6th IEEE Mediterranean Conference on Control and Systems

A STATE VARIABLE APPROACH FOR THE MODELING AND CONTROL OF FLEXIBLE
MANUFACTURING SYSTEMS

F. BALDUZZI, G. MENGA

Dip. di Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: {balduzzi, menga}@polito.it

A. GIUA

Dip. di Ingegneria Elettrica ed Elettronica, Universita di Cagliari, P.zza d’Armi, 09123 Cagliari, Italy
E-mail: giua@diee.unica.it

In this paper we present a new approach for the modeling and control of flexible manufacturing systems (FMS) characterized by unreliable machines,
buffers of finite capacity, arbitrary service time distributions and deterministic sequencing and routing policies. Our main goal is the design of the FMS
configuration embedded with its optimum control policy. The problem is addressed using first and second order fluid approximation obtained by splitting
the process in two hierarchical layers and defining what we call micro and macro events. With an original approach this fluid approximation lends itself to
a discrete time linear stochastic state variable model which offers average values and variances of both performance measures and of their gradients with
respect to the most significant FMS parameters. Finally we investigate problems concerning the non-differentiability of the performance indices with
respect to certain design parameters, specifically the control parameters as they appear as structural elements of the model.

1 Introduction

An FMS is a queueing network system where different
classes of products are processed contemporaneously. Each
product has to perform its own orderly sequence of
operations, different for each class, in order to be
completed. The same machine can perform operations on
different product classes, eventually with different service
times. The same operation can be performed on alternative
machines. Flexibility is the capability of the FMS to cope in
time with changing product class blend and production
inconveniences such as buffer blockages and machine
breakdowns, maintaining optimum production target,
machine load balance and, if required, an assigned
production mix.

The evolution in time of the FMS will be discussed
within a framework that distinguishes two levels of
aggregation. The lower layer represents the microscopic
behavior of arrivals and departures of parts to/from each
machine (micro events). It will be modeled in an aggregate
view by using first and second order fluid approximation.
At the higher layer a discrete event model will represent the
transitions of the FMS through a sequence of operational
states, that we call macro states, at the occurrence of the
macro events. The degrees of freedom of an FMS are
exploited by its control system by dynamically changing
routing and priority of parts according to their class as a
function of the current operational state of the shop-floor.
The control is composed of two parts: a dispatcher and a
monitoring system. During the permanence into each macro
state, the dispatcher will perform myopically with heuristic
rules based on the current state configuration, by
sequencing parts waiting in the buffers and by routing them

at the exit of the machines according to their class. Similar
ideas have been already adopted in their developments by
Chen and Yao [2]. At the same time the monitoring system
will detect macro events and will dictate the transition into
a new macro state. The overall control behavior along with
its heuristics will be accounted for in an aggregate view by
assuming that at the occurrence of any macro event new
reference values of all average flow rates will be computed
for each product class as the solution of a linear
programming (LP) problem. Then these reference values
will be guaranteed by the control during the macro state,

The main contribution of our work is to represent both
layers of the process by a discrete time linear stochastic
state variable model that can be used to evaluate average
values and variances of both performance measures and of
their gradients with respect to the design parameters. A
further result of this modeling approach consists in a neat
presentation of the non-differentiability of performances
with respect to certain parameters of the model, as already
observed by other authors [10]. Finally this model avoids
any other non-differentiability problem related to the
perturbations made on structural parameters [5], such as
routing coefficients and priority sequencing, as they are
embedded along with the control law directly in the model,
hence they are no more independent parameters,

1.1 Previous Results

A substantial body of literature about DEDS is concerning
the analysis of production lines. Even so analytic results for
the more general settings discussed here are available only
for lines composed of 2 and 3 machines, while the analysis
of longer lines involves the use of approximate



decomposition techniques and Markov models as suggested
by Gershwin [6]. Since efficient analytical models are not
available, discrete event simulation models along with
gradient estimation, have been extensively used for analysis
and design issues. Readers are referred to Ho [7] and Suri
[10] for PA techniques and gradient estimation. Combining
simulation and elementary queueing analysis Phillis and
Kouikoglou [9] developed a discrete event continuous flow
model more efficient than conventional simulators, to
predict the system evolution. Then, by using PA techniques,
they obtained the optimal distribution of repair rates among
machines in order to maximize the throughput. Recently
the fluid approximation theory has been deeply examined
[3] and new results have been found.

2 Description of the Model

The queueing network considered in this work consists of a
set of n single-server stations, denoted by M;, for i=1,...,n,
serving my; classes of products, indexed by r=1,...,m;.

Parts of different classes move generically from machine
M,; to M according to the production cycle of their class and
they are queued in buffers, one for each machine, with the
initial one acting as a limited supply of products, thus
representing the production target, and the final buffer
acting as a limited storage area for collecting finished
products.

The buffers in front of the machines have finite capacity
C; and the machines are unreliable. We consider failures as
operation-dependent failures and we define for each
machine the Production Volume Before Breaking, denoted
by w;, and the Repairing Time, denoted by d;, both assumed
as independent identically distributed random variables
characterized by their mean values and variances. Machine
service times are also assumed independent random
variables with identical distribution with mean ¢/ and

finite variance.
o 1 " T
We denote by Vyax=l-.sVpuy s Vamx oo the
maximum average machine production rates vector, i.e.

Viax,; =1/ 7/ . The buffer capacity vector is indicated with

C=[C,,....C,]" and the vectors of the average values of
the reliability random variables are denoted by
w=[;|,...,"1;ﬂ]T and d={21,...,3n}r. Finally we
represent by #; and d; the samples of the random

variables w; and d; drawn during a simulation run,
For convenience in this presentation all design
parameters are denoted by @:[8, 92] and grouped

T
according to @, =vy,x and 0, =[CT w' dT]

2.1 The Microscopic Layer: Fluid and Diffusion
Approximations

Fluid and diffusion approximations involve smoothing of
discrete event processes [3] and they are often used to
describe the asymptotic behavior of queueing systems via
functional strong law of large numbers [4, 8]. We consider
fluid models under conditions of balanced heavy loading
and we adopt such approximations for modeling the
microscopic behavior of an FMS during the permanence
into the macro states, called macro periods, indicated with
A=[tot) for £=0,1,2,..., where #;, denote the occurrences
in time of the macro events. Further, within each macro
state we assume that the stochastic processes which describe
the queueing system are stationary. Then the global
behavior of the FMS over the entire time horizon will be
piecewise stationary.

Let {5;_}. ), ;20} be the stochastic counting process

accounting for the number of departures of parts of class r
from machine M; to M;. We derive a second-order fluid
approximation to describe these counting processes,
assumed independent among different classes of products
and different sources and destinations, by continuous
processes denoted by {NE;(IL ;20}, that have mean

values given by first-order fluid quantities, the flow rates
v/ (1), and finite variances given by Brownian motions
{y/ L0, ¥2 0} which describe the fluctuations about those

means. These Brownian processes are also assumed
independent among different sources and destinations and
different classes of products. Let us define

Nipi () = 2y Npi(t) s Nii @) =3, Nipi(8)
N;ut,:' (tk ) = zj N;:}- (t.fc) '} Ngul,i'(tk) = err:uu(tk)

as the input and output fluid processes at the beginning of
each macro period,

Vini (0) = LVhi(te) s Vini () =2, vini ()
Vouri ) = 2V ) s Vouri (1) = X Vo i(8e)

as the inflow and outflow rates of parts which are constant
values in the interval [ty,t;), and

!!'7;{; (testen) =W (b)) = w:'tj (tx)

Vot i (totis) = Zjﬁ_j(tksrﬂi) » Vini(tin) = Zﬁﬁ; (Totieay)
as the independent increments of the Brownian processes in
the interval [ty,t,,;). We find that [4, 8]:

Noiri(iar) = Ny i@ ) ¥ V000 i) - (g = 1) + W i (o Frar)
S g

var[Wo, i (s tye)] = 0’3,‘,; Vouwa (a1 —T) 1)

Nigi (1) = Nip i () + Vi i (8) - (By = 1) + W (B yy)

varl Wy, (1ot )1 = 02 Vit =) @)
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where o i

interdeparture times for parts of class r at the input and
output of each machine. Then the buffer levels for parts of

and oi, are the variances of interarrival and
T

class r are indicated by x/ (t) and they are simply given by
the following equation:

X! (te1) = X[ (1) + [V 1 (8) = Vour (1)1 (1 — 1)
+ Wi i (s i) = Wous i (i i) 3)

2.2 The Macroscopic Layer: Macre Events and Macro
States

At the macroscopic level the FMS evolves through a
sequence of macro states, characterized by the functional
status of the physical components of all services: the
machines (operational or down) and the buffers (full, not
full-not empty, empty).

The set of macro event types is indicated with
E={F,R;,RC;,BE,;,.BF;}, which elements are defined as
follows:

o F; (Failure of machine M;). After a machine is repaired,
failures occur after the production volume , .

* R, (Repair of machine M;). When a machine fails, it
will be repaired after d; time units.

o BF; (Buffer Full at machine M;. The buffer level
reaches its capacity C; while v, ; () > v, ; (1) 1

e BE;, (Buffer Empty for parts of class r at machine M;).
The buffer level for parts of class r reaches 0 while
Vini () < Vo (8) %

¢ RC; (outflow Rate Changed for machine M;). When the
machine is operational, upon the occurrence of exogenous
macro events, changes occur in the inflow and outflow rates
of parts of machine M;.

The set of admissible macro states is denoted by
S={(my,by),...,(my,b,)}. Each element (m;,b;) € S combines
the functional status of the physical components of each
service, where symbols m; and b; represent the machine
status and the buffer status during the macro period Ay,
respectively. Then the machine status are:

o M, o (Machine Operational). Machine M; reaches this
state at the occurrence of macro events R; and then leaves it
at the occurrence of macro events F,.

o M,z (Machine Broken). Machine M, reaches this state at
the occurrence of macro events F; and then leave it at the
occurrence of macro events R;. The output process will be
N 40 () = 0 during that period.

! This specification that seems obvious is done to distinguish macro from
micro events.

The buffer status are:
o B, (Buffer Full). State reached at the occurrence of
macro events BF,. Services leave it at the occurrence of any
macro event which will result in the condition
Vini (£) < o1 (2) - The input process will follow the mean

of the output process, even though we will assume
independent random noises for the two processes.

o B'ix (Buffer Empty for parts of class r). State reached at
the occurrence of macro events BE;,. Services leave it at the
occurrence of any macro event which will result in the

condition  vj;(t;)>v;,(t;). The input process

associated with the inflow of parts of class r will follow the
mean of the corresponding output process, even though we
will assume independent random noises for the two
processes.

e B;n (Buffer not-Full not-Empty). State reached at the
occurrence of exogenous macro events RC;. Operational
services will be considered operating under the heavy traffic
conditions, and the buffer levels will be given by Eq. (3).

3  The Dynamic Control Problem

The dynamic control policy adopted in this work generates
myopically a piecewise optimal solution obtained via a
sequence of LP problems, one for each macro period, where
each solution represents the average machine production
rates v/ (¢,) to be expected for the interval of time

[titksr). During the permanence into a macro state the
control system will perform its task by sequencing parts
waiting in the buffers and by routing them at the exit of the
machines according to their class, aimed at maintaining
these average flow rates as reference values. First we apply
our approach to a tandem production line in order to show
that a general FMS can be treated as a simple multi variable
extension of this elementary case.

3.1 Single-Machine Single-Class Tandem Line

As shown by several authors, e.g. Phillis and Kouikoglou
[9], the fluid model simulation of a tandem line is achieved
by -adjusting the flow rates at the occurrence of macro
events by means of a set of simple rules. We give a formal
description to such logic rules as an LP problem. In fact
when the system enters a new macro state, the average flow
rates as reference values for the next macro period, are
determined as the solution of the following LP problem:

J(©)=max X v,, () subject to: 4)

Vou,i

Vouri Tk ) SV ppax i for any operational machine
vi'n-,l' ('rk ) < Vout,:' (tk )

Vouri (£ ) S Vi i (1)

for machines that have full buffer

for machines that have empty buffer



The performance index defined in (4) states that any
operational machine will be working at its maximum
production rate allowed by the line.

Proposition 3.1 Let us consider tandem lines composed of
n machines and n+1 buffers. We assert that a basis for the
LP problem (4) consists of at most 2n-1 linearly
independent vectors and that all basis inverses contain only
the entries 0, 1, -1.

Remarks. The average machine production rates are
continuous and piecewise linear (slope 0, 1, -1) functions in
the maximum machine production rates. Thus the outflow
rates vector is everywhere differentiable with respect to the
vector Oy, except for a finite number of points
corresponding to the boundary points of the basis
characteristic intervals, whereas we can instead compute
left and right derivatives.

3.2 Multi-Machine Multi-Class Production Line

With the same logic adopted in the previous section, the
multi-machine multi-class case is approached here as a
simple extension of the tandem line by building up a
similar LP problem.

Oszgtviik(tk)svrMAX,i(el) (5a)

0< ZZ‘,I—

roh VMAX,i(Gl)

Constraint (5a) will apply whenever service times on
the same machine are identical for all classes while
constraint (5b) whenever service times are different.

EZV;,;' (1) s 2%";{& ()
P "

vt ) <1 (5b)

buffer full (6)

ZVE;, (t) < ZV;_;‘ (t) buffer empty for parts of class r ~ (7)
h i

Constraint (6) has to be satisfied for machine M;
whenever its buffer is full and constraint (7) whenever the
size of parts of class r is 0. Finally we define the constraint
that the production, denoted by P,, has to satisfy a certain
mix:

2V (1) =m" Py ®8)

The goal is to maximize machines utilization, therefore
we define the following performance index:

J(©)=maxy ¥ vou,(ty) ®
Let Vou(t)=[esvi;(8,0)),...17

outflow rates vector solution of the LP problem and that
will represent the input data for the controller. It should be

be the optimal

noted that this solution implicitly resolves all routing and
sequencing issues in an optimal manner.

4 Sensitivity Analysis of the LP problem

We perform sensitivity analysis of the solutions of the LP
problem stated in the previous section with respect to the
parameters @;. For simplicity in this presentation, we will
only undertake the analysis of the parametric right-hand
side problem, assuming identical service times for each
class processed at the same machine and we make only use
of constraint (5a).

Let B be the basis heading of an optimal basic solution
of (5-9). Then Ay is the basis matrix and b denotes the
right-hand side vector. The optimal solution is obtained as
Vg (t,)=Ag -b(©,) and its gradient matrix with respect
to b can be easily computed as:

Vb{BI)VB () =A1-;l (10)

Furthermore the gradient matrix of v, with respect to
©, denoted by M=Vg v, (¢;), will be given by entries

of Ay' for those rates v/;(r,) which belongs to the

optimal basis and zero elsewhere.

Proposition 4.1 We assert that the solution of the LP
problem (5-9) is continuous in the design parameter vector
©; even when the perturbed parameter determines changes
in the optimal basis, and it is non-differentiable in a finite
number of points of the real axis corresponding to the
boundary points of the characteristic intervals of the
optimal basis.

Hence the derivatives of the optimum outflow rates with
respect to the maximum machine production rates are not
defined only at selected points. We can instead provide
right and left derivatives that can be easily obtained from
the solution of the LP problem itself. Finally performance
measures and production rates are piecewise linear and
continuous functions in the design parameter vector ©y.
This non-differentiability behavior has been already
observed in tandem lines by Suri [10] when the average
production rates of two machines are equal. With our
approach the result is immediately generalized to arbitrary
queueing network systems.

5 = A Discrete Time State Variable Model

We now develop a discrete time linear stochastic state
variable model, which samples are the occurrence of the
macro events at time t,, for k=0,1,2,... Then this model
embeds all the information required to evaluate
performance measures, their gradients with respect to the



system parameters and the uncertainty introduced by the
fluid approximation. We define for each service the
following set of equations:

x;'r (tps) = J‘:ir (te) +[v,;,,- (te)— v;ur,x‘ (£ )] uk) + (1)

Wi Ot 1) = Woi (garote),  forr=1....m;

Xiltps) =0 (k) - 2 (tg ) v i (8 ) u(h) + (12)
m,
4 %U}'Ju:,;(% stivr)s @ (k) =01

8i(tea) = B (k) -5; (1 ) + B (k) -u(k), B(k)=01 (13)
where f,,; =t, +u(k). At the occurrence of any macro

event Eq. (11) account for the current class-specific buffer
levels while the current cumulative buffer levels are simply
obtained as x; (rk)=Erx,-’(rk). Equations (12) and (13)
represent the partial production volume currently processed
by the machine next to fail since the last repair, and the
time spent by the machine under repairing since the last
failure, respectively. Indicators ¢; and §; are switched from
0 to 1 at the occurrence of the proper macro events. Then
the state of the system is represented by the vector x(k)
defined as:

X(k) = [t 3 (0 )+ 2 ) 21 1 s (B e -

B AN LI (DR A AR A9
The total number of classes processed at all machines is
d=m,+...+m,, therefore the dimension of the state vector is
(d+2n)+2. In fact there are (d+2n) equations as defined in
(11-13) plus the two extra equations:

Tyt =ty Hu(k)

T (14)
Tt (iet) = X1 (B) V0 () - k) + %U’an ()

where state variables t, and Xx,,1(ty) occupy the first and the
last position within vector x(k), respectively. These
equations account for the current time of the occurring
macro event and for the final storage area (total
production).

We can now formally described the behavior of the
system by defining a discrete time linear stochastic state
variable model expressed in matrix notation by:

x(k+1) = A(k) -x(k) +B(k, v, (©)) - ulk) + G(k)-n(k)
Q(k) = cov[n(k)] (15)

where

0(K) = [ (B s+ oW By B o
Q(k) = diag(...,varl7 ; (tpp )]s VAT (b 1)), )

Matrix A(k) is diagonal with entries 0 and 1. Vector
B(k,v,,(©,)) has elements that depend on the average

machine outflow rates. Vectors n(k) are independent
random vectors as made of increments of Brownian

motions, accounting for the approximation introduced in
the fluid model. Matrix G(k) has entries 0 and I
accounting for the inflows and outflows of parts at any
machine. Finally, assuming at each source-destination and
for each class independent noise processes, matrix Q(k)
will be simply diagonal with entries of the form
@1 =6 (tis —1,), where in general G =0 v™ as given in
(1) and (2) or G =v];(4,®,) if Poisson processes are
assumed.

Note that with this model any macro event does occur
when a certain state variable, or the linear combination

x;(t,) =3, x(r,), reaches a specified value. Specifically
when a machine breaks down or gets repaired it must result
Xi(ti) =W, OF s5;(t,,,)=d,;. When a buffer gets full or
empty for parts of class r the condition 3, x/(t,,,)=C, or
x] (t41) =0 will be satisfied. We indicate with r(k+1) these

values reached by the appropriate state variables at the
occurrence of the macro events. It does result:

rik+1)=ef (k) -x(k+1) = (16)
= H(k) -x(k)+b(k,V oue) - u(k) +e] (k)-G(k)-n(k)
ulk) = K(k)-[r(k +1)—H(k) -x(k) + a7n

-} (k)-G(k) -n(k)]
where e;(k) is a vector with entries 0 and 1 which selects a
state variable or the linear combination Y x/(z;) within

x(k) that is leading to the new transition, and

H(k) = €] (k)-A(k)
b(kyv 0 (©1)) =€ (k) B(k) bk, V o)
Equation (15) can be straightforward rewritten as a
closed-loop system:
X(k+1) = Ag(k, v, (0,)) - x(k) + (18)
+ K(k,Vou(©1)) - B(k, v, (©)) - r(k +1,0,) +
+[1- Kk, Voue(©1) - B(K, Ve (€))) - € (K)]- G(k) - n(k)
where

Agi(k, Voug (0))) = Ak) = K(k, Voug (©)))- Blk, vy (€))) - HK)

and K(k)=

5.1 Propagation of Mean and Covariance of the State of
the System

From Eq. (18) the mean x(k) of the state of the system
may be calculated by propagating the following equation:

X(k+1) = Ag(k, v (©))) - x (k) + (19)
+B(k, Ve (©)) - K(k, v,y (©))) - r(k +1,0,)
starting from the initial value ;(0). Eq. (19) allows us to

evaluate performance measure of the form J = f (;,E)) .



gradients and their uncertainty, by the completion time of a
certain production target or by the productivity achieved by
the lowest product class.

The behavior of the covariance matrix Py;(k) of the

state of the system is given by equations:
Py (k+1)=Ag(k)- Py (k)- A k) +G(k)- Q- Gk, k=1
Py (0) =cov[x(0)] 20)
where
Gk) = [T- K(k, Voue) Bk, Vo) - €] (K)]- G(K)
We indicate with ® the state transition matrix of
equation (18):

Dk, j) = Agk =1 .:Ag(i =D -Au(), k>j

Proposition 5.1 We assert that ®(kj) is element-wise
bounded, i.e. -B<®(k j)<B. Hence there are finite matrices
S and N of appropriate dimension such that the
covariance matrix Py, (k) is asymptotic to N+k-S as k—e.

5.2 Sensitivity Analysis of the State of the System

We can now evaluate the sensitivity of the state of the
system with respect to the design parameters ©. Recalling
that M= Vg v, (#;) , the gradient of x(k) with respect to

8 (V,,. % Ve, Vou ) is given by:

Ve x(k+1)=Ay(k)-Vg x(k)+ (21)
+[r(k +1) = H(k) -x(k)]-V,_ [B(k)-K(k)]-M +
~ef (k) G(k)-n(k)-V, [B(k)-K(k)]-M
We observe that the gradient matrix (21) does depend on
the current state and the input noise, hence its entries are
affected by noise. The gradient of x(k) with respect to 8; is
computed as:
Ve, X(k+1)= Ay (k)- Vg, x(k)+ (22)
+B(k,V o) K (kv o)V r(k+1,0,)

The gradient matrix of x(k) with respect to © is
obtained by propagating equations (21) and (22). In order to
evaluate the variance of each gradient entry with respect to
®,, the covariance matrices of each column of the gradient
matrix for each vy,x; have to be propagated separately by
using the following Lyapunov equation:

Pk +1) Pypyk+D| o Pyk) Pp(k)| oy
1 =& 0| AT(k) +
PL (k+1) Py(k+1) PL. (k) Py, (k)
+Gy (k) Qk) - Gy (k) (23)

where

A 0 i
AO=- 20 gty Ayt 0= =5y [ G0
1

d ‘Bl,i‘

The diagonal entries of matrices Pyz;(k) represent the
variances of the gradient of x(k) with respect to the
maximum production rates of machine M.

6 Conclusions

The main contribution of this paper has been to offer a
model of an FMS where each design configuration is
embedded with its optimal control strategy, so that while
performing the simulation for a certain configuration, this
is done under optimal control law. We achieve this result by
solving a sequence of LP problems which emulate in the
fluid model the behavior of the discrete event system in
presence of a real-time dispatcher that makes use of a
myopic strategy for implementing a multi-class queueing
policy and routing, in order to continuously maximize
machines utilization and guaranteeing mix balance.
Embedding the optimal control law into the system model
we avoid non-differentiability problems related to the
perturbations made on structural parameters, such as
routing coefficients and priority sequencing [1, 5]. Those
parameters are no more independent variable.
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