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Abstract

Recent results in the literature have provided an efficient control synthesis technique for the
problem of enforcing generalized mutual exclusion constraints on place/transition nets. With this
technique both the plant and the controller are described by Petri nets in order to have an useful
linear algebrique model for control analysis and synthesis. The synthesis is not computation
demanding since it involves only matrix multiplications. Moreover the method has been shown
to be maximally permissive in the case of controllable specifications, otherwise the controller may
be suboptimal and its structure may not be unique. This paper investigates on and provides an
algorithm to compute these control structures and two criteria of suboptimality.

1 INTRODUCTION

Let us consider a PN system 〈N, µ0〉 with m places, whose set of reachable markings is R(N, µ0) ⊆
Nm. Assume we are given a set of legal markings L ⊆ Nm, and consider the basic con-
trol problem of designing a supervisor that restricts the reachability set of plant in closed
loop to L ∩ R(N, µ0). This is possible if and only if L is controllable (and reachable). If
L is not controllable, we can consider the class of controllable subsets of L, i.e., the class
Ω(L) = {K ⊆ L | K is controllable}. The class Ω(L) is not empty and closed under union, if the
non-concurrency hypothesis holds, hence it admits a unique supremal element with respect to
set inclusion. The element L↑ = supΩ(L), called supremal controllable subset , is the “optimal”
solution to this control problem.

Of particular interest are those PN state-based control problem where the set of legal markings
L is expressed by a set of nc linear inequality constraints called Generalized Mutual Exclusion
Constraint (GMEC). In this case we write L = M(L, k) ≡ {µ ∈ Nm | Lµ ≤ k} to denote
that L is expressed by the GMEC (L, k) with L ∈ Znc×m, k ∈ Znc . Problems of this kind
have been considered by several authors [2, 7, 5]. This special structure of the legal set has
the advantage that if L is controllable then the supervisor for this class of problems takes the
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form of as many places, called monitors, as there are constraints. Thus if the matrix L has
nc rows, the supervisor will consist of nc monitor places, each of which has arcs going to and
coming from some transitions of the plant net. This control structure can be easily analyzed
and implemented.

Let us assume, however, that L is uncontrollable. The counterpart on the controller structure is
that one of the monitors associated to this GMEC has arcs going to uncontrollable transitions,
i.e., it may be blocking an uncontrollable transition. Following the general approach outlined
above, we have to compute the set L↑, but unfortunately, as shown by Giua et al. [2], it may well
be the case that this set cannot be expressed by a set of linear inequalities, i.e., the corresponding
supervisor does not have a monitor-based structure. Li and Wonham [5] showed that if the plant
net belongs to the special class of TS2 nets then L↑ is guaranteed to be expressed by a set of nc

linear inequalities. Giua et al. [2] showed that if the plant net is safe then L↑ is guaranteed to
be expressed by a set of n′c linear inequalities, where n′c, however, may be very large (it may be
of the same order of the cardinality of the reachability set).

This problem motivated Moody et al. [6, 7] to consider as acceptable a further restriction of the
reachability set. Given an uncontrollable legal marking set L epressed by nc constraints, one
may define the set Ωnc(L) = {K ⊆ L | K is controllable,∃L′ ∈ Znc×m, k′ ∈ Znc : K = M(L′, k′)}
of controllable and expressed by a set of nc linear inequalities subsets of L. In [6] a procedure
was also given that leads to compute an element K ∈ Ωnc(L), i.e., to compute a constraint
(L′, k′) with L′ ∈ Znc×m, and its corresponding monitor structure, such that K = M(L′, k′).
We note that in this approach one restricts the reachability set of the plant in closed loop to be
within K ⊂ L↑, i.e., one may prevent the closed loop system from reaching some perfectly legal
marking. One gains, however, in simplicity because the controller takes a simple structure of nc

monitors.

In [1] it has been shown formally show that the class Ωnc(L) is not empty and not closed under
union. Hence a supremal element exists but it is not necessarily unique.

In this paper we further pursue the investigation along these lines and present the following
results.

• We give an algorithm to construct a parameterization of all monitors corresponding to
supremal elements of Ωnc(L). This parameterization takes the form of a unique control
net incidence matrix that depends on the value of the parameters subject to a linear
equations system.

• We discuss a performance measures to choose among these supremal elements. In fact,
since the elements of Ωnc(L) cannot be ordered by subset inclusions, the ⊆ criterion of
optimality is meaningless. We consider instead the cardinality of the reachability set
allowed by each monitor. An heuristic criterion, based on transition firings, is also given.
We will show that in many cases these criteria give similar results.

2 BACKGROUND

A place/transition (P/T) net is a structure N = (P, T, I, O) where: P is a set of m places
represented by circles; T is a set of n transitions represented by bar; P ∩ T = ∅, P ∪ T 6= ∅;
I : P × T → N is the input function that specifies the arcs directed from places to transitions,
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with N is the set of non-negative integers; O : P × T → N is the output function that specifies
the arcs directed from transitons to places. The preset and postset of a place are respectively:
•p = {t ∈ T | O(p, t) > 0} and p• = {t ∈ T | I(p, t) > 0}.
A marking is a m× 1 vector µ : P → N that assigns to each place of a P/T net a non-negative
integer number of tokens, represented by black dots. A transition t ∈ T is enabled at a marking
µ iff µ ≥ I(·, t). If t is enabled, then t may fire yielding a new marking µ′. The notation µ[t > µ′

will denote that an enabled transition t may fire at µ yielding µ′. Nm will denote the set of all
possible markings that may defined on the net. A firing sequence from µ0 is a (possibly empty)
sequence of transitions σ = t1...tk such that µ0[t1 > µ1[t2 > µ2..[tk > µk. A P/T system or
net system < N, µ0 > is a P/T net N with an initial marking µ0. A marking µ is reachable in
< N, µ0 > iff there exists a firing sequence σ such that µ0[σ > µ. Given a net system < N, µ0 >

the set of reachable markings (also called reachability set of the net) is denoted R(N, µ0). If a
marking µ is reachable in < N, µ0 > by firing a sequence σ, then the following state equation is
satisfied

µ = µ0 + Dσ (1)

where D = O − I is the m × n incidence matrix of the net N and σ : T → N is a n × 1 vector
called firing-vector of the net. σ(t) represents the number of times that a transition t appears
in σ. The set of markings µ such that there exists an integer vector σ ≥ 0 satisfying the
previous state equation is called potentially reachable set and is denoted PR(N, µ0). Note that
PR(N, µ0) ⊇ R(N, µ0). For special classes of nets such as acyclic nets PR(N, µ0) = R(N, µ0).

A single generalized mutual exclusion constraint (GMEC) is a couple (l, k) where l : P → Z
is a 1 × m weight vector and k ∈ N. The support of l is the set Ql = {p ∈ P | l(p) 6= 0}.
Given the net system < N, µ0 >, a GMEC defines a set of markings that will be called legal
markings: M(l, k) = {µ ∈ Nm | lµ ≤ k}. The markings that are not legal are called forbidden
markings. A set of GMEC (L, k), with L = [l1, l2, ...lnc ]T and k = [k1, k2, ...knc ]T , will define the
legal markings set M(L, k) = {µ ∈ Nm | Lµ ≤ k}. A controlling agent, called supervisor, must
ensure the forbidden markings will be not reached. So the set of legal markings under control
is Mc(L, k) = M(L, k) ∩R(N, µ0).
The set of the transitions T of a net N is now assumed to be partitioned into two disjoints
subsets: Tu the set of the uncontrollable transitions and Tc the set of controllable transitions. The
occurrence of a controllable transition may be disabled, while the occurrence of an uncontrollable
transition cannot be disabled. In this case it is useful to consider the net Nu obtained from the
net N eliminating the uncontrollable transitions, whose incidence matrix is denoted by Duc.

GMEC forcing of controllable specifications

We say that a set L ⊆ Nm of legal markings is controllable with respect to a PN system 〈N, µ0〉
with uncontrollable subnet Nu if

⋃
µ∈L∩R(N,µ0) R(Nu, µ) ⊆ L. If L is controllable, it has been

shown [7] that the Petri net controller that enforces (L, k) has the incidence matrix Dc ∈ Znc×n

given by

Dc = −LDp (2)
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and the initial marking of the controller µc0 ∈ Nnc is given by

µc0 = k − Lµp0 (3)

where µp0 ∈ Nm is the initial marking of the plant. The controller exists iff the initial marking
is a legal marking, i.e.

k− L¯p0 ≥ 0 (4)

The controller so constructed is maximally permissive, i.e. it prevents only transitions firings
that yield forbidden markings. The control net has nc places (one for each constraint). Each
place of the control net it is called monitor place.

GMEC forcing of uncontrollable specifications

Because of the occurrence of an uncontrollable transition tu enabled at a certain legal marking
¯, a forbidden marking ¯′ may be reached, so it is necessary avoid also the set of markings
Mfu(L,k) = {¯ ∈ Nm | ¯[œ > ¯′, ¯′ 6∈ M(L,k),œ ∈ T ∗u}. So in presence of uncontrollable
transition the set of legal markings under control will be Mc(L,k) = (M(L,k) ∩ R(N,¯0)) \
Mfu(L,k). Given a set X, | X | will denote its cardinality. As a result of the presence of
uncontrollable transition it is | Mc(L,k) |≤| M(L,k) |, i.e. the cardinality of the set of legal
markings is decreased.
The potentially reachable marking set of the plant from a marking ¯ by firing only uncontrollable
transition is

PRu(N,¯) = {¯′ ∈ Nm | ¯′ = ¯ + Ducœu,œu ≥ 0}
where Duc ∈ Zm×nuc is the incidence matrix of the net Nuc. If there exists a marking ¯′ ∈
PRu(N,¯) that is not legal then ¯ is a potentially forbidden marking. The set of potentially
forbidden markings because of firing only uncontrollable transitions is

Pfu(L,k) = {¯p ∈ Nm | ∃œu ≥ 0, L¯p + LDucœu > k}

Note that Pfu ⊇ Mfu. If the net system is acyclic then Pfu = Mfu. It may be checked if a
marking µp belongs to Pfu by the predicate

L¯p + LDucœ∗
u ≤ k

where œ∗
u is the solution of the ILP ∀¯p ≥ 0

maxσu LDucœu

s.t.

{
œu ≥ 0

Ducœu ≥ −¯p

(5)

The solution œ∗
u of the above ILP is not in general a linear function of ¯p. So the set of markings

that we enforce by monitor places is the subset M′
c ⊆Mc. In addition it is possible to prove [2]

that there may not exist a GMEC such that only the markings in the set Mc are allowed. In
this case a monitor-based solution will be suboptimal. In presence of uncontrollable transitions
we have to satisfy the GMEC:

LDuc ≤ 0 (6)
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Owing to (2), if (6) is not satisfied, the elements of the incidence matrix of the Petri net controller
Dc related to arcs between a monitor-place and an uncontrollable transition may be positive,
while an uncontrollable transition cannot be disabled. It is possible [6] to transform (L,k) in
order to include (6).

Proposition 1 (Moody, et al. [6]) If we are able to find R1 and R2 satisfying

R1 ∈ Znc×m, R1¯p ≥ 0, ∀¯p (7)

R2 ∈ Nnc×nc positive definite, diagonal matrix (8)

and

[R1 R2 ]

[
Duc ¯p0

LDuc L¯p0 − k− 1

]
(9)

≤ [Om×nuc −1 ]

with 1 nc × 1 vector of 1’s, then the controller computed as

Dc = −L′Dp (10)

¯c0 = k′ − L′ ¯p0 (11)

where
L′ = R1 + R2L (12)

k′ = R2(k + 1)− 1. (13)

will be able to ensure that the closed loop net system meet L¯p ≤ k, (6) and

0 ≤ (R1¯p0) ≤ R2(k + 1− L¯p0)− 1. (14)

i.e. that the initial marking is a legal marking.

3 AN ALGORITHM FOR THE CONSTRAINT TRANSFORMATION

It is possible to find R1 and R2 by matrix row operations working on the table of integers
[

Duc I O

N R1 R2

]
(15)

so that the positive elements in the LDuc portion of the matrix M become not positive. The
aim of the constraint transformation, that will be shown, is to make zero the positive elements
in LDuc. If the net Nuc is cyclic the following algorithm may have a loop.

Algorithm 1 Constraint transformation matrixes computation.

begin
R1 := Onc×m;
R2 := Inc×nc;
if not(LDuc ≤ 0) then

begin
x := 0;
N := LDuc;
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Consider the following (m + nc)× (nuc + m + nc)
table of integers:[

Duc I O

N R1 R2

]
;

repeat
begin
Let Bs be the set of row indexes of negative
elements in Duc(., s) and bs its cardinality;
Choose N(r, s) > 0 such that bs ≤ bt, ∀t ∈ {0..nc};
if bs ≥ 1 then

begin
x := x + 1;
(* x is the algorithm step counter *)
C(x, 1..muc) = 01×muc;
A(1..muc, x) = 0muc×1;
Let β be the least common multiplier (l.c.m.)
between Duc(i, s) for i ∈ Bs and N(r, s);
N(r, .) := β N(r, .);
R1 := βR1;
R2 := βR2;
∀i ∈ Bs, C(x, i) = β/Duc(i, r),
A(i, x) = αx,i;
b(x) = −N(r, s);
(* The linear equations system CA = b
that depends on αx,i ensures that
∑

i∈Bs
αl,iβ/Duc(i, r) = −N(r, s),

l = [1..x] are satisfied *)
N(r, .) := N(r, .) +

∑
i∈Bs

αx,iN(i, .);
R1(r, .) := R1(r, .) +

∑
i∈Bs

αx,iI(i, .);
end

else
Constraint transformation is infeasible;

end
until N ≤ 0
end

end.

The solutions of the above algorithm can be represented in the following compact form, giving
a set of solutions to (9):

Dc = −L′Dp, L′ = R1 + R2L

R1 = [
∑x

i=1 αi,1 0 .. 0
∑x

i=1 αi,l .. 0 ]

R2 ∈ Nnc×nc nonsingular, diag.

s.t.CA = b
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Figure 1: System in example 1.

where x is the number of steps of the algorithm, the nonzero elements of R1 are those related
to the muc places of the net Nuc, C ∈ Nx×muc , A ∈ Nmuc×x, b ∈ Nnc .
A transformed constraint can be enforced iff

(R1 + R2L)¯p0 ≤ R2(k + 1)− 1 (16)

If an element of LDuc is positive, the monitor based control net will have an output arc to
the corresponding uncontrollable transition, because Dc = −LDuc. The aim of the constraint
transformation is to move up to controllable transitions this arc, with the effect of including in
the transformed constraint equation the places present in the path that connects the controllable
transitions and the uncontrollable one.

The algorithm 1 is based on choosing as pivot the negative elements of the columns of Duc in
order to make zero the positive elements of LDuc. Each negative element in a column of Duc

represents an input place of the uncontrollable transition related to this column. Because we
have to choose a pivot for each column, it is possible to make as many choices as there are
negative elements in each column. The effect of this choice is to add in the constraint equation
the place related to this matrix element and to transform the arc of the control net directed to
the uncontrollable transition into an arc connected to an input transition of this place.

Because in the algorithm shown the matrix row operations implemented are addition and multi-
plication by positive numbers the family of matrixes R1(α1,1, .., αx,muc) and R2 obtained meet (7)
and (8), where muc is the number of places of the Nuc net. Once that it has been chosen the
control structure, i.e. a certain solution α∗1,1, .., α

∗
x,muc

of the x + nc constraint equations sys-
tem, the tranformed constraint can be computed as in (12), (13). If the rows of the matrix
[ R1(α∗1,1, .., α

∗
x,muc

) R2 ] have a maximum common divider (m.c.d.) different from 1, it is
useful to divide each row by its m.c.d. in order to simplify the implementation of the controller.

From each one of the constraint transformation a different control structure may be obtained
by (10) and (11). Two of these control structures will be equivalent if these places have the
same input transition.
Example 1 The incidence matrix of the net in Fig. 1 is

Dp =




−1 1 1 0 0
0 −2 0 1 0
0 −1 −1 0 1
2 1 0 −1 0
1 0 0 0 −1




The initial marking is ¯p0 = [ 0 0 0 a1 a2 ]. If the control goal is µ1 ≤ b, i.e. L =
[ 1 0 0 0 0 ] , k = b we have that

[
Duc I O

N R1 R2

]
=

7



=




1 1 1 0 0 0 0 0
−2 0 0 1 0 0 0 0
−1 −1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1




By algorithm 1, if we choose to start making zero N(1, 2) we have that B2 = {3} and it follows
that R1 = [ 0 0 1 0 0 ], R2 = [ 1 ]. The unique controller structures is:

L′ = [ 1 0 1 0 0 ] , k′ = k

Dc = −L′Dp = [ 1 0 0 0 −1 ]

µc0 = k′ − L′ ¯p0 = b

If we had started making zero the positive element N(1, 1) that has not the minimum number of
negative elements in its column, we have obtained B1 = {2, 3} and the l.c.m. beetween N(1, 1)
and Duc(i, 1) for i ∈ B1 is 2 and so the first constraint equation is 2α1,2 + α1,3 = 2. At this step
of algorithm 1 we have:

[
Duc I O

N R1 R2

]
=

=




1 1 1 0 0 0 0 0
−2 0 0 1 0 0 0 0
−1 −1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 2− α1,3 0 α1,2 α1,3 0 0 2




To make zero N(1, 2) we have that B2 = {3} and it follows that the second constraint equation
is α2,3 = 1− α1,3. The constraint transformation problem solutions are

R1 = [ 0 α1,2 α1,3 + α2,3 0 0 ]

R2 = [ 2 ]

s.t.

{
2α1,2 + α1,3 = 2
α2,3 = 2− α1,3

The initial condition check (16) is 0 ≤ 2(b + 1)− 1, i.e. it is always satisfied. The two solutions
of the constraint equation system are (α1,2, α1,3, α2,3) = (1, 0, 2) and (α1,2, α1,3, α2,3) = (0, 2, 0)
and the relative controller structures are:

L′1 = [ 2 1 2 0 0 ] , k′1 = 2(b + 1)− 1

Dc1 = −L′1Dp = [ 2 0 0 −1 −2 ]

µc01 = k′1 − L′1¯p0 = k′1
L′2 = [ 1 0 1 0 0 ] , k′2 = k

Dc2 = −L′2Dp = [ 1 0 0 0 −1 ]

µc0 = k′2 − L′2¯p0 = b
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Figure 2: System in example 2.

Note that L′2 ≤ L′1, k2 ≤ k1, i.e. the first solution isn’t minimal: this is why we have to start
the algorithm from the positive element of N(r, s) such that bs is minimum.

4 SUBOPTIMALITY CRITERIA

Every solution (α∗1,1, .., α
∗
x,muc

) of the previous algorithm is suboptimal, i.e. it decreases the
cardinality of Mc more than it is necessary.

If the state space is finite, then a very little efficient method is the direct computation of the
reachability set of each monitor controlled net in order to choose the solution with the larger
reachability set. This computation may be computation demanding for complex nets, so the
cardinality of reachabilty set is not an efficient suboptimality index.
On the other hand an heuristic measure can be introduced, that in the next examples will be
shown to give similar results to the previous criterion. Because each transition firing implies a
marking update, a different criterion is to compute in the closed loop net the maximum value
of transition firings allowed by each monitor structure before monitor places become empty and
to choose the monitor structure whose value is greater.
We proceed as follows:
a) we add the monitor structure to the open loop net;
b) we remove the arcs inputing to monitor places;
c) we solve the following ILP problem:

maxœ,¯,¯c

n∑

i=1

σi

s.t.





¯−Dœ = ¯0

¯c −D−
c œ = ¯c0

œ, ¯, ¯c ≥ 0

(17)

with D−
c is the Dc part containing only the arcs from monitor places to transitions;

d) we denote the max value of objective function as C index.
The ILP problem above will have a finite solution only if all the infinite sequence of transitions of
the net contain every transition infinite number of times, so that all the transitions are disabled
when the monitor places are empty.
Example 2
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x y R1 R2 C1 C2 x y R1 R2 C1 C2

3 6 40 10 12 8 6 3 22 19 9 11
3 9 58 10 15 8 9 3 22 28 9 14
3 12 76 10 18 8 12 3 22 37 9 17
3 15 94 10 21 8 15 3 22 46 9 22
4 8 52 13 14 9 8 4 28 25 10 13
4 12 76 13 18 9 12 4 28 37 10 17
4 16 100 13 26 9 16 4 28 49 10 21
4 20 124 13 21 9 20 4 28 61 10 25
5 10 64 16 16 10 10 5 34 31 11 10
5 15 94 16 21 10 15 5 34 46 11 22
5 20 124 16 26 10 20 5 34 61 11 25
5 25 154 16 31 10 25 5 34 76 11 30

Table 1: Cardinality of reachability set and C index varying the initial marking and the control
net for the net in fig. 2

The incidence matrix of the net in Fig. 2 is

Dp =




−1 1 0 0
0 −2 1 0
0 −1 0 1
2 0 −1 0
1 0 0 −1




The initial marking is ¯p0 = [ 0 0 0 x y ]. The control goal is µ1 ≤ 1, i.e. L = [ 1 0 0 0 0 ],
k = 1. The constraint transformation problem solutions are

R1 = [ 0 α1,2 α1,3 0 0 ]

R2 = [ 2 ]

s.t. 2α1,2 + α1,3 = 2

The initial condition check (16) is 0 ≤ 3, i.e. it is always satisfied. The two solutions of the
constraint equation system are (α1,2, α1,3) = (1, 0) and (α1,2, α1,3) = (0, 2) and the relative
controller structures are:

L′1 = [ 2 1 0 0 0 ] , k′1 = 3

Dc1 = −L′1Dp = [ 2 0 −1 0 ]

µc01 = k′1 − L′1¯p0 = 3

L′2 = [ 1 0 1 0 0 ] , k′2 = 1

Dc2 = −L′2Dp = [ 1 0 0 −1 ]

µc02 = k′2 − L′2¯p0 = 1

Solving the system (17) we have that max
∑n

i=1 σi = 6 + y for the net controlled by the first
monitor structure and max

∑n
i=1 σi = 5 + x for the net controlled by the second one. In table 1

are shown for each initial marking the cardinality of reachability set denoted as R and the C
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index for the closed loop net in the case of first control structure (R1, C1) and the second one
(R2, C2). In bold character are denoted the value of the suboptimal structure for each criterion.
Note that the results of two methods are similar and according to the C index if y is greater than
x the first structure is the suboptimal one, otherwise the second structure is the suboptimal one.
This is not true only for small value of x and y.
Example 3
The incidence matrix of the net in Fig. 3 is

Dp =




−1 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 −1 0 1
1 0 0 0 −1
1 0 0 −1 0




The initial marking is ¯p0 = [ 0 0 0 0 x y ]. The control goal is µ1 ≤ 1, i.e. L =
[ 1 0 0 0 0 0 ], k = 1. The two controller structures are:

L′1 = [ 1 1 0 1 0 0 ] , k′1 = 1

Dc1 = −L′1Dp = [ 1 0 0 0 −1 ]

µc01 = k′1 − L′1¯p0 = 1

L′2 = [ 1 0 1 0 0 0 ] , k′2 = 1

Dc2 = −L′2Dp = [ 1 0 0 −1 0 ]

µc02 = k′2 − L′2¯p0 = 1

Solving the system (17) we have that max
∑n

i=1 σi = 5 + y for the net controlled by the first
monitor structure and max

∑n
i=1 σi = 5 + 2x for the net controlled by the second one. In

table 2 are shown for each initial marking in the range (x, y) = [1 : 6; 1 : 6] the cardinality of
reachability set denoted as R and the C index for the closed loop net in the case of first control
structure (R1, C1) and the second one (R2, C2). Note that the results of two methods are similar
and according to the C index if y is greater than x the first structure is the suboptimal one,
otherwise the second structure is the suboptimal one as in the previous example. This is not
true only for small value of x and y. In addition note that for the net controlled by the first
control structure both the indexes of the two criteria are not depending on x and that for the
second net they are not depending on y. Finally note that both the indexes depends on x value
more than from y value.

5 CONCLUSIONS

This paper has presented an algorithm to obtain all monitors forcing a given set of general-
ized mutual exclusion constraints in compact form. It yields a parameterization in form of a
unique incidence matrix depending on the value of parametrs subject to a integer linear equa-
tion system. Because there is not a supremal element in this class of control net structures a
suboptimality criterion based on the cardinality of reachability space state has been proposed.
A less computation demanding heuristic criterion based on transition firings has been also given.
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x y R1 C1 x y R2 C2

1 ≤ 6 1 7 6 1 1 ≤ 6 7 7
1 ≤ 6 2 11 7 2 1 ≤ 6 15 9
1 ≤ 6 3 15 8 3 1 ≤ 6 26 11
1 ≤ 6 4 19 9 4 1 ≤ 6 40 13
1 ≤ 6 5 23 10 5 1 ≤ 6 57 15
1 ≤ 6 6 27 11 6 1 ≤ 6 77 17

Table 2: Cardinality of reachability set and C index varying the initial marking and control net
for the net in fig. 3

Figure 3: System in example 3.
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