
Optimal Speed Allocation and Sensitivity Analysis

of Hybrid Stochastic Petri Nets∗

†Fabio Balduzzi, ‡Alessandro Giua, †Giuseppe Menga
† Dipartimento di Automatica ed Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24 , 10129 Torino, Italy

(balduzzi, menga)@polito.it

‡ Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari

Piazza d’Armi, 09123 Cagliari

giua@diee.unica.it

ABSTRACT

In this paper we present a method for performance evaluation of Hybrid Stochastic Petri Nets
based on sensitivity analysis and parametric linear programming techniques and we show how
this approach can be used for optimization. The problem is addressed by determining an op-
timal firing speed allocation for the continuous transitions obtained by solving a sequence of
linear programming problems aimed at optimizing a certain performance index. The primary
advantage of our approach is that it gives rise to a dynamic firing speeds allocation that is based
on global state information rather than local information. This original formulation allows us
to easily solve conflicts, evaluate performance measures and perform gradient estimation very
efficiently.

1 INTRODUCTION

We consider in this paper Hybrid Stochastic Petri Nets (HSPN), a model in which places and
transitions may be either continuous or discrete. This model, presented in [4], combines the
hybrid framework proposed by Alla and David [2] with the generalized stochastic Petri nets of
Ajmone et al. [1]. The main differences with a similar model presented by Trivedi and Kulkarni
[6] concern the maximum firing speed (MFS) of continuous transitions that we assume to be
constant.

In the HSPN framework a net consists of continuous places holding fluid, discrete places con-
taining a non–negative integer number of tokens, and transitions, either discrete or continuous.
Enabled continuous and discrete transitions may fire according to their firing speeds or time
delays, respectively.
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In a previous work [4] the authors have shown that HSPNs are well suited for modelling au-
tomated manufacturing systems characterized by unreliable machines, buffers of finite capacity
and general service time distributions and routing policies, where the continuous transitions
model the production of the machines. Continuous firing of these transitions corresponds to a
continuous production at rates determined by the current values of their instantaneous firing
speeds (IFS). In [4] the focus was on conflict resolution policies, i.e. on the computation of IFSs,
seen as the decisions that a plant operator must take in order to optimize the process. This can
be done solving a linear programming problem (LPP) of the form maxv {cTv |Av ≤ b, v ≥ 0}
where:

• the set of admissible IFS vectors v can be characterized by the feasible solutions of a
linear constraint set S = {v | Av ≤ b}. The MFSs of continuous transitions appear
in the right–hand side vector b. In the coefficients matrix A appear the arc weights of
continuous transitions, e.g. the fluid routing coefficients, and (eventually) the fixed ratios
that may be imposed among IFSs.

• the different objective functions J = cTv to be maximized can be associated to different
conflict resolution policies.

The constraint set S is a function of the current marking m of the net, because it is characterized
by the marking of the discrete places and by the set of non–empty continuous places, i.e. it
is characterized by the macro–state of the net. This formulation leads to a myopic procedure
which generates a piecewise optimal control policy during each time interval in which the macro–
state remains constant. As the system evolves through a sequence of macro–states upon the
occurrence of the macro–events, the myopic procedure will be called repeatedly.

In this paper we further exploit the linear algebraic formalism underlying this model, to show
that we can naturally apply in the HSPN framework those sensitivity analysis techniques that
pertain to LPPs. The optimal basis approach, i.e. the simplex method, is adopted in this paper
to solve LPPs.

Sensitivity analysis or postoptimal analysis serves as a tool for obtaining information about the
degrees of freedom in the problem. Specifically it refers to the study of how optimal solutions
change according to changes of the given linear program in terms of the coefficients of the matrix,
the right–hand side and the objective function, see for instance [9] and [5]. However even though
these parameters may change, when the perturbations are within a certain range, the current
set of basic variables may remain unchanged. This invariance of the set of basic variables is
a desirable property because it allows one to compute the gradient of the objective function
with respect to these parameters. The maximum range of individual perturbation is called the
allowable range.

The main motivation of this paper is to provide a tool for sensitivity analysis of HSPNs. In
fact in optimizing a performance of an HSPN one needs to compute the sensitivity of the
performance. This is achieved by exploiting some results of parametric linear programming
techniques to make gradient evaluation of the optimal firing speeds of the continuous transition.
The proposed formulation can also be applied to real systems, i.e. manufacturing systems, to
obtain the sensitivity without changing the values of the parameters.
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2 DEFINITION OF HSPNs

We recall the Petri net formalism used in this paper. For a more comprehensive introduction
to place/transition Petri nets see [7], while the common notation and semantics for GSPNs can
be found in [1]. The first approach towards continuous Petri nets was carried out by Alla and
David and then extended to hybrid nets in [2]. The HSPN model we use follows [4].

An HSPN is a structure N = (P, T, Pre, Post,F). The set of places P = Pd ∪ Pc is parti-
tioned into a set of discrete places Pd (represented as circles) and a set of continuous places Pc

(represented as double circles). The set of transitions T = Td ∪ Tc is partitioned into a set of
discrete transitions Td and a set of continuous transitions Tc (represented as double boxes). The
set Td = TI ∪ TD ∪ TE is further partitioned into a set of immediate transitions TI (represented
as bars), a set of deterministic timed transitions TD (represented as black boxes), and a set of
exponentially distributed timed transitions TE (represented as white boxes).

Pre :

{
Pd × T → N
Pc × T → R+ ∪ {0}

and

Post :

{
Pd × T → N
Pc × T → R+ ∪ {0}

are the pre- and post-incidence functions that specify the arcs. We require (well-formed nets)
that for all t ∈ Tc and for all p ∈ Pd, Pre(p, t) = Post(p, t). The function F is defined for
continuous and discrete timed transitions so that F : T \TI → R+. We associate to a continuous
transition ti ∈ Tc its maximum firing speed (MFS) Vi = F(ti). We associate to a deterministic
timed transition ti ∈ TD its (constant) firing delay δi = F(ti). We associate to an exponentially
distributed timed transition ti ∈ TE its average firing rate λi = F(ti), i.e. the average firing
delay is 1

λi
, where λi is the parameter of the corresponding exponential distribution.

We denote the preset (postset) of transition t as •t (t•) and its restriction to continuous or
discrete places as (d)t = •t ∩ Pd or (c)t = •t ∩ Pc. Similar notation may be used for presets and
postsets of places. The incidence matrix of the net is defined as C(p, t) = Post(p, t)−Pre(p, t).
The restriction of C to PX and TY (X, Y ∈ {c, d}) is denoted CXY . Note that by the well-
formedness hypothesis Cdc = 0.

A marking

m :

{
Pd → N
Pc → R+ ∪ {0}

is a function that assigns to each discrete place a non-negative number of tokens, represented
by black dots and assigns to each continuous place a fluid volume; mp denotes the marking of
place p. A discrete transition t is enabled at m if for all p ∈ •t, mp ≥ Pre(p, t). An enabled
discrete transition t fires (after the associated delay) yielding the marking m′ = m + C(·, t).
A continuous transition t is enabled at m if for all p ∈ (d)t, mp ≥ Pre(p, t). Note that the
enabling of a continuous transition does not depend on the marking of its continuous input
places. We distinguish strongly enabled and weakly enabled continuous transitions. A transition
ti ∈ Tc is strongly enabled at m(τ) if for all places p ∈ (c)t, mp(τ) > 0. Then it may fire with
an instantaneous firing speed (IFS) vi(τ) = Vi. A transition ti ∈ Tc is weakly enabled at m(τ)
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Figure 1: The HSPN model of a service (buffer and machine).

at time τ if for some p̄ ∈ (c)t, mp̄(τ) = 0. Thus its IFS may result vi(τ) < Vi because it cannot
remove more fluid from place p̄ than the quantity entered in p̄ by other transitions. Moreover if
ti ∈ Tc is not enabled at mp at time τ then vi(τ) = 0.

We can now define the macro–behavior of a net. A macro–event occurs when: (a) either a
discrete transition fires, thus changing the discrete marking and enabling/disabling a continu-
ous transition; (b) or a continuous place becomes empty, thus changing the enabling state of a
continuous transition from strong to weak. Let τk and τk+1 be the occurrence in time of con-
secutive macro–events; the interval of time ∆k = [τk, τk+1) is called a macro–period. We will
assume that the IFS of continuous transitions are piecewise constant during a macro–period.
Thus the discrete marking and the IFS vector during a macro–period define a macro–state that
correspond to the invariant behavior states of [2].

Let vi(τ) be the IFS of each transition ti ∈ Tc. We can write the equation which governs the
evolution in time of the marking of a place p ∈ Pc as

dmp

dτ
=

∑

ti∈Tc

C(p, ti) · vi(τ) (1)

Indeed Equation (1) holds assuming that at time τ no discrete transition is fired and that all
speeds vi(τ) are continuous in τ . The evolution in time of the marking of a place p ∈ Pd is
governed by the common enabling and firing rules defined in [1].
Example 1. In Figure 1 we have represented the HSPN model of a manufacturing system where
transition t1 models an unreliable machine and transitions t2 and t3 represent the outflows from
buffer p1. A buffer capacity 0 is imposed by the co–buffer place p2. The maximum production
rate of the machine is bounded by the MFS V1, while the maximum outflows rates cannot exceed
V2 and V3 respectively. The discrete part of the net models the failure/repair stochastic process
of the machine by means of exponential transitions t4 and t5 with average firing rates λ4 and λ5

respectively. The machine is operating while place p3 is marked (i.e. transition t1 is enabled)
and it is down when place p4 is marked. ¥

3 FIRING SPEEDS AND DYNAMICS

The computation of an admissible IFS vector of continuous and hybrid nets is not trivial. Our
approach makes use of linear inequalities to define the set of all admissible firing speed vectors
S. Each set S corresponds to a particular system macro-state, hence our optimization scheme
can only be myopic [3], in the sense that it generates a piecewise optimal solution.
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Definition 2 (admissible IFS vectors). Let N be an HSPN, with nc continuous transitions,
incidence matrix C, and current marking m(τ). Let TE(m) ⊂ Tc (TN (m) ⊂ Tc) be the subset
of continuous transitions enabled (not enabled) at m(τ), while PE = {p ∈ Pc | mp = 0} is the
subset of continuous places that are empty. Any admissible IFS vector v(τ) = [v1, · · · , vnc ]T is
a feasible solution of the following linear set:





(a) Vj − vj(τ) ≥ 0 ∀tj ∈ TE(m)
(b) vj(τ) ≥ 0 ∀tj ∈ TE(m)
(c) vj(τ) = 0 ∀tj ∈ TN (m)
(d)

∑
tj∈TE C(p, tj) · vj(τ) ≥ 0 ∀p ∈ PE(m)

(2)

Thus the total number of constraints that define this set is 2card {TE(m)} + card {TN (m)} +
card {PE(m)}. The set of all feasible solutions is denoted S(N,m). ¥
Constraints of the form (2.a), (2.b), and (2.c) follow from the enabling rules. Constraints
of the form (2.d) follow from (1), because if a place is empty its fluid content cannot decrease.
Additional constraints may be added to the linear set (2) to require a fixed ratio among IFSs. As
an example, constraints of the form vi = svj assign a fixed ratio between the IFSs of transitions
ti and tj .

Each vector v ∈ S represents a particular mode of operation of the system described by the
net, and among all possible modes of operation, the system operator may choose the best one
according to a given objective. We have considered in [4] linear objective functions of the form
J = cTv to be maximized. By a suitable choice of the cost vector c it is possible to: maximize
the sum over all flow rates, maximize the throughput of a given set of transitions, assign global
priorities to the transition firings.
Example 3. The constraint set associated to the net shown in Figure 1 from the given marking
is: 




v1 ≤ 5
v2 ≤ 5
v3 ≤ 4
−v1 + v2 + v3 ≤ 0
v1 − v2 − v3 ≤ 0
v1, v2, v3 ≥ 0

(3)

We take as objective function to be maximized J = v2 + v3, representing the overall output
flow. ¥

4 SENSITIVITY ANALYSIS OF HSPNs

The LPP stated in the previous section may be solved taking into account only the constraints
related to enabled transitions since we know that the IFSs of transitions that are not enabled
are 0. Let It = {α1, . . . , αk} be the set of indices of the enabled continuous transitions and
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Ip = {αk+1, . . . , α`} be the set of indices of the empty continuous places. Thus we can write:

max
∑

j∈It
cj vj s.t.




vα1 + s1 = Vα1

. . .

vαk
+ sk = Vαk∑

j∈It
C(pαk+1

, tj) vj − sk+1 = 0
. . .∑

j∈It
C(pα`

, tj) vj − s` = 0
vj , sj ≥ 0

(4)

Defining vector x = [vα1 , . . . , vαk
, s1, . . . , s`]T we obtain the following standard form:

max
x
{cTx |Ax = b, x ≥ 0} (5)

Here x is a vector with ` + k variables, A is the ` × (` + k) constraint matrix and we assume
that A has full rank, c is the (` + k)–vector of the objective coefficients, while b represents the
`–vector of the right–hand side constants.

In this work the simplex method will be used to solve LPPs. This is an iterative method in which
at each step and in an efficient manner a new basis is computed. Each basis represents a vertex
of the feasible region. We denote an optimal basic solution xo, the corresponding optimal basis
B (a set of ` indices), and AB the optimal basis matrix obtained by taking only those columns
of A whose indices are in B. An optimal basic solution xo can always be written as:

xo =

[
xB
xN

]
=

[
A−1
B b
0

]
.

The variables with index in B are the basic variables while the others, whose index set is denoted
N , are called nonbasic. Note that the optimal solution may be degenerate, i.e. we have many
basis associated with it. It may also be the case that more than one basic optimal solution
exists.
Example 4. For the net described in Example 3 we consider

max v2 + v3 s.t.



v1 + s1 = 5
v2 + s2 = 5
v3 + s3 = 4
v1 − v2 − v3 = 0

and define x = [v1, v2, v3, s1, s2, s3]T . Note that we have packed together the last two inequalities
of (3). There are infinitely many optimal solutions of the form v1 = 5, v2 = y, v3 = 5− y with
y ∈ [1, 5], represented by the thick line in Figure 2 in the plane v1 = 5. Two of these are basic
solutions: v(A) = [5, 1, 4]T and v(B) = [5, 5, 0]T . Point (A) is a non–degenerate solution with
basic variables v1, v2, v3, s2 and basis BA = {1, 2, 3, 5}. Point (B) is a degenerate solution with
two optimal basis: BB1 = {1, 2, 3, 6}, with basic variables v1, v2, v3, s3, and BB2 = {1, 2, 5, 6},
with basic variables v1, v2, s2, s3. Furthermore we observe that in (B) there is also another
basis, with basic variables v1, v2, s1, s3, which is not optimal. ¥
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Figure 2: Feasible region for the net considered in Example 1.

Sensitivity analysis refers to the study of how optimal solutions change according to changes of
the given linear program in terms of the coefficients of the matrix, the right–hand side and the
objective function. Suppose that the LPP (5) has an optimal solution. If there is any change in
the values of bj , cj or aij the optimal solution is likely to change in general.

In the next sections we will develop sensitivity analysis with respect to the design parameters
by assuming changes in the right–hand side vector and in the matrix coefficients. Perturbations
in the cost coefficients will not be considered in this work.

The perturbed model

The following perturbed LPP is treated:

max
x
{cTx |A(q)x = b(q), x ≥ 0} (6)

where q = [q0, . . . , qp]T is a vector of uncertain parameters. The nominal value is denoted q.

For a given value of q, the optimal solution of (6) is

xo(q) =

[
xB(q)
xN (q)

]
=

[
A−1
B (q) b(q)

0

]

We compute with the simplex method an optimal solution in q and the corresponding optimal
basis B. The sensitivity of the basic variables xB(q) with respect to qi can be computed, at
least within a certain domain where the optimal basis does not change, by taking the partial
derivatives

∂xB(q)
∂qi

= A−1
B (q)

(
∂b(q)
∂qi

− ∂AB(q)
∂qi

xB(q)
)

(7)

while the non–basic variables xN (q) do not change. It is only required first order differentiability
of A−1

B (q) and b(q) with respect to qi. For simplicity in this presentation we make the following
assumptions:

1. Only one parameter qi varies at a time, that is q = q+ λei, where ei is the i–th canonical
basis vector. Under this assumption the sensitivity given by (7) can be regarded as function
of λ in the allowable range.

2. Matrix A and vector b are linear functions of the parameter λ. Then we can write:

AB(λ) = AB + λA∗
B

b(λ) = b + λb∗
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where AB = AB(q), b = b(q).

3. The variation of each parameter qi influences only one column, say the j-th, of matrix
AB(λ). Then

AB(λ) = AB + λA∗
B = AB + λa∗eT

j

In what follows we consider separately linear perturbations of the right–hand side vector and of
the matrix coefficients.

Perturbation of the right–hand side vector

We assume that the right–hand side constant vector b varies linearly with the parameter λ ∈ R,
that is b(λ) = b + λb∗. In the HSPN framework, this perturbation corresponds to changes in
the entries of the vector V = [Vα1 , . . . , Vαk

]T , which denotes the MFS vector. As an example,
in a manufacturing system we may want to add servers to a machine in order to increase the
overall productivity of the system.

If only Vαi is perturbed then b∗ = ei for i = 1, . . . , k. We may also consider the case where
Vαi and Vαj vary simultaneously with the parameter λ. As an example if we consider that
some servers are shifted from transition tj to ti or vice versa, then we have Vαi = V αi + λ and
Vαj = V αj − λ hence b∗ = ei − ej .

Let xo be an optimal basic solution of (5) and B an associated optimal basis. The perturbed
optimal solution xo(λ) has basic components:

xo
B(λ) = A−1

B b(λ) = A−1
B (b + b∗λ) = xo

B + λx∗B (8)

where xo
B = A−1

B b = [β1, . . . , β`]T and x∗B = A−1
B b∗ = [β∗1 , . . . , β∗` ]T . The optimal value of the

objective function is

J(λ) = cT
Bx

o
B(λ) = cT

Bx
o
B + λcT

B∆xB = J + λJ∗. (9)

Equations (8) and (9) hold only when λ belongs to a certain interval ΛB = [λB, λB] also called the
allowable range, where the optimal basis B remains unchanged. This requires non–negativity of
the basic variables, xo

B(λ) ≥ 0, and the bounds for the parameter λ can be computed as follows:

λB =

{
−∞ if I+ = ∅
maxi∈I+

{
− βi

β∗i

} (10)

and

λB =

{
+∞ if I− = ∅
mini∈I−

{
− βi

β∗i

} (11)

where I+ = {i ≥ 1 | β∗i > 0} and I− = {i ≥ 1 | β∗i < 0}. Since A−1
B is invertible, then A−1

B b∗ 6=
0, i.e. either λB or λB must be finite.

Much attention has been devoted in the literature [8], [5] to the case in which the optimal
solution xo of the nominal LPP is unique. In this case xo is not a degenerate solution and the
unique optimal basis remains constant within the allowable range, therefore the value of the
objective function is linear in λ. As λ reaches the boundary of the allowable range, a degenerate
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solution is found, a new basis can be computed with an allowable range that will not overlap
the previous one except at the end point. As the basis changes, the gradient ∆J = J∗ of
the objective function may also change, thus it may not be defined only at a finite number of
points whereas we can instead provide right and left values. In the manufacturing domain this
non-differentiability behavior has been already observed in tandem lines by Fu and Suri [10]
when the average production rates of two machines are equal. With our approach the result is
immediately generalized to more general cases.

However the situation can be more complex when more than one optimal solution exists, as we
show in the following example. Multiple optimal solutions represent the degrees of freedom in
the optimization procedure.
Example 5. Let us consider again the net in Example 4. There are two optimal basic solutions,
(A) and (B), and three optimal basis. We apply the previous methodology to each basis to obtain
the following allowable ranges: ΛBA

= [−1, 4], ΛBB1
= [0, 4] and ΛBB2

= [−5, 0]. As expected,
the intervals ΛBB1

and ΛBB2
, corresponding to the same optimal basic solution (B), do not

overlap. However we note that the interval ΛBA
corresponding to the optimal basic solution

(A) overlaps both of them. This observation allows us to state that the interval in which the
gradient of the objective function remains constant is Λ = [−5, 4], hence it is larger than the
allowable range associated to each basis. ¥
Motivated by the previous example, we can state the next proposition that applies to the case in
which there are two optimal basic solutions of a given LPP and that can be naturally extended
to the case of more than two solutions.
Proposition 6. Let xnd

0 and xd
0 be the optimal basic solutions of the LPP (5), and let the

perturbed solutions take the form given by Equation (8). Let xnd
0 be a non–degenerate optimal

solution with allowable range ΛB1 = [λB1
, λB1 ] associated to the unique optimal basis B1, and

xd
0 be a degenerate optimal solution with allowable ranges ΛB2 = [λB2

, 0] and ΛB3 = [0, λB3 ]
associated to the optimal basis B2 and B3 respectively. Then the gradient ∆J of the objective
function (9) is continuous and constant over all the interval Λ = ΛB1 ∪ ΛB2 ∪ ΛB3.

Perturbation of the matrix coefficients

We assume that the basis matrix AB varies linearly with the parameter λ ∈ R, according to
AB(λ) = AB + λA∗

B = AB + λa∗eT
j , i.e. we assume that only the j–th column of AB may vary.

The results we present here also hold when a single row of AB varies with the parameter λ.
Nevertheless this case is less relevant in the context of HSPN. In fact perturbations of matrix A
correspond in the HSPN framework to variations of the arc–weights between continuous places
and transitions, as it can be seen from Equation (4). Multiple variations of the coefficients
along a column correspond to a redistribution of the inflow or outflow of a single continuous
transition. In a manufacturing system this situation is quite common and it arises when we deal
with changes of the percentage of parts that need to be reworked or with changes of the routing
coefficients.

Let xo be an optimal basic solution of (5) and B an associated optimal basis. We recall the
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matrix equality:

A−1
B (λ) =

(
AB + λa∗eT

j

)−1
= A−1

B − A−1
B a∗eT

j A−1
B

1 + eT
j A−1

B a∗λ
λ

Then the perturbed optimal solution xo(λ) has basic components:

xo
B(λ) = A−1

B (λ)b = xo
B −

λ

1 + vλ
x∗B (12)

where xo
B = A−1

B b, v = eT
j A−1

B a∗ and x∗B = A−1
B a∗eT

j A−1
B b. The relative cost coefficient vector

of the optimal solution xo(λ) is

r(λ) = cT
BA

−1
B (λ)A− c = ro − λ

1 + vλ
r∗ (13)

where ro = cT
BA

−1
B A−c and r∗ = cT

BA
−1
B a∗eT

j A−1
B A. Finally the optimal value of the objective

function is given by

J(λ) = cT
Bx

o
B(λ) = cT

Bx
o
B −

λ

1 + vλ
cT
Bx

∗
B. (14)

Equations (12-14) hold only when the parameter λ belongs to a certain interval ΛB = [λB, λB]
wherein the optimal basis B remains unchanged. This requires: (1) non–singularity of the basis
matrix, i.e., 1 + vλ > 0, (2) non-negativity of the basic variables, xo

B(λ) ≥ 0 and (3) non-
negativity of the relative cost coefficients r(λ) ≥ 0, i.e. the optimality condition. The bounds
for the parameter λ can be computed as follows. Let:

y =




1
xo

r


 , y∗ =




0
x∗

r∗




and let us consider the following sets of indices: I+ = {i ≥ 1 | (vyi − y∗i ) > 0} and I− =
{i ≥ 1 | (vyi − y∗i ) < 0}. Then we can easily find:

λB =

{
−∞ if I+ = ∅
maxi∈I+

{
− yi

vyi−y∗i

} (15)

and

λB =

{
+∞ if I− = ∅
mini∈I−

{
− yi

vyi−y∗i

} (16)

¿From Equations (12) and (14) we observe that the optimum IFS vector and the objective
function do not vary linearly with the parameter λ within the allowable interval ΛB = [λB, λB]
as it does happen if the perturbations of the matrix coefficients are made infinitesimally small.
Therefore the gradient of the objective function with respect to the j-th column vector of A,
say aj = λa∗, is a non–linear function of the parameter λ and for each value of λ ∈ ΛB, for
λ 6= − 1

v , it can be easily computed as

∆J(λ) = − 1
(1 + vλ)2

cT
Bx

∗
B (17)
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Figure 3: A re–entrant production line.

Figure 4: Feasible regions for the net in Figure 3.

An example: re–entrant production lines.

In this section we consider a simple HSPN which represents a re-entrant production line, as
shown in Figure 3, that will clarify our development. In this net transition t1 models the
production of a machine whose maximum production rate is bounded by the MFS V1, while the
maximum outflow rates cannot exceed V2 and V3 respectively. The routing coefficient α, with
0 ≤ α ≤ 1, represents the percentage of parts that are required to be reworked on the machine
(reworking factor).

¿From the given marking, being place p empty, the constraint set associated to this net is:




v1 + s1 = V1

v2 + s2 = V2

v3 + s3 = V3

−v1 + v2(1− α) + v3 + s4 = 0

Now solving for J = v2 + v3, we obtain the optimum firing speeds allocation (production rates)
which maximizes the machine utilization. As discussed in the previous sections this LP formu-
lation allows us to make sensitivity analysis, that is we can make perturbations of the elements
of the LPPs, e.g. the reworking factor α, the maximum machine production rate V1 and the
maximum outflow rates V2 and V3, to perform optimization. First we consider the case in which
α is changed to α + ∆α and then the case in which Vi are changed to Vi + ∆Vi.

Now let V1 = 5, V2 = 5 and V3 = 4. In Figure 4 we have shown the feasible regions in the
plane v1 = 5 for the LPP considered in this example and for values of α ∈ [0, 1]. The thin
lines labelled by the different values of α represent the fourth constraint. Note that for α = 0
we obtain the same results already developed in Example 4 where we have two optimal basic
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solutions v(A) = [V1, V2 − V3, V3]T and v(B) = [V1, V2, 0]T , i.e. points (A) and (B), and the
optimal value of the objective function J is equal to V2. For 0 < α < V3

V2
there is a unique

non–degenerate optimal basic solution (point (C)), xo
BC

= [v1, v2, v3, s3]T , where s3 is the slack
variable associated to third constraint, which can be analytically computed as

xo
BC

= [V1, V2, V1 − (1− α)V2, V3 − V1 + (1− α)V2]T

with an associated optimal basis BC = {1, 2, 3, 6}, which yields an optimal objective function
value equal to V1 + αV2. For α = V3

V2
we have a degenerate optimal basic solution (point (D)).

Finally for α > V3
V2

the fourth constraint becomes redundant and the unique optimal basic
solution (point (D)) is simply given by xo

BD
= [V1, V2, V3, V1 − (1 − α)V2 − V3]T with optimal

basis BD = {1, 2, 3, 7} and optimal objective function value equal to V2 + V3. Therefore we will
only consider perturbations of the parameter α for α ∈ (0, V3

V2
) which yield non–trivial sensitivity

analysis for the objective function J .

Now computing the bounds for the parameter α to obtain the allowable range ΛBC
of the

optimal basis BC = {1, 2, 3, 6}, we must consider I+ = {3} and I− = {4}, where v = 0 and
x∗BC

= [0, 0,−V2, V2]T . Then it does follows:

ΛBC
=

[
(1− α)− V1

V2
, (1− α) +

V3 − V1

V2

]

within which we can calculate the gradient of the objective function J with respect to the
perturbation of the reworking factor α by making use of Equation (17). In this simple case it
does result ∆J(α) = V2 which is constant over the interval ΛB.

Now let us suppose that the MFS V1 is perturbed, that is V1 changes to V1 + λ. Then applying
the method developed in the previous sections we compute the characteristic interval ΛBC

of the
design parameter V1 as follows:

ΛBC
= [max((1− α)V2 − V1,−V1), V3 − V1 + (1− α)V2]

within which the IFS vector and the objective function vary linearly with λ. As a numerical
example if α = .5 then we have:

∆V1 = [V1 − 2, 5, V1 + 1.5] for V1

∆V2 = [V2 − 3, V2 + 5] for V2

∆V3 = [V3 − 1.5, +∞] for V3

which represent the allowable right–hand side ranges for the basis BC to remain unchanged.

5 CONCLUSION

Automated manufacturing system can be naturally modeled by HSPNs. Optimal speed allo-
cation and sensitivity analysis have been proposed in this paper to obtain information about
the degrees of freedom that can be exploited when making performance optimization or opti-
mal design of the system parameters configuration. Our main contribution has been to offer a
simple tool for making sensitivity analysis of an HSPN based on parametric linear programming
techniques used in LP problems to efficiently evaluate gradients of the performance measures,
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such as machine utilization and system throughput, with respect to the design parameters, i.e.
the MFSs, and to the structural parameter, i.e. the routing coefficients. Our future goal will
be to apply this hybrid model along with its sensitivity analysis tool for the optimal design and
control of discrete event dynamic processes.
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