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This paper discusses the problem of controlling a Petri net whose marking cannot be measured. An observer is used to
estimate the actual marking of the plant based on partial information of the initial marking and on event observation.
This estimate is used to design a state feedback controller, that ensures that the plant in closed-loop evolves through a
set of legal states. We present an efficient algorithm, that generalizes previous results, to design a safe observer-controller

for legal states defined by linear constraint sets.

1. Introduction

In the classical approach of Ramadge and Wonham [12]
to the supervisory control of discrete event systems, the
eveni-feedback control scheme shown in Figure l.a is
adopted. Here the plant spontaneously generates events.
The supervisor observes the word of events w generated
and, given a set of legal words K, computes at each step
a suitable control pattern ¥ to ensure that no illegal word
be generated.

Other authors have used a different stale-feedback con-
trol scheme, shown in Figure 1.b. Here the supervisor
observes the actual plant state M and, given a set of le-
gal states £, computes at each step a control pattern to
ensure that no illegal state be reached. This scheme is par-
ticularly appealing when dealing with Petri net models of
the plant [6], since the state of a net is given by an integer
vector called marking and linear algebraic techniques may
be used to solve the control problem.

A slightly different scheme is shown in Figure 1.c. Here
the controller observes the word of events generated and,
by means of an observer, it reconstructs the actual plant
state M. The observer simply duplicates the plant model,
and is driven by the observed events. If the structure
(that 1s assumed to be deterministic) and the inital state
My of the plant are known, the knowledge of the word
generated is sufficient to reconstruct the new state that
each new firing yields.

In [4] a different scheme, shown in Figure 1.d, was con-
sidered and used in the context of Petri nets. In this
scheme, the initial marking (state) Mj is not completely
specified, but is known to belong to a “macromarking”,
i.e., we know the token contents of subsets of places but
not the exact token distribution. An algorithm was given
for computing a marking estimate p, and error bound
B, . The estimate is always a lower bound of the actual
marking.

In [4] a particular structure of the initial macromarking
has been considered, i.e., it was assumed that the partition
induced by the initial macromaking is disjoint. In this
paper we exend the previous results to a more general
case in which the initial macromarking is not completely
disjoint: the presence of a single subset, whose intersection
with all the others may be different from the empty set,
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Figure 1: Different control schemes. (a) Event-feedback. (b)
State-feedback. (c) State-feedback with event observer and
initial marking. (d) State-feedback with event observer and
initial macromarking.

is taken into account.

The system that computes the estimate is called an ob-
server. It has been shown in [3] that a special net struc-
ture, called observer net, can be used to describe the ob-
server: such a net has a set of places corresponding to the
places of the plant whose marking is at each step p,,, plus
a set of bounding places (one for each place subset in the
partition induced by inital macromarking) whose marking
is By.

The special structure of Petri nets allows us to use a
simple linear algebraic formalism for estimate and error
computation. In particular, the set of markings consistent
with an observed word, i.e., the set of marking in which
the system may actually be given the observed word, can
easily be characterized in terms of the observer marking.

Finally, we show how the estimate generated by the ob-
server may be used to design a state feedback controller,
that ensures that the controlled system never enters a set
of forbidden states. We consider a special class of specifi-
cations that limit the weighted sum of markings in subset



of places. Clearly, the use of marking estimates (as op-
posed to the exact knowledge of the actual marking of
the plant) leads to a worse performance of the closed-loop
system in the sense that to rule out the possibility that
the plant enter a forbidden marking, the controller may
prevent the firing of transitions whose firing is perfectly
legal given the actual marking of the plant. It may also
be the case that, as a result of this, the controlled sys-
tem is blocking. In [3] it has been shown how suitable
time-out mechanisms may be introduced to recover from
a blocking.

Control and state estimation under partial observation
has been discussed in the discrete event control litera-
ture. Zhang and Holloway [15] used a Controlled Petri Net
model for forbidden state avoidance under partial event
observation with the assumption that the initial marking
be known. The use of state-feedback control under partial
(state) observation has been discussed by Li and Wonham
[8, 9] and by Takai et al. [13].

The idea of constructing estimates of the unknown plant
state for systems represented as finite automata has also
been discussed in literature by Caines et al. [1, 2] and by
Kumar et al. [7]. A comparison of all these approaches
can be found in {4]

The present work has several motivations. The assump-
tion that only event occurences may be observed, while
the plant state cannot, is common in discrete event con-
trol. The assumption that the marking of the plant is
not known (or is only partially known) is natural during
error recovery. Consider for instance the case of a plant
remotely controlled: if the communication fails the state
may evolve and when the communication is restablished
the state will be at best partially known. In a manufac-
turing environment, one may consider the case in which
resources (i.e., tokens) enter unobserved, or in which we
know how many resources have entered the system but
not their exact location.

The paper is structured as follows. Section 2 introduces
the Petri net formalism used in the following sections.
Section 3 discusses the problem of estimating the mark-
ing of a net whose initial marking is partially known as
a macromarking. Section 4 shows how the cbserver net
can be constructed. Section 5 shows how it is possible
to use state feedback control using the estimated marking
computed by the observer. A manufacturing example is
discussed in Section 6.

2. Background

We recall the Petri net formalism used in this paper. For
a more comprehensive introduction to Petri nets see [11].
A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set
of n transitions; Pre : PxT — Nand Post : PxT — N
are the pre- and post-incidence functions that specify the
arcs.

The incidence matriz of the net is defined as C(p,t) =
Post(p,t) — Pre(p,t).

A marking is a vector M : P — N that assigns to each
place of a P/T net a non-negative integer number of to-
kens, represented by black dots. A P/T system or net

system (N, Mo) is a net N with an initial marking Mo.

A ftransition t is enabled at M if M > Pre(.,t) and
may fire yielding the marking M' = M + C(-,t). We
write M [w) M’ to denote that the enabled sequence of
transitions w may fire at M yielding M’.

A marking M is reachable in (N, My) iff there exists a
firing sequence w such that My {w) M.

We denote My, = My the initial marking and M,, the
marking reachable from My, firing the sequence w.

3. Observers and macromarkings

In [4] an algorithm was given for estimating the marking
of a net system (N, My) whose marking cannot be directly
measured when partial information about its initial mark-
ing is given in the form of a macromarking.

Definition 1. Let us assume that the set of places P be
partitioned in r + 1 subsets; P = PbUP U.--UP,,
with PoN P; = @ for all § > 0. The number of tokens
contained in P; (j > 0) is known to be b;, while the
number of tokens in Py is unknown. For each Pj, let #;
be its characteristic vector (i.e., 7;(p) = 1 if p € P}, else

Tj(p) = 0). Let V = [#y #y---7,] and & = [bydy--b,]7.

Then the macromarking (V,b) is defined as the set {M €

NIPL | yT . M = b}, [ |
We make the following assumptions.

Al) The structure of the net N = (P,T, Pre, Post) is
known, while the initial marking M, is not.

A2) The event occurences (i.e., the transition firings) can
be observed.

A3) The initial marking M; is known to belong to the

-

macromarking(V, b), i.e., it is known to satisfy the
equation VT . My = b.

The use of macromarkings comes out quite naturally
when describing systems containing a known set of re-
sources (e.g., parts, machines) whose actual conditions
(e.g., exact location of parts within the plant, state of a
machine) is unknown.

After the word w has been observed we define the set
M(w | V,b) of w consistent markings as the set of all
markings in which the system may be given the observed
behaviour and the inital macromarking.

Definition 2. Given an observed word w and an initial
macromarking (V,b), the set of w consistent markings is

M(w | V,b) = {M |3IM': VT . M' = b, M'[w)M}.
|

Given an evolution of the net
My [t1) My, [ta) My, [ta) -+, we use the following al-
gorithm to compute the estimate g, of each actual
marking M,,, based on the observation of the word of
events w; = ty,ts,---,%;, and of the knowledge of the
initial macromarking (V,5). We denote the empty word
as wy, and the estimate of the initial marking as i, .
Algorithm 3 ([4]). Marking Estimation with Event
Observation and Initial Macromarking

1. Let the initial estimate be g, , with



P, (P) = min M (p) such that VT . M = b.

. Let the initial bound be By, = b — YE s
. Let i = 1.

. Wait until #; fires.

. Update the estimate y,,,_, to ul,, _, with

1

p:u;_;(p) e max{ﬂ'wu—:.(p)i Pre(p,t.-)}.

. Let pw, = piy,_, + C(-, ).

. Let By, = By,_, — vT. (h“:-v._l - Pw;_y )
Let i =1+ 1.

Goto 4.

In [4] a meaningful measure of the estimation error was
defined as the token difference between a marking and
its estimate and was studied under which conditions an
observed word leads to a null estimation error. If place
p belongs to a subset P; (j > 0) of the partition induced
by the initial macromarking, it is possible to prove that
the place estimation error between a marking M and its
estimate p, is such that M(p) — uw(p) < Bu(j), where
By, (j) is the j—th component of B,,.

Furthermore, the set of consistent markings can be char-

acterized in terms of a set of linear inequalities as a func-
tion of y,, and B,.
Theorem 4 ([4]). Given an observed word w €
L(N,M,) with initial macromarking (V, -'), the corre-
sponding estimated marking p,, and bound B,, computed
by Algorithm 3, the set of w consistent markings is

M("”'V;a e {M 2.”'1’.!1 IVT M = VT " Hw +Bw}
|

O b

X

A note about the computation of the initial estimate in
step 1 of Algorithm 3. This computation requires to solve
an integer problem of the form:

max & - M 5 (1)
s.t. M € M(w | V,b)
A similar integer problem needs also be solved at each
step by the controller to compute 7, as described in Al-
gorithm 6.

Given the linear algebraic representation of the set of
w consistent markings, one may assume that finding a
solution requires integer programming methods, that are
notoriously computationally hard.

It has been shown in [4] that a closed form solution of
(1) can be given when all partitions are disjopint. In this
paper we consider a more general partitioning of the set P
(that we formalize in the next assumption A4) and derive
a closed form solution of (1) when the objective function
coefficients are nonnegative,

We consider the following assumption:

A4) The partition P = PoU Py U .- U P, induced by the
initial macromarking is such that:

(a) PiN Py =0 forall j #j', j,j' > 1.

(b) Let A:= P, N(PU.--UP,); then P;A # § for
all j > 1.

The first part of the assumption states that P, may have
non empty intersection A with the union of all other par-
titions, while the P; (j > 1), may intersect P; but are mu-
tually disjoint. The second part of the assumption states

that at least one place in each partition is not shared with
any other partition.
Proposition 5. Consider the integer problem

max & - M
st. VI .M =VT .4, + B,
M 2 pw

with &> 0; V, B, and pu, given by Algorithm 8; P =
PyUP U .. UP, given as in definition 1 and satisfying
assumption A4,

The optimal solution M* can be given as follows.

If Po # 0 and 3p € Py : e(p) > 0, M* is unbounded.
Otherwise a finite optimal solution can be computed by
means of the following algorithm.

begin
A=PN(PRU- -UPR)
M = pyy: B = By
Pya := PoU{P; | B(j) = 0};
while Py C P do
begin
let p* : ¢(p*) = max{c(p) | p € P\ P,a},
let j* = max{j | p* € P; };
if p* € A then begin
{ all tokens in B(j*) may be assigned to p* }
M(p*) == M(p®) + B(j");

B(j*) = 0;
Poia = PoaU P«
end

else begin
{ in this case p* € Py N P+ }
' o(p') = max{c(p) | p € P\ (Pj+ U Poa)};
P ce(p’) = max{c(p) | p € Pj» N (P1 U Pow)};
if ¢(p*) > ¢(p') + ¢(p’*) then begin
{ assign to p* as many tokens as possible }
m = min {B(1), B(*)};
M(p) = M(p") +m;
B(1) := A(1) - m; BG*) = B(*) - m;
if B(1) =m then Py := PyaU Py
else Pyg 1= Po1aU Pj+;
end
else begin
{ assign to p’* as many tokens as possible }
M(p’®) .= M(p’*) + B(j*); B(j*) = 0;
Pora 1= Pora U Pys;
end;
end;
M*=M;
end.

O

This algorithm contains, as a particular case, the algo-

rithm given in [4]. The complexity of the algrithm is lin-

ear in the number of partitions, since the while loop is
repeated at most r times.

4, Net structure of observers
Given a net N = (P, T, Pre, Post) and an initial macro-

marking (V, b), (that induces a partition P = PyUP,U- - -U
P,) the corresponding observer net can be constructed as



discussed in [3].

The observer net Ny, = (P, T, Pre, Post, B, L) will have
the same net structure of N with in addition:

a) a set of r bounding places B: each bounding place 8,4 ;
in B is associated to a subset P; (j > 0) of the partition
induced by the initial macromarking;

b) a set of links L = U;=1(PJ‘ X {Bos,5}): a link (p, Bop.j)
connects each place p € P; to the corresponding bounding
place ﬂab,j-

The initial marking of the set of places P is py,, while
the initial marking of the set of bounding places B is By,
(as computed by Algorithm 3).

Let the observer be in a marking [¢L / B,]T. As the
plant evolves firing a transition ¢ the corresponding tran-
sition is fired on the observer and the new observer mark-
ing [uT, / BT,]T is computed as described in Algorithm 3.
That is:

o max {uw(p), Pre(-,t)(p)} tokens are taken from each
place pe P.

o If pu(p) < Pre(-,t)(p) then Pre(-,t)(p) — pu(p) to-
kens are taken from each hounding place linked to

p.

e Post(:,t)(p) tokens are added to each place p € P to
obtain [u, / BT 7.

5. Control using observers

In this section, we show how the marking estimate com-
puted by an observer can be used by a control agent
to enforce a given specification on the plant behaviour.
In general, a specification is given as a set of forbidden
markings F that should never be reached by the system
under control, or, equivalently, by set of legal markings
L=NPl_F

We make several assumptions that are briefly discussed
here.

e The set of legal markings is given in the format of
linear constraints, ie., £ = {M € NI” | ST . M <
k} where S = [ ---§,] with § € Z'P! and E =
[ky - ky]T with k; € Z. This kind of specifications,
that we call generalized mutual exclusion constraints,
have been considered by various authors [5, 10, 14].

e The controller may disable transitions to prevent the
plant from entering a forbidden marking. From the
knowledge of u,, and B,, the controller computes a
control pattern v : T' — {0,1}. If ¥(¢) = 0 then # is
disabled by the controller.

e All transitions are controllable, i.e., can be disabled
by the controller.

The considered control scheme is shown in Figure 1.d.

Assume that the initial marking M, of the plant does
not necessarily belong to £ (this is a natural assumption
when considering error recovery problems). Then, given a
marking M we may want to prevent the firing of transition
t such that M[t)M' when both these two conditions are
verified:

L. There exists §; with 5 - M’ > k;, i.e., M' € F;

2. §;-M'>3§;-M,ie, the firing of ¢ either leads to a
violation of the constraint (if M € L) or to a” worse”
violation of the constraint (if M € F).

In this case the following algorithm taken from [4] may
be used to compute the control pattern v at each step.
Algorithm 6. Let w be the observed word and M(w |
V,b) the set of w consistent markings. Let the specifica-
tion be £ = {M € NP1 | ST . M < k} with § =[5} - 5]
and k = [ky -+ ky]7.
forallteT

begin
r{f) = 1;
i=1
while j < v and v(¢) = 1 do
begin
A= 5?' -C(-1);
if A > 0 then
begin
= max {§ - M | M € M(wt | V,B)};
if m > k; then (1) := 0;
end;
j=i+h
end;
end.

|

Thus a transition is disabled at M only if its firing leads
to a marking M’ such that for at least one constraint j:
E? M > 5?-" ‘M (i.e., A > 0) and there exists a consistent

marking M" in M(wt | V, Z-J.) that violates the constraint
(i.e., E:f - M" > kj).

Note that to compute 7 we need to solve an integer
problem as discussed in Section 2. If assumption A4 holds,
however, the result of Proposition 5 may be used to effi-
ciently compute 7.

6. A manufacturing example

In this section we consider a manufacturing example com-
posed of two machines, m1 and m2 connected through a
buffer of limited capacity. The net associated to each ma-
chine is composed of two places: idle (pl for ml, p3 for
m2) and working (p2 for m1, p4 for m2).

The parts within the flowshop are processed first by ml
and then by m2. The net associated to the routing of
the parts is composed of three places: pb (parts to be
processed), p6 (parts in the buffer between the machines),
pT (parts processed and ready to be removed). There are
3 pallets in the system, and the firing of transition g
corresponds to the removal of a processed part from a
pallet and the positioning of a new part to be processed
on this pallet.

The net corresponding to this system is shown in Fig-
ure 2.a while Figure 2.b shows the observer net for this
plant.

Since each machine can be either idle or working and
there are 3 pallets in the system, our knowledge of the
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Figure 2: Plant (a) and observer net (b) for a manufacturing
example.

initial marking can be expressed by the macromarking:
M(py)+M (pa) = 1; M (ps)+M(pa) = L; M(pz)+M(pa) +
M(ps) + M(ps) + M(p7) = 3 R

The controller must enforce three specifications. A first
specification requires that at most a machine may be
working at any time: this can be represented by the
constraint M(ps) + M(Ps) < 1. A second specifica-
tion requires that at most 2 parts may be simultane-
ously in the buffer: this can be represented by the con-
straint M(ps) < 2. A third specification requires that
M(ps) + M(p2) < 2. The last constraint has been intro-
duced to avoid deadlock. In fact, it can be violated only
when 2 parts are in the buffer and m; is working. The only
transitions enabled in this case are {2 and t3. Because of
the first two constraints these two transitions are disabled
by the controller and the closed loop net deadlocks.

In the following we discuss a test case in detail. We as-
sume that the marking of the plant is not measurable,
therefore an observer must be used in the control loop.
The resulting closed loop behaviour is represented in the
reachability graph in Figure 3. Each box is labeled with
the marking M,, of the plant (shown between round brack-
ets), and the marking estimate p,, and bound B,, (shown
between square brackets). The initial marking is repre-
sented by a round box. A thick box represents a marking
reached by a complete word w, i.e., the value of B, is
zero; in this case the observer has perfectly reconstructed
the plant state and all future evolutions are the same as
if the plant marking can be exactly measured. the fu-

ture evolution from such a marking is not shown. The
thin dashed arrows represent the transitions disabled by
the controller. All these transitions would have been dis-
abled even if the actual marking had been known. The
thick dashed arrows represent the transitions disabled by
the observer, i.e., those transitions that would have been
enabled if the actual marking had been known.

From the reachability graph in Figure 3 it can be seen
that the actual marking can be reconstructed after quite
a small number of transitions.

Furthermore only in few cases transitions are disabled
by the observer.

A second test case can be performed assuming
[1010111)7 as initial marking. In this case the use
of the observer in the control loop results in a blocking
closed loop behaviour. In fact, neither ¢; nor ¢3 may fire
(even if enabled by the controller) since the observer has
not yet reconstructed the state.

This blocking caused by the observer may be avoided
introducing suitable time-out mechanisms as discussed in

(3].
7. Conclusions

In this paper we have discussed the problem of controlling
a Petri net whose marking cannot be measured.

Assuming that only the net structure of the plant is
known while the initial marking is known to belong to a
macromarking, it is possible to estimate the actual mark-
ing of the net based on the observation of a word of events.

In this paper we have extended the results of previous
works considering a more general structure of the initial
macromarking: we have assumed that a single subset,
whose intersection with all the others is different from
the empty set, may exist.

The estimate generated by the observer may be used to
design a state feedback controller, that ensures that the
controlled system never enters a set of forbidden states,
We have considered a special class of specifications that
limit the weighted sum of markings in subsets of places.

As it has been underlined in the manufacturing example,
the use of marking estimates (as opposed to the exact
knowledge of the actual marking of the plant) may cause
the controlled plant to block. However, such a problem
can be overcome by means of suitable time-outs.
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