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Abstract

In this paper we adopt the fluid approximation theory to
describe the dynamic behavior of Flexible Manufacturing
Systems that we model with Hybrid Stochastic Petri Nets,
a class of nets in which some places may hold fluid rather
than discrete tokens. The continuous transitions of the net
are fired with speeds that are piecewise constants over the
entire time horizon and their instantaneous values can be
obtained by solving a sequence of linear programming
problems. Conflicts among continuous transitions cor-
respond to scheduling decisions, and we discuss several
optimization schemes that can be used to resolve them.

1 Introduction

We consideFlexible Manufacturing SysteniSMS) con-
sisting of a set of a stations with unreliable machines and
buffers of finite capacity, among which several parts of a
certain class are circulated and processed. To describe the
dynamic behavior of such systems we adopt the Petri Net
(PN) formalism. Since in practical problems the num-
ber of reachable states may explode, we develop a hybrid
(discrete—event and continuous—flow) model.

Fluid Stochastic Petri Nethave been introduced by
Kulkarni and Trivedi in [8] in order to extend the stochas-
tic Petri nets framework of [1]. They proposed a model
with places holding continuous tokens and arcs represent-
ing fluid flows, defining rules for transitions enabling and
firing. In this paper we define laybrid model of the net
in which places and transitions may be either continuous
or discrete, following the hybrid framework introduced
by Alla and David in [2], and we allow fluids to move
smoothly through the net. Hybrid Petri nets whose con-
tinuous places may contain negative real tokens have also
been defined in the literature (e.g., [7]) but will not be
considered here.

In the Hybrid Stochastic Petri Netframework
(HSPN), a net consists of continuous places holding fluid,
discrete places containing a non—negative integer number
of tokens and transitions, either discrete or continuous.
Enabled continuous and discrete transitions may then fire
according to their firing speeds or time delays, respec-
tively. We describe the dynamics of an HSPN by set-
ting up a linear discrete—time state variable model. Thus
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hybrid Petri nets allows us to model manufacturing sys-

tems by means of first—order fluid approximations, where

the marking of continuous places are piecewise linear and
continuous functions of time.

The main motivation of this paper is to put modelling
issues encountered when dealing with manufacturing sys-
tems in the context of hybrid stochastic Petri nets. Pre-
cisely we propose a neat formulation of the fluid model
which describes the evolution in time of an FMS that is
driven by the occurrence of a limited number of events,
that we callmacro—events Then the system evolves
through a sequence afacro—statesharacterized by the
functional status of each service.

Conflict resolutionis an important issue in the study
of (discrete) timed nets. We have a conflict when a lim-
ited number of tokens enables more than one transition
but it is only sufficient to fire a subset of them. Sev-
eral schemes have been devised to tackle this problem,
including token reservation§?], re-sampling rulesand
priorities [1]. In the present work, we use hybrid nets
to model FMSs, and conflicts arise at continuous places,
where production flows must be routed in the system.
The conflict resolution policy represents the decision that
a plant operator must take in order to optimize the pro-
cess. This decision may be based on local or global infor-
mation and requires computing the instantaneous firing
speeds of continuous transitions. We will provide a for-
mal description for the calculation of the instantaneous
firing speeds of the continuous transitions, obtained by
solving a linear programming problem. The different ob-
jective functions of this optimization problem correspond
to different policies.

Briefly, the rest of the paper is structured as follows.
In section 2 we introduce the Petri net formalism used in
the following sections and we develop the hybrid model
of stochastic Petri nets. In Section 3 we show how HSPNs
can be used to derive a first—order fluid model of an FMS.
Section 4 introduces the concepts of macro—states and
macro—events. Section 5 is concerned with the computa-
tion of the instantaneous firing speed of continuous tran-
sitions and with different conflict resolution schemes.

2 Background

We recall the Petri net formalism used in this paper. For a
more comprehensive introduction to place/transition Petri
nets see [10], while the common notation and semantics
for GSPNs can be found in [1]. The first approach to-
wards continuous Petri nets was carried out by Alla and
David and then extended to hybrid nets in [2]. The HSPN



model we use follows [2, 1]. Another class of hybrid
stochastic Petri nets was also defined in [8].

An HSPN is a structur& = (P, T, Pre, Post,F).
The set ofplacesP = P, U P, is partitioned into a
set ofdiscreteplacesP, (represented as circles) and a
set of continuousplacesP, (represented as double cir-
cles). The set ofransitionsT = T,; U T, is partitioned
into a set of discrete transitior’s; and a set of contin-
uous transitiond . (represented as double boxes). The
setT,; = Tr UTp U Tg is further partitioned into a set
of immediataransitionsl’; (represented as bars), a set of
deterministic timedransitionsTp (represented as black
boxes), and a set @xponentially distributed timetlan-
sitionsTg (represented as white boxes).

Pre:{
. PdXT—>N
POSt.{ PCXT—>R+U{0}

are thepre- andpost-incidence functiorthat specify the
arcs. We requirewell-formed netsthat for allt € T,
and for allp € P, Pre(p,t) = Post(p,t). The function
F is defined for continuous and discrete timed transitions
so thatF : T\ Ty — R™. We associate to a continu-
ous transitiont; € T, its maximum firing spee@FS)
Vi = F(t;). We associate to a deterministic timed tran-
sitiont; € Tp its (constant) firing delay; = F(t;). We
associate to an exponentially distributed timed transition
t; € Ty its average firing rate; = F(¢;), i.e. the av-
erage firing delay |%1 where); is the parameter of the
corresponding exponential distribution.

We denote the preset (postset) of transitioas *¢
(t*) and its restriction to continuous or discrete places
as@¢ = *tn P,or 9t = *tn P.. Similar no-
tation may be used for presets and postsets of places.
Theincidence matrixof the net is defined a€(p,t) =
Post(p,t) — Pre(p,t). The restriction ofC to Px and
Ty (X,Y € {c,d}) is denotedCxy. Note that by the
well-formedness hypothess,;. = 0.

A marking
m: {

is a function that assigns to each discrete place a non-
negative number of tokens, represented by black dots and
assigns to each continuous place a fluid volumg;de-
notes the marking of plage The value of a marking at
time 7 is denotedn(r). The restriction ofn to P; and
P, are denoted withn® andm?, respectively. ArFHSPN
system( N, m(0)) is a HSPNN with an initial marking
m(0).

A discrete transitiont is enabled atmn if for all
p € *t, m, > Pre(p,t). An enabled discrete transition
t fires (after the associated delay) yielding the marking
m' = m+ C(-,1).

A continuous transitiort is enabled atn if for all
p € Dt, m, > Pre(p,t). Note that the enabling of
a continuous transition does not depend on the marking
of its continuous input places. We distinguistiongly
enabledand weakly enablectontinuous transitions. A

PdXT—)N
P.x T — R+ U{0}

and

Pd—>N
P, - RTU{0}

Figure 1: Firing of a continuous transition.

transitiont; € T, is strongly enabled at:(7) if for all
placesp € )¢, m,(7) > 0. Then it may fire with an
instantaneous firing spedt~S)v;(7) = V;. A transition
t; € T, is weakly enabled ai(7) if for somep € (¢,
mg(7) = 0. Thus its IFS may result;(7) < V; because
it cannot remove more fluid from plagehan the quantity
entered inp by other transitions. Moreover if € T, is
not enabled atn, () thenv;(7) = 0.

We can now define the macro—behavior of a net. A
macro—evenbccurs when: (a) either a discrete transi-
tion fires, thus changing the discrete marking and en-
abling/disabling a continuous transition; (b) or a contin-
uous place becomes empty, thus changing the enabling
state of a continuous transition from strong to weak. Let
7, and 7,1 be the occurrence in time of consecutive
macro—events; the interval of tim#, [Ty Thot1)
is called amacro—period We will assume that the IFS
of continuous transitions are piecewise constant during
a macro—period. Thus the discrete marking and the IFS
vector during a macro—period defineveacro—statehat
correspond to thavariant behavior stateef [2]. These
settings are illustrated in the example below.

Example 1. Transitionst; andi, in Figure 1 have asso-
ciated MFSs/; andV,. We assumé’; - a < V5 - b and
my(0) = I, > 0. As long asp is not empty transitions
t1 andt; fire at their maximum speed, thatig(7) = V4
andwvy(7) = V2. The marking ob is given by:

TP(O) =1
T =v-b—vy-a
At time 7, = Ly t, cannot fire at its maximum

vorb—wy-a’

speed becausgeis empty. Hence for > 7. transition
to is weakly enabled with IF8,(7) = Vi - £. The event
“placep becomes empty” at time, has modified the evo-
lution of the system changing the IFS of the continuous
transitions. n

Let v;(7) be the IFS of each transition € T.. We
can write the equation which governs the evolution in
time of the marking of a place € P, as

dmy(7)
dr

=Y Clp,t) - vi(7)

t; €T,

1)

Indeed Equation 1 holds assuming that at timeo dis-
crete transition is fired and that all speeg§r) are con-
tinuous inT. The evolution in time of the marking of a
placep € P, is governed by the common enabling and
firing rules defined in [1].



We now describe the dynamics of an HSPN by set-
ting up a linear discrete—time state variable model. Let
7o be the initial time 7, (£ > 0) be the instants in which
macro—events occu¥;(7y;) be the IFS vector during the
macro—periodA; and o (i) the firing count vector at
time 7. Then the continuous behavior of an HSPN can
be described during a macro—periag by

{

wherer € [r, Tk+1), While its discrete behavior at the
occurrence of macro—events is described by

{

3 Description of the FMS Model

Hybrid Petri nets allows us to model manufacturing sys-
tems with first—order fluid approximations. Indeed fluid
models are well studied and documented in the literature,
and the readers are referred to Chen and Mandelbaum [9]
for references on thituid approximation theorySpecifi-
cally we consider an FMS consisting of a sehdfingle—
server stations among which a certain class of continuous
flows (fluid) is circulated and processed. A more gen-
eral FMS configuration with different classes of products
flowing through has been deeply studied by Balduzzi and
Menga in [3] by using first and second order fluid approx-
imations.

Stations are denoted Wy/;, fori = 1,...,n, and
are represented in the HSPN as continuous transitions
ty, € T. which firing corresponds to a continuous pro-
duction at ratevy, (1) when the input bufferB; is not
empty. Working stations (generically called services)
are represented within the FMS configuration by unre-
liable machines coupled with input buffers of finite ca-
pacity. Each machine has its own input buffer to accom-
modate the inflow of parts. Since machines are unre-
liable we may consider randomly occurring failures as
operation—dependent or time—dependent (readers are re-
ferred to Buzacott [5]). An operation—dependent failure
can occur only when the machine is working at a given
production rate and as suggested in [5] this model is more
appropriate than the equivalent time—dependent model
when dealing with manufacturing systems. However if
we are interested in evaluating performance measures as-
suming time—dependent failures, each service can be ap-
propriately modelled as an HSPN. The considered control
scheme is shown in Figure 2. This is the same model pre-
sented in [2] for a an unreliable machine producing at a
constant raté’,, .

Transitiont ;, models the production of machiné;
at a rate given by its IF%,;,. The maximum machine
production rate is defined by its MFg,;,. Continuous
firing of transitiont,,, corresponds to a continuous pro-
duction at rate;;, < Vs, when the input buffepg ; is
not empty. Obviously the machine will keep on produc-
ing only if it is operationa) that is the place.,, ; (Ma-
chine Up is marked. When the machine breaks down,
independently on the production volume currently pro-
cessedp,, ; is not marked an@gq,.n,; is marked, hence
ts, is not enabled, then not fired.

me(r)
mé(r)

= mfc(Tk) +Ce - V(Tk) ) (T - Tk‘)
= md(’Tk)

)

mc(mx) =mc(r, )+ Cea-o(Th)
mi(ri) =m(r, ) + Caa - o(71)

®3)

Figure 2:Time—Dependeritilures model.

Figure 3:Operation—Dependeridilures model.

On the other hand assuming operation—dependent
failures we model each service as shown in Figure 3.
Continuous placegr,; andpr; hold fluids represented
by the production volumey; that will be processed by
the machineM; before breaking. This value can be ei-
ther deterministic or obtained as a sample drown from
an i.i.d random variable. Machin&/; breaks down af-
ter processing the fluid quantity; at a production rate
defined by the IFS of transitioty,. At that time the
continuous placer; will be filled up by the fluid vol-
umew;, thus enabling the immediate transititg.,, ;.
Firing of transitiont 4,,,,, ; COnsists in taking out the vol-
umew; from pr; and adding token to the discrete place
Pdown,i» Which is representing the condition bfachine
Down for this service. Hence thiailure event occurred
at machinelM/; has made a change on the state of this ser-
vice and, as a consequence, the IFS of transitignwill
bewvy, = 0. Then the machine will be under repairing
as long as the repair event does occur. That is, after the
interval of timeﬁ, representing the delay after which
the discrete transitionR7i will be fired, the service gets
repaired and placg,,, ; will be marked, thus represent-
ing the condition oMMachine Upfor this service. At the
same time the immediate transitioy), ; is enabled and it
can get fired providing aimpulsive signato the contin-
uous placer ; which will then filled up by the fluid vol-
umew;. Animpulsive signal is here informally employed
to provide continuous places with initial conditions, thus
representing the loading of reservoirs of fluid, i.e. place
Dr,i, at the production volume that will be processed by
the machine before the next failure. This model high-
lights the transformation of fluids into discrete tokens and



Figure 4: The output model of a machine.

Figure 5: The model of a finite buffer.

vice versa through discrete transitions.

In Figure 4 we have depicted the output model of a
machine. Parts move generically from statibf to the
input bufferB; of machineM/; according to their produc-
tion cycle. Continuous plagey;s, acts as a dispatcher of
capacity equal t® for the flow of parts at the output of
each machine. Lety, p,(7) by the outflow rate of parts
moving from machinel/; to B;. Then this structure al-
lows us to model the routing of parts within the net en-
suring thatZtMi‘BETC vn,, B, (T) < wag, (1), form > 0.
Note that we do not need to bound the IFS of the outflow
continuous transitions,, z,. Along their route, parts
are queued in buffers, one for each machine, which are
represented in the HSPN by continuous plaggse P.
with bounded capacity;. This condition is represented
by the co-buffeps. such thatmz (0) = ¢;, as shown in
Figure 5.

We denote withe = [c1, ..., c,|T the buffer capacity
vector and, assuming operation—dependent failures (read-
ers are referred to Figure 3), we define for each machine
the Production Volume Before Breakindenoted byw;,
and theRepairing Time denoted byd; = 1., both
assumed as independent identically distributed random
variables. Machine service times are indicated wijth
and are also assumed independent random variables with
identical distribution. Hence the MFS of the continuous
transitions are defined a5, = F(tu,) = ++

4 Macro-behavior of the FMS

Eln:]”
The evolution in time of the first—order fluid approxima-
tion of an FMS modelled with hybrid stochastic Petri nets
is driven by the occurrence of a limited number of events
(machine starvation, blockage, breakdown and repair)
that in our framework are calledacro—eventsThen the

FMS evolves through a sequence of macro—states, char-
acterized by the functional status of the physical compo-
nents of all services: the machinegperationalor down
and the buffersfull, not full-not empty, empty

In this paper we considéinear fluid models assum-
ing that input and output processes corresponding to the
inflow and outflow of parts at each machine are linear
functions of time. Letr, for k = 1,2,..., be points
in time corresponding to the occurrence of the macro—
events, and;(7) the IFS of transitiort; € T, during
the macro—period\;. For each placep, € P. the total
inflow and outflow rate of fluids is

¢i,in(7—k) = Eh UM, ,B; (Tk)

Qsi,out(Tk) = Um; = Zh UM,;,By, (Tk)

with the notation of Figures 4 and 5.

The macro—state of the system does change when-
ever discrete transitions fire and(or) continuous transi-
tions have been modified their enabling conditions as a
consequence of certain macro—events occurred at their
input places. We denote the set of macro—events by
¢ = {F,, R;, BE;, BF;} which elements are defined
as follows:

o F; (Failure of machineM;). After a machine is re-
paired, failures will occur after the production volume
Wi

¢ R; (Repair of machiné\/;). When a machine fails, it
will be repaired afterl; time units.

e BF; (Buffer Full at machineM;). The buffer level
reaches its capacity while ¢; ;,,(7) > ¢; out (7).

e BE; (Buffer Empty at machin@/;). The buffer level
reaches) while ¢; ;n(7) < @i out (7).

The macro—event se&t has been defined with regard to
the physicalevents which usually do occur in an FMS. In
the HSPN framework those macro—events correspond to
the firing of immediate transitions and to the adjustments
made on the speeds of continuous transitions.

Following the above notation, we can characterize the
admissible macro-states as follow:

e Machine Operational Machine M; reaches this
macro-state at the occurrence of macro—evBatsnd
then leaves at the occurrence of macro—evEnts

e Machine BrokenMachinel; reaches this macro—state
at the occurrence of macro—eveht{sand then leaves it
at the occurrence of macro—eves The IFSv;(7)
goes to 0 because transitioy, is disabled.

e Buffer Full. Macro—state reached at the occurrence of
macro—event8F;. Services leave it at the occurrence
of any macro—event which will result in the condition

(bi,in (T) S qbi,out (T) .

e Buffer Empty Macro—state reached at the occurrence
of macro—eventBE;. Services leave it at the occur-
rence of any macro—event which will result in the con-

dition ¢ in (7) > i 0ut (7).



e Buffer not-Full not-Empty In any other macro—state
reached at the occurrence of exogenous macro—events
services will be considered operating under the heavy
traffic conditions.

5 Firing speed and dynamics of an HSPN

The computation of an admissible IFS vector of contin-
uous and hybrid nets is not trivial. In [6] an iterative al-
gorithm was given to determine one admissible vector;
the algorithm aims at maximizing speeds while respect-
ing priority rules. We propose a different approach, in
which we use linear inequalities to define the set of all
admissible firing speed vecto& Each vectov € S
represents a particular mode of operation of the system
described by the net, and among all possible modes of
operation, the system operator may choose the best ac-
cording to a given objective. There are several advantages
in our approach.

e We can explicitly define the set of all admissible IFS
vectors in a given macro-state and not just compute a
particular vector.

We consider more general scheduling rules than pri-
orities. In general in an FMS we may want to: max-
imize machines utilization, maximize the throughput
of the system, balance the load, etc. Each of these
problems corresponds to a particular objective func-
tion. Note that each sef corresponds to a particu-
lar system macro-state. Thus, our optimization scheme
can only bemyopic[3], in the sense that it generates a
piecewise optimal solution, i.e., a solution that is opti-
mal only in a macro—period .

We compute a particular (optimal) IFS vector solving

a linear programming problem (LPP), rather than by
means of an iterative algorithm, whose convergence
properties may not be good.

Linear programming leads to sensitivity analysis,
which plays an essential role in performance evaluation
and optimization. In fact, we may be able to compute
analytically the objective function improvement due to
a parameter variation.

5.1 Admissible IFS vectors and conflicts

Definition 2 (admissible IFS vectors). Let N be an
HSPN, withn. continuous transitions, incidence matrix
C, and current markingn. LetTe(m) C T, (Tx(m) C

T.) be the subset of continuous transitions enabled (not
enabled) atn, while Ps = {p € P. | m,, = 0} is the
subset of continuous places that are empty. Admnissi-

ble IFS vectow = [vy, - -- v, |7 atm is a feasible solu-
tion of the following linear set:

(@) Vi—v;=0 Vt; € Te(m)
(b) v; =0 Vt; € Te(m)
(¢) v =0 Vt; € T (m)
(d) >ier. Cp,tj) - v; 20 Vp€ Pe(m)

(4)
Thus the total number of constraints that define this set is
2card{Tg(m)} + card{Tx(m)} + card{ P:(m)}. The
set of all feasible solutions is denot8dN, m). |

Figure 6: A hybrid Petri net model of a re-entrant line.

Figure 7: A continuous place with a conflict.

Constraints of the form (4.a), (4.b), and (4.c) follow
from the enabling rules. Constraints of the form (4.d) fol-
low from (1), because if a place is empty its fluid content
cannot decrease.

Example 3. Let N be the continuous net in Figure 6,
with « € (0, 1), where place is initially empty. Such a
net is representative of a re-entrant production line. Ac-
cording to the previous definition, the s&t/V, m) is de-
fined by the following inequalities:

Vlfl}l ZO
Vo — w9 >0
U1, V2 ZO (5)
vlf(lfa)vg ZO
|

We now want to use the above formalism to define the
concept ofconflictin a net. We will only consider con-
flicts at continuous places, an example of which is shown
in Figure 7. When placg; is not empty, botft,,; ; and
tout,2 Can fire at their MFS. When plage is empty, how-
ever, the output flow,,+ 1 + vous,2 iS bounded by the in-
put flowv;,,, thus in the constraint s&€{ N, m) there will
be a constraint of the form (4.d) relative to plagethat
WIItES Vir, > Uout,1 + Vour,2. THiS CONStraint expresses
the fact that we have a limited amount of resource (the in-
put flow) that must be shared between different processes
(the output transitions). There is no conflict, instead, if
each empty placg € P, has at most one enabled output
transitiont € T... This motivates next definition.

Definition 4 (continuous conflict free). Let N be an
HSPN whose present macro-state is characterized by a
markingm and letS(N, m) be the linear set defined by



(4). Any constraints of the form (4.d) can be written as

Zajvj Z Z AU

JjeJ keK

(6)

with J N K = ¢ anda;, a, € RT U {0}.

We say thatV is continuous conflict freCCF) at
m if for all constraints of the form (4.d) rewritten as (6)
holds card K} < 1. [ |

In the rest of this section, we discuss the relationship
between conflict resolution (i.e., the computation of tran-
sition IFS) and performance optimization.

5.2 Conflict free firing speed computation

If we set our goal to maximize the transition firing speeds,
it is possible to show that in a continuous conflict free
HSPN each IFS may be maximized independently.
Theorem 5. Let N be a HSPN andn be its present
marking. If N is CCF atm, the optimal solutionv* of
the following LPP

17 . v
v eS(N,m)

max
s.t.

is such thav'v € S(N, m), v < v* (componentwise).

Proof. Let & be the (componentwise)ax operator, i.e.,
way = (w; ®y;), = (max{w;,y;}),. Itis sufficient to
prove that if the net is CCF, thew,y € S(N,m) =
wdy € S(N,m).

Clearly, if w andy satisfy (4), therw &y will satisfy
all constraints of the form (4.a), (4.b), and (4.c). Under
the hypothesis of conflict freeness, we can write any con-
straint of the form (4.d) associated to a placas:

1.3 ;c5@jv; = 0if no enabled transition outputs from
placep;

2. ZJEJ QU > QoutUout If tout IS the only enabled tran-
sition outputting from place.

with o, dout, v, Vour € RT U {0}.
In the first case we have that:

2jes @ (wj ®y;) = (ZjeJ Oéjwj) @ (ZjeJ %’yj)
>0®0=0

while in the second case we have

djes (W &y;) > (ZjeJ Oéjwj) ® (Zje] Oéjyj)

> (Oloutwout) 2 (aoutyout) = Qout (wout @ yout)

i.e., the vectow @ y satisfies all constraints of the form
(4.d) as well. O

In the case of CCF nets, the optimal solutiohin the
previous theorem coincides with the solution computed
with the priority algorithm in [6]. It may be interesting,
however, to compare the two algorithms via an example.
Example 6. Let us consider again the net in Figure 6
whose set of admissible IFS vectors is given by (5). If
we compute the vectov* solution of (5) that maxi-
mizesJ = wv; + vy we clearly obtainy = V; and
vy = min{1-V;,V,}. This example is so simple that

we can write the solution in closed form; in more com-
plex cases, the solution can still be easily found solving
the associated LPP. If we apply the procedure proposed
in [6], we obtain at the first iteration step = V7, while

to compute the IFS of transition we need to solve the
following iterative problem

08 =0
vt =min(V; +a - vh, Va)
and forV; < (1 — «a)V; the algorithm requires an infinite
number of steps to converge to the correct valye=
1
. |
-«

5.3 Global optimization

When the net is not conflict free, not all firing speed may
be maximized independently. We can always solve the
conflicts, however, by solving an LPP aimed ajlabal
optimizationof the system resources. We may consider
different performance indices as the objective function in
the LP formulation of the problem. We consider some
examples taken from the manufacturing domain.

1) In an FMS, the goal may be to maximize machines uti-
lization. Thus, in a HSPN model we can consider as
optimal the solutiorv* of (4) that maximizes the per-
formance index/ = 17 - v which is of course intended
to maximize the sum over all flow rates.

2) In an FMS, the goal may be to maximize throughput.
Thus, in a HSPN model we may want to maximize the
performance inde¥ = a” - v where

1
a; = 0

3) In an FMS, the problem of thdynamic load balanc-
ing consists in reducing the difference between maxi-
mum and minimum utilization of machines in a given
set. In a HSPN model, the utilization of a transition
t; can be given as the ratio betweeyyV;. Then we
may want to minimize the performance indgx =
maxjex{v;/V;} — min;c g {v;/V;} for a suitable in-
dex setk.

A different optimization procedure is basedglobal
priorities (GP). We assume that the, continuous tran-
sitions of the net are ordered in a priority sequence
t;1 >ty > -+ > t,, . The GP-optimal solutionv* =
[vf,--- v T is such that

Ne

if ¢; is an exogenous transitipn
if ¢; is an endogenous transition

v] =max{v; |v € S(N,m)};
’US :maX{’Ug ‘VES(Nvm)7
U§ :max{v2 ‘vES(N,m)ﬂUl

This solution can be found by solving. LPPs. First we
solve (4) withJ = v; computingv;; then we add to (4)
the constraint, = v} and solve with/ = v,; etc.

Example 7. Consider the net in Figure 8 with; =

Vs = 10, Vo = V3 = V4 = 7. We apply the method
discussed above to obtairr = [10,7,3,3,10]7. Note

that applying the algorithm proposed in [6] we obtain
v = [10,3,7,7,10]7, that is an admissible IFS vector
even though it does not have the same properties of the
GP-optimal solution. |



Figure 8: An HSPN with a non free-choice conflict.

Note that there exist other techniques based on lexico-
graphic ordering [4] that may well be meaningfully used
to compute the GP-optimal solution solving a single LPP
with a suitably modified objective function. This will be
explored in future works.

5.4 Local Optimization

The use of a performance index to be maximized (or min-
imized) over the space of all admissible IFS vectors, cor-
responds to a global optimization procedure. It is of-
ten the case, however, that local rules are used to de-
termine the operating mode of a system described by a
hybrid net. These rules correspond to decisions that can
be taken in a decentralized way. We consider the case of
nets where all conflicts afeee-choicei.e., if a continu-
ous placep has more than one output continuous transi-
tion (e.g.,p® = {t1,to,---t;} with & > 1), then it is
the only continuous input place for all those transitions
(i.e., ©Dt; = {p}, 5 = 1,...,k). The conflict in Fig-
ure 7 is free-choice, while the two conflicts in Figure 8
are not. When the conflicts are not free-choice, the lo-
cal optimization rules described below may not be well
founded.

One particular simple rule that may be used to locally
solve free-choice conflicts, is that of assigninfixad ra-
tio of fluid volume to all enabled continuous transitions
outputting from an empty continuous place. As an exam-
ple, in Figure 7 we may assign a ratig,: 1 = s - Vout,2-
This new constraint can be added to theSet even bet-
ter, by substitution we can reduce by one the number of
variables in (4).

We can also consider the caseladal priority rules
by suitable modification of the linear set (4). Assume
that in Figure 7 a legal solution is such that, ; has
priority overt,,. 2, i.e., all fluid entering the place should
be consumed bY,,:1 and only if veus,1 = Vour,1 the
remaining fluid should be consumed ty,; ». This can
be done adding the following constraints:

M-z Z Vout,l — Vout,1
Vout,g < M - (1 —x)

wherez € {0,1}, M € R with M >> 0. Thus if
Vout,1 < Vour,1 it TOIIOWS vy 2 = 0. The problem with
this technique is that a simple LPP is transformed into a
more complex mixed integer-linear problem.

6 Conclusions

We have used hybrid stochastic Petri nets as fluid mod-
els for flexible manufacturing systems. Assuming that

the instantaneous firing speeds of continuous transitions
are piecewise constant, we have shown that the set of all
possible behaviors of the net during a macro—state can
be represented by the convex set defined by a system
of linear inequalities. The computation of the instanta-
neous firing speed — and the associated problem of con-
flict resolution — can be seen as the net counterpart of a
performance optimization with global or local objective
functions. Future work will explore the use of linear pro-
gramming sensitivity analysis for parameter optimization
of systems described by hybrid stochastic Petri nets.
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