becomes empty” at timeτe has modified the evo-
lution of the system changing the IFS of the continuous
transitions. ¥

Let vi(τ) be the IFS of each transitionti ∈ Tc. We
can write the equation which governs the evolution in
time of the marking of a placep ∈ Pc as

dmp(τ)
dτ

=
∑

ti∈Tc

C(p, ti) · vi(τ) (1)

Indeed Equation 1 holds assuming that at timeτ no dis-
crete transition is fired and that all speedsvi(τ) are con-
tinuous inτ . The evolution in time of the marking of a
placep ∈ Pd is governed by the common enabling and
firing rules defined in [1].



We now describe the dynamics of an HSPN by set-
ting up a linear discrete–time state variable model. Let
τ0 be the initial time,τk (k > 0) be the instants in which
macro–events occur,v(τk) be the IFS vector during the
macro–period∆k and σ(τk) the firing count vector at
time τk. Then the continuous behavior of an HSPN can
be described during a macro–period∆k by

{
mc(τ) = mc(τk) + Ccc · v(τk) · (τ − τk)
md(τ) = md(τk) (2)

whereτ ∈ [τk, τk+1), while its discrete behavior at the
occurrence of macro–events is described by

{
mc(τk) = mc(τ−k ) + Ccd · σ(τk)
md(τk) = md(τ−k ) + Cdd · σ(τk)

(3)

3 Description of the FMS Model
Hybrid Petri nets allows us to model manufacturing sys-
tems with first–order fluid approximations. Indeed fluid
models are well studied and documented in the literature,
and the readers are referred to Chen and Mandelbaum [9]
for references on thefluid approximation theory. Specifi-
cally we consider an FMS consisting of a set ofn single–
server stations among which a certain class of continuous
flows (fluid) is circulated and processed. A more gen-
eral FMS configuration with different classes of products
flowing through has been deeply studied by Balduzzi and
Menga in [3] by using first and second order fluid approx-
imations.

Stations are denoted byMi, for i = 1, . . . , n, and
are represented in the HSPN as continuous transitions
tMi ∈ Tc which firing corresponds to a continuous pro-
duction at ratevMi(τ) when the input bufferBi is not
empty. Working stations (generically called services)
are represented within the FMS configuration by unre-
liable machines coupled with input buffers of finite ca-
pacity. Each machine has its own input buffer to accom-
modate the inflow of parts. Since machines are unre-
liable we may consider randomly occurring failures as
operation–dependent or time–dependent (readers are re-
ferred to Buzacott [5]). An operation–dependent failure
can occur only when the machine is working at a given
production rate and as suggested in [5] this model is more
appropriate than the equivalent time–dependent model
when dealing with manufacturing systems. However if
we are interested in evaluating performance measures as-
suming time–dependent failures, each service can be ap-
propriately modelled as an HSPN. The considered control
scheme is shown in Figure 2. This is the same model pre-
sented in [2] for a an unreliable machine producing at a
constant rateVMi .

TransitiontMi models the production of machineMi

at a rate given by its IFSvMi . The maximum machine
production rate is defined by its MFSVMi . Continuous
firing of transitiontMi corresponds to a continuous pro-
duction at ratevMi ≤ VMi when the input bufferpB,i is
not empty. Obviously the machine will keep on produc-
ing only if it is operational, that is the placepup,i (Ma-
chine Up) is marked. When the machine breaks down,
independently on the production volume currently pro-
cessed,pup,i is not marked andpdown,i is marked, hence
tMi is not enabled, then not fired.

Figure 2:Time–Dependentfailures model.

Figure 3:Operation–Dependentfailures model.

On the other hand assuming operation–dependent
failures we model each service as shown in Figure 3.
Continuous placespR,i andpF,i hold fluids represented
by the production volumewi that will be processed by
the machineMi before breaking. This value can be ei-
ther deterministic or obtained as a sample drown from
an i.i.d random variable. MachineMi breaks down af-
ter processing the fluid quantitywi at a production rate
defined by the IFS of transitiontMi . At that time the
continuous placepF,i will be filled up by the fluid vol-
umewi, thus enabling the immediate transitiontdown,i.
Firing of transitiontdown,i consists in taking out the vol-
umewi from pF,i and adding1 token to the discrete place
pdown,i, which is representing the condition ofMachine
Down for this service. Hence thefailure event occurred
at machineMi has made a change on the state of this ser-
vice and, as a consequence, the IFS of transitiontMi will
be vMi = 0. Then the machine will be under repairing
as long as the repair event does occur. That is, after the
interval of time 1

λR,i
, representing the delay after which

the discrete transitiontR,i will be fired, the service gets
repaired and placepup,i will be marked, thus represent-
ing the condition ofMachine Upfor this service. At the
same time the immediate transitiontup,i is enabled and it
can get fired providing animpulsive signalto the contin-
uous placepR,i which will then filled up by the fluid vol-
umewi. An impulsive signal is here informally employed
to provide continuous places with initial conditions, thus
representing the loading of reservoirs of fluid, i.e. place
pR,i, at the production volume that will be processed by
the machine before the next failure. This model high-
lights the transformation of fluids into discrete tokens and



Figure 4: The output model of a machine.

Figure 5: The model of a finite buffer.

vice versa through discrete transitions.
In Figure 4 we have depicted the output model of a

machine. Parts move generically from stationMi to the
input bufferBj of machineMj according to their produc-
tion cycle. Continuous placepdisp acts as a dispatcher of
capacity equal to0 for the flow of parts at the output of
each machine. LetvMi,Bj (τ) by the outflow rate of parts
moving from machineMi to Bj . Then this structure al-
lows us to model the routing of parts within the net en-
suring that

∑
tMi,Bj

∈Tc
vMi,Bj (τ) ≤ vMi(τ), for τ > 0.

Note that we do not need to bound the IFS of the outflow
continuous transitionstMi,Bj . Along their route, parts
are queued in buffers, one for each machine, which are
represented in the HSPN by continuous placespBi ∈ Pc

with bounded capacityci. This condition is represented
by the co-bufferpB̄i

such thatmB̄i
(0) = ci, as shown in

Figure 5.
We denote withc = [c1, . . . , cn]T the buffer capacity

vector and, assuming operation–dependent failures (read-
ers are referred to Figure 3), we define for each machine
the Production Volume Before Breaking, denoted bywi,
and theRepairing Time, denoted bydi = 1

λR,i
, both

assumed as independent identically distributed random
variables. Machine service times are indicated withηi

and are also assumed independent random variables with
identical distribution. Hence the MFS of the continuous
transitions are defined asVMi = F(tMi) = 1

E[ηi]
.

4 Macro–behavior of the FMS
The evolution in time of the first–order fluid approxima-
tion of an FMS modelled with hybrid stochastic Petri nets
is driven by the occurrence of a limited number of events
(machine starvation, blockage, breakdown and repair)
that in our framework are calledmacro–events. Then the

FMS evolves through a sequence of macro–states, char-
acterized by the functional status of the physical compo-
nents of all services: the machines,operationalor down,
and the buffers,full, not full-not empty, empty.

In this paper we considerlinear fluid models assum-
ing that input and output processes corresponding to the
inflow and outflow of parts at each machine are linear
functions of time. Letτk, for k = 1, 2, . . ., be points
in time corresponding to the occurrence of the macro–
events, andvi(τk) the IFS of transitionti ∈ Tc during
the macro–period∆k. For each placepBi ∈ Pc the total
inflow and outflow rate of fluids is

φi,in(τk) =
∑

h vMh,Bi(τk)
φi,out(τk) = vMi

=
∑

h vMi,Bh
(τk)

with the notation of Figures 4 and 5.
The macro–state of the system does change when-

ever discrete transitions fire and(or) continuous transi-
tions have been modified their enabling conditions as a
consequence of certain macro–events occurred at their
input places. We denote the set of macro–events by
E = {Fi, Ri, BEi, BFi} which elements are defined
as follows:

• Fi (Failure of machineMi). After a machine is re-
paired, failures will occur after the production volume
w̃i.

• Ri (Repair of machineMi). When a machine fails, it
will be repaired after̃di time units.

• BFi (Buffer Full at machineMi). The buffer level
reaches its capacityci while φi,in(τ) ≥ φi,out(τ).

• BEi (Buffer Empty at machineMi). The buffer level
reaches0 while φi,in(τ) ≤ φi,out(τ).

The macro–event setE has been defined with regard to
thephysicalevents which usually do occur in an FMS. In
the HSPN framework those macro–events correspond to
the firing of immediate transitions and to the adjustments
made on the speeds of continuous transitions.

Following the above notation, we can characterize the
admissible macro–states as follow:

• Machine Operational. Machine Mi reaches this
macro–state at the occurrence of macro–eventsRi and
then leaves at the occurrence of macro–eventsFi.

• Machine Broken. MachineMi reaches this macro–state
at the occurrence of macro–eventsFi and then leaves it
at the occurrence of macro–eventsRi. The IFSvi(τ)
goes to 0 because transitiontMi is disabled.

• Buffer Full. Macro–state reached at the occurrence of
macro–eventsBFi. Services leave it at the occurrence
of any macro–event which will result in the condition
φi,in(τ) ≤ φi,out(τ).

• Buffer Empty. Macro–state reached at the occurrence
of macro–eventsBEi. Services leave it at the occur-
rence of any macro–event which will result in the con-
dition φi,in(τ) ≥ φi,out(τ).



• Buffer not-Full not-Empty. In any other macro–state
reached at the occurrence of exogenous macro–events
services will be considered operating under the heavy
traffic conditions.

5 Firing speed and dynamics of an HSPN
The computation of an admissible IFS vector of contin-
uous and hybrid nets is not trivial. In [6] an iterative al-
gorithm was given to determine one admissible vector;
the algorithm aims at maximizing speeds while respect-
ing priority rules. We propose a different approach, in
which we use linear inequalities to define the set of all
admissible firing speed vectorsS. Each vectorv ∈ S
represents a particular mode of operation of the system
described by the net, and among all possible modes of
operation, the system operator may choose the best ac-
cording to a given objective. There are several advantages
in our approach.

• We can explicitly define the set of all admissible IFS
vectors in a given macro-state and not just compute a
particular vector.

• We consider more general scheduling rules than pri-
orities. In general in an FMS we may want to: max-
imize machines utilization, maximize the throughput
of the system, balance the load, etc. Each of these
problems corresponds to a particular objective func-
tion. Note that each setS corresponds to a particu-
lar system macro-state. Thus, our optimization scheme
can only bemyopic[3], in the sense that it generates a
piecewise optimal solution, i.e., a solution that is opti-
mal only in a macro–period .

• We compute a particular (optimal) IFS vector solving
a linear programming problem (LPP), rather than by
means of an iterative algorithm, whose convergence
properties may not be good.

• Linear programming leads to sensitivity analysis,
which plays an essential role in performance evaluation
and optimization. In fact, we may be able to compute
analytically the objective function improvement due to
a parameter variation.

5.1 Admissible IFS vectors and conflicts

Definition 2 (admissible IFS vectors). Let N be an
HSPN, withnc continuous transitions, incidence matrix
C, and current markingm. Let TE(m) ⊂ Tc (TN (m) ⊂
Tc) be the subset of continuous transitions enabled (not
enabled) atm, while PE = {p ∈ Pc | mp = 0} is the
subset of continuous places that are empty. Anyadmissi-
ble IFS vectorv = [v1, · · · vnc ]

T at m is a feasible solu-
tion of the following linear set:





(a) Vj − vj ≥ 0 ∀tj ∈ TE(m)
(b) vj ≥ 0 ∀tj ∈ TE(m)
(c) vj = 0 ∀tj ∈ TN (m)
(d)

∑
tj∈TE C(p, tj) · vj ≥ 0 ∀p ∈ PE(m)

(4)
Thus the total number of constraints that define this set is
2card{TE(m)} + card{TN (m)} + card{PE(m)}. The
set of all feasible solutions is denotedS(N,m). ¥

Figure 6: A hybrid Petri net model of a re-entrant line.

Figure 7: A continuous place with a conflict.

Constraints of the form (4.a), (4.b), and (4.c) follow
from the enabling rules. Constraints of the form (4.d) fol-
low from (1), because if a place is empty its fluid content
cannot decrease.
Example 3. Let N be the continuous net in Figure 6,
with α ∈ (0, 1), where placep is initially empty. Such a
net is representative of a re-entrant production line. Ac-
cording to the previous definition, the setS(N, m) is de-
fined by the following inequalities:





V1 − v1 ≥ 0
V2 − v2 ≥ 0
v1, v2 ≥ 0
v1 − (1− α)v2 ≥ 0

(5)

¥
We now want to use the above formalism to define the

concept ofconflict in a net. We will only consider con-
flicts at continuous places, an example of which is shown
in Figure 7. When placepi is not empty, bothtout,1 and
tout,2 can fire at their MFS. When placepi is empty, how-
ever, the output flowvout,1 + vout,2 is bounded by the in-
put flowvin, thus in the constraint setS(N, m) there will
be a constraint of the form (4.d) relative to placepi that
writes vin ≥ vout,1 + vout,2. This constraint expresses
the fact that we have a limited amount of resource (the in-
put flow) that must be shared between different processes
(the output transitions). There is no conflict, instead, if
each empty placep ∈ Pc has at most one enabled output
transitiont ∈ Tc. This motivates next definition.
Definition 4 (continuous conflict free). Let N be an
HSPN whose present macro-state is characterized by a
markingm and letS(N, m) be the linear set defined by



(4). Any constraints of the form (4.d) can be written as

∑

j∈J

αjvj ≥
∑

k∈K

αkvk (6)

with J ∩K = ∅ andαj , αk ∈ R+ ∪ {0}.
We say thatN is continuous conflict free(CCF) at

m if for all constraints of the form (4.d) rewritten as (6)
holds card{K} ≤ 1. ¥

In the rest of this section, we discuss the relationship
between conflict resolution (i.e., the computation of tran-
sition IFS) and performance optimization.

5.2 Conflict free firing speed computation

If we set our goal to maximize the transition firing speeds,
it is possible to show that in a continuous conflict free
HSPN each IFS may be maximized independently.
Theorem 5. Let N be a HSPN andm be its present
marking. If N is CCF atm, the optimal solutionv∗ of
the following LPP

max 1T · v
s.t. v ∈ S(N,m)

is such that∀v ∈ S(N, m), v ≤ v∗ (componentwise).

Proof. Let⊕ be the (componentwise)max operator, i.e.,
w⊕y ≡ (wi ⊕ yi)i ≡ (max{wi, yi})i. It is sufficient to
prove that if the net is CCF, thenw,y ∈ S(N, m) =⇒
w ⊕ y ∈ S(N, m).

Clearly, ifw andy satisfy (4), thenw⊕y will satisfy
all constraints of the form (4.a), (4.b), and (4.c). Under
the hypothesis of conflict freeness, we can write any con-
straint of the form (4.d) associated to a placep as:

1.
∑

j∈J αjvj ≥ 0 if no enabled transition outputs from
placep;

2.
∑

j∈J αjvj ≥ αoutvout if tout is the only enabled tran-
sition outputting from placep.

with αj , αout, vj , vout ∈ R+ ∪ {0}.
In the first case we have that:

∑
j∈J αj (wj ⊕ yj) ≥

(∑
j∈J αjwj

)
⊕

(∑
j∈J αjyj

)

≥ 0⊕ 0 = 0

while in the second case we have

∑
j∈J αj (wj ⊕ yj) ≥

(∑
j∈J αjwj

)
⊕

(∑
j∈J αjyj

)

≥ (αoutwout)⊕ (αoutyout) = αout (wout ⊕ yout)

i.e., the vectorw ⊕ y satisfies all constraints of the form
(4.d) as well.

In the case of CCF nets, the optimal solutionv∗ in the
previous theorem coincides with the solution computed
with the priority algorithm in [6]. It may be interesting,
however, to compare the two algorithms via an example.
Example 6. Let us consider again the net in Figure 6
whose set of admissible IFS vectors is given by (5). If
we compute the vectorv∗ solution of (5) that maxi-
mizesJ = v1 + v2 we clearly obtainv∗1 = V1 and
v∗2 = min{ 1

1−αV1, V2}. This example is so simple that

we can write the solution in closed form; in more com-
plex cases, the solution can still be easily found solving
the associated LPP. If we apply the procedure proposed
in [6], we obtain at the first iteration stepv1 = V1, while
to compute the IFS of transitiont2 we need to solve the
following iterative problem

{
v0
2 = 0

vr+1
2 = min(V1 + α · vr

2, V2)

and forV1 ≤ (1−α)V2 the algorithm requires an infinite
number of steps to converge to the correct valuev2 =

1
1−αV1. ¥
5.3 Global optimization

When the net is not conflict free, not all firing speed may
be maximized independently. We can always solve the
conflicts, however, by solving an LPP aimed at aglobal
optimizationof the system resources. We may consider
different performance indices as the objective function in
the LP formulation of the problem. We consider some
examples taken from the manufacturing domain.

1) In an FMS, the goal may be to maximize machines uti-
lization. Thus, in a HSPN model we can consider as
optimal the solutionv∗ of (4) that maximizes the per-
formance indexJ = 1T ·v which is of course intended
to maximize the sum over all flow rates.

2) In an FMS, the goal may be to maximize throughput.
Thus, in a HSPN model we may want to maximize the
performance indexJ = aT · v where

aj =
{

1 if tj is an exogenous transition,
0 if tj is an endogenous transition.

3) In an FMS, the problem of thedynamic load balanc-
ing consists in reducing the difference between maxi-
mum and minimum utilization of machines in a given
set. In a HSPN model, the utilization of a transition
tj can be given as the ratio betweenvj/Vj . Then we
may want to minimize the performance indexJ =
maxj∈K{vj/Vj} −minj∈K{vj/Vj} for a suitable in-
dex setK.

A different optimization procedure is based onglobal
priorities (GP). We assume that thenc continuous tran-
sitions of the net are ordered in a priority sequence
t1 Â t2 Â · · · Â tnc . The GP-optimal solutionv∗ =
[v∗1 , · · · v∗nc

]T is such that

v∗1 = max{v1 | v ∈ S(N,m)};
v∗2 = max{v2 | v ∈ S(N,m), v1 = v∗1};
v∗3 = max{v2 | v ∈ S(N,m), v1 = v∗1 , v2 = v∗2};

· · ·
This solution can be found by solvingnc LPPs. First we
solve (4) withJ = v1 computingv∗1 ; then we add to (4)
the constraintv1 = v∗1 and solve withJ = v2; etc.
Example 7. Consider the net in Figure 8 withV1 =
V5 = 10, V2 = V3 = V4 = 7. We apply the method
discussed above to obtainv∗ = [10, 7, 3, 3, 10]T . Note
that applying the algorithm proposed in [6] we obtain
v = [10, 3, 7, 7, 10]T , that is an admissible IFS vector
even though it does not have the same properties of the
GP-optimal solution. ¥
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Figure 8: An HSPN with a non free-choice conflict.

Note that there exist other techniques based on lexico-
graphic ordering [4] that may well be meaningfully used
to compute the GP-optimal solution solving a single LPP
with a suitably modified objective function. This will be
explored in future works.

5.4 Local Optimization

The use of a performance index to be maximized (or min-
imized) over the space of all admissible IFS vectors, cor-
responds to a global optimization procedure. It is of-
ten the case, however, that local rules are used to de-
termine the operating mode of a system described by a
hybrid net. These rules correspond to decisions that can
be taken in a decentralized way. We consider the case of
nets where all conflicts arefree-choice, i.e., if a continu-
ous placep has more than one output continuous transi-
tion (e.g.,p(c) = {t1, t2, · · · tk} with k > 1), then it is
the only continuous input place for all those transitions
(i.e., (c)tj = {p}, j = 1, . . . , k). The conflict in Fig-
ure 7 is free-choice, while the two conflicts in Figure 8
are not. When the conflicts are not free-choice, the lo-
cal optimization rules described below may not be well
founded.

One particular simple rule that may be used to locally
solve free-choice conflicts, is that of assigning afixed ra-
tio of fluid volume to all enabled continuous transitions
outputting from an empty continuous place. As an exam-
ple, in Figure 7 we may assign a ratiovout,1 = s · vout,2.
This new constraint can be added to the setS or even bet-
ter, by substitution we can reduce by one the number of
variables in (4).

We can also consider the case oflocal priority rules
by suitable modification of the linear set (4). Assume
that in Figure 7 a legal solution is such thattout,1 has
priority overtout,2, i.e., all fluid entering the place should
be consumed bytout,1 and only if vout,1 = Vout,1 the
remaining fluid should be consumed bytout,2. This can
be done adding the following constraints:

{
M · x ≥ Vout,1 − vout,1

vout,2 ≤ M · (1− x)

wherex ∈ {0, 1}, M ∈ R with M >> 0. Thus if
vout,1 < Vout,1 it follows vout,2 = 0. The problem with
this technique is that a simple LPP is transformed into a
more complex mixed integer-linear problem.

6 Conclusions
We have used hybrid stochastic Petri nets as fluid mod-
els for flexible manufacturing systems. Assuming that

the instantaneous firing speeds of continuous transitions
are piecewise constant, we have shown that the set of all
possible behaviors of the net during a macro–state can
be represented by the convex set defined by a system
of linear inequalities. The computation of the instanta-
neous firing speed — and the associated problem of con-
flict resolution — can be seen as the net counterpart of a
performance optimization with global or local objective
functions. Future work will explore the use of linear pro-
gramming sensitivity analysis for parameter optimization
of systems described by hybrid stochastic Petri nets.
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