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In this paper we address the design of a controller-observer for a mechanical crane. We consider a linear model of the
crane where the lenght of the suspending rope is a time-varying parameter. The set of models given by frozen values of
the rope lenght can be reduced to a single time-invariant reference model using a suitable time scaling. We construct a
controller and an observer for the reference model assigning the desired closed loop eigenvalues for the both system and
estimation error. The time scaling relation can be inverted to derive the corresponding controller and observer law for
the time-varying system. This law takes the form of a gain-scheduling as a function of the rope length. The proposed
procedure leads to the computation of the desired time-varying gains for controller and observer design in a symbolic
parameterized form. Using a Lyapunov-like theorem, it is possible to find relative upper bounds for the rate of change
of the time-varying parameter that ensure the stability of the original system.

1. Introduction

The control of a mechanical crane during cargo handling
aims to optimize its dynamic performance reducing the
swing of the load while moving it to the desired posi-
tion as fast as possible. Software tools, as reported in
[4], have been developed for this purpose, and different
control methodologies [1, 5] have been presented in the
literature.

In this paper we follow the approach presented in [3]
that uses a linear parameter-varying model of the crane.
The varying parameter is the length of the rope that sus-
tains the load. The idea is that of considering the set
of frozen models given by different constant values of the
rope length. Using a suitable time scaling, all these mod-
els can be reduced to a single time-invariant reference
model [8] that does not depend on the value of the rope
length.

In [3] a feedback controller design has been proposed:
the control problem for the time-invariant reference model
was posed as an LQR, and the corresponding constant
feedback gains were computed. By inverting the time scal-
ing, these constant feedback gains gave the correspond-
ing time-varying gains that implement an implicit gain-
scheduling. In this paper we use a similar approach, but
we design the controller for the reference model by assign-
ing the desired poles of the closed loop reference model.
Pole assignment seems a more natural way of computing
the controller for the following reasons. Firstly, pole place-
ment allows one to directly assign the damping coefficients
of the poles of the reference model that — by a property
of the time scaling — can be shown to be the same of
the damping coefficients of the poles of all frozen models.
Secondly, we are able to derive a closed form expression of
the controller gains as a function of the desired closed loop

poles, that assume the role of design parameters. Thirdly,
we observed that finding by trial-and-error “good” poles
— both in terms of performance and of stability — was
easier than tuning the coefficient of the weight matrices
used in [3] to compute the LQR. controller.

The physical realization of such a gain-scheduling con-
troller requires the knowledge of all state variables, of the
rope length, and of the load weight. In this paper we ad-
dress the problem of designing an observer to estimate the
unknown system state, while we still assume that the rope
length and the load weight are known or measurable. The
observer uses as system output the measure of the trolley
position, and is implemented, as the controller, by implicit
gain-scheduling.

There are two important aspects in the approach we
propose. First of all, we use the same framework to de-
sign both observer and controller. Secondly, the state-
feedback gains and the observer gains are expressed in a
parametrized form, as a symbolic function of the desired
closed loop dynamics (i.e., the eigenvalues of the reference
closed loop system and observer), rope length, rope veloc-
ity, trolley and load mass. As these parameters vary, the
gains need not be recomputed by reapplying the whole
design procedure but can simply be obtained by function
evaluation.

Studying the stability of a time-varying system is usu-
ally a difficult task. It is well known that the stability of
the set of frozen models does not ensure the stability of
the time-varying system unless the parameter variation is
sufficiently slow [6]. It is often the case that the bounds
on parameter variations that give sufficient conditions for
stability are too restrictive to be of any practical interest.

We propose to use the general methodology of [3], based
on a Lyapunov-like theorem [6], and show that in an ap-



Figure 1: Model of the crane.

plicative example this approach gives sufficiently large
bounds on the rope velocity to ensure stability of the
time-varying system in all nominal operating conditions.
Since this procedure is founded on the results of numeri-
cal simulations, we also propose a test to ensure that the
computational error cannot invalidate the stability result.

2. Time-varying model and time scaling

We will consider a planar crane, whose model is shown
in Figure 1. The following notation is used: mp, my are
the mass of the trolley and that of the load, respectively;
L is the length of the suspending rope; @7,z are, re-
spectively, the displacement of the trolley, and that of
the load with respect to (wrt) a fixed coordinate system;
e = (mopaxy + mpxr)/(mp + mr) is the displacement
of the center of gravity of the overall system wrt a fixed
coordinate system; ¢ is the angle between the suspending
rope and the vertical taken as positive in the clockwise
direction (see figure); z, = #r — 2z = L sinp is the dis-
placement of the load wrt the vertical; u is the control
force, applied to the trolley; ¢ is the gravitation constant.

We take as measurable variable the trolley position z7p.

If the load is heavy enough, it is possible to consider the
suspending rope as a rigid rod. Under the assumptions
reported in [3] (namely, small angles and force applied by
the rope equal to the weight of the load), choosing the
following state vector:

& = [2o(t) 20(t) 84 (t) d0(t)]” )
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The subscript ¢ has been introduced to recall that the
model given by (3) is time-varying because w; is a function
of L(t).

If we consider a given constant value of wy, i.e., if we
consider the system (3) for a frozen value of L, we can
consider the following transformation:

T = wyt. (4)

This transformation defines a time scaling that enables us
to rewrite (3) as:

2o(1) = 2o(7(t)) = 24(7)
zo(t) = zo(7(t) = zc(7)

2,(t) = %T(i(;(ﬁ . w‘i“.’.&‘e;(_ll = widy(r) (5)
bolt) = dmcd:(t)) i da::;ir) S

According to (5), variables z¢ and z, can be taken as
functions of t or 7, while their derivatives are changed by
the time scaling. We can write (5) as:

ft ~ Ni'.r (6)

where 2z, = [zw(‘r) zc(T) &y(7) -"’C(T)]T and
N =diag{l,1,w;,w}; (7)
According to (5) we may also write

-

Ty = ngé‘r (8)
where #, is the derivative of Zr wrt 7.

Using equations (6) and (8), it is possible to rewrite
system (3) as
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The representation given by (9) is a time-invariant refer-
ence model and does not depend on the frozen value of L
in equation (3).

3. Controller Design

As shown in [3], it is possible to express the relashionships
between the eigenvalues and the eigenvectors of the ma-
trices A; and A,. Let A; (A;) be the diagonal matrix of
the eigenvalues of A; (A;); then from (10) we obtain:

ﬂg = waf (14)
while between the eigenvector matrices V; and V;
Vi=NV; (15)

holds, i.e., given a matrix of eigenvectors V; for A, it is

possible to compute one of the possible matrices of eigen-

vectors V; for A;.
A regulator can be designed by imposing the closed loop
poles to system (9), finding a control law of the form

uy = —K, &, (16)

where K, is a constant matrix and does not depend on
the value of L. The above equation can be transformed,
using (6) and (13), into a corresponding law for the frozen
system (6) that gives:

U = '—Kif-g (17)
where
K¢ =mrwlK, N1, (18)

The feedback laws (16) and (17) lead to closed loop sys-
tems whose characteristic matrices are:

Ay = Ay — B,K, A;=A— BiK;. (19)
Equations (10), (14) and (15), written for the open loop
systems, still hold for the corresponing closed loop sys-
tems. The poles of the frozen closed loop system in ¢
depend on the value of L, and thus on w¢, but they have
the same damping factor for all values of L (see [3]).

For a SISO stationary system it is easy to find a feed-
back control law by imposing the closed loop eigenvalues
[2]. Let us denote as g(s) = s* + a3s® + azs” + a15 + ag
and §(s) = s* + pas® + p2s? + p15 + po the open loop and
the desired closed loop characteristic polynomial relative

to system (9), respectively. Therefore the time-invariant
control law is:

K.=p.p!

where D, = [(po— o) (p1—a1) (p2 — a2) (ps — az)]

and

(Ag + GSAE + asA; + ay I)B-,-
(A.,- + 331)87
B,
is an equivalence transformation that brings the initial

system into a controllable canonical form. So the time-
varying control law, according to (18), is:

=

(p1 — ps — 1)mpw;
ps(mr + mp)w?
(Pu — p2)mrw;
p2(mr + mp )w;

K‘(t) =

4. Observer Design

It is possible to construct a Luemberger observer for (9)
by finding the matrix G, which imposes the desired closed
loop poles to the reference error system:

& = (Ar; — G,C,)&; = E, &, (20)

where €, = :E:,.. — &, and E, is the reference state estimate.
If we denote &; the frozen system estimate and &} = & — &,
the corresponding error, it is easy to observe that:

ér = Né;, (21)
and

& = (A — GiC))& = E&) = wNé, (22)
where

G: = wiNG,. (23)

It is worth noting that (10), (14) and (15) still hold for
the error closed loop system.

The assignement of the eigenvalues is done as in the
controller case, by first transforming the system into an
observable canonical form by means of the equivalence
transformation:

C—.-(AE + azA? + ax A, + a,I)
C, (A?; +azA, + azf)
C(A, + al)

C:

where the coefficients a; are defined as above and s* +
935° + 9252 + ¢15 + qo is the desired closed loop character-
istic polynomial for the error system. In such a case if we

call Dy = [(g0 — a0) (1 — a1) (g2 — a2) (ga — “3)]T:
G. = P;'D,

P=




and, according to (23),
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5. Stability

The matrices A; and E; have eigenvalues with negative
real parts for all values of L(t). However, this is not
enough to ensure stability of the time-varying closed-loop
model unless the rate of change of the time-varying pa-
rameter L(t) is sufficiently slow.

We propose to apply as in [3] a Lyapunov-like theorem
reported in [6], to determine upper bounds for the rate of
change of L(t) that ensure stability.

Theorem 1 (Shamma [6]). Given the
system:

#(t) = A@)E() (24)

where A(t) is bounded and globally Lipschitz continuous,
let there exist matrices P(¢) and @Q(t), symmetric and
positive definite, such that:

time-varying

1. P(t) is continuously differentiable for all £ > 0;

2. there exist constants e;, a2 and az > 0 such that,

for all t > 0:
ay < }\mln{P(t)} < ’\max{P(t)} < ajp
AImm{Q(t) t)} > as

3. P()A(t) + AT(t)P(t) = —Q(t) (Vi >0)

where Amin (resp., Amax) denotes the smaller (resp.,
larger) eigenvalue.
Under these conditions, the linear system (24) is expo-

nentially stable.

Now, let us consider the controller design. Let A, and
V> be the eigenvalue and eigenvector matrices for AT.
Then, using the transpose of equation (10), it is possible
to show that A; = w;A, and V, = N~1V. are eigenvalue
and eigenvector matrices for A7. We have chosen matrix
P(t) in Theorem 1 as P(t) = V,V;# = N-1V,VHEN-!
where # denotes the complex conjugate transpose. Thus
it is easy to compute analytically matrices Q(t) and P(t).

Exactly the same choices can be done for the error
closed loop system with matrix Z;. We denoted as P°(t)
and @°(t) the corresponding matrices.

The procedure outlined above, requires the computa-
tion of the minimal eigenvalue of the symmetrical matrices
(Q — P) and (Q° — P°). This is usually done numerically
and it may be the case that this number is very close to

zero. Thus one may worry that the sign of this quantity
be incorrect because of numerical errors. The following
proposition may be used to validate the approach.

Proposition 2. Let M € R™*™ be a symmetric matrix
with eigenvalues ); and eigenvectors #;, and let \; and v.
be the corresponding estimates.

Let us c-:_).usid?r l;he intervals Z; = [.i,- -0, 5«,'+,6,-], where
= ” Mv; — X;9; ”2 If Z; Nni; = @ for all ¢ # j, then
A; €T; for all 4.

Proof. Follows from the fact that if M is a symmetric
real matrix its eigenvalues are real, and its eigenvectors
are orthogonal. Thus the relation [7)

min|; — A < || M@ = Add ||
holds YA € R and for all @ € R™ with || @ |l;=1. O

6. Simulation results

The above described approach was applied to a con-
tainer crane in the port of Kobe whose model is shown
in Figure 1. The numerical values we assumed for sim-
ulation are: my = 6000kg, L(t) € [Lmin, Lmax], Where
Lpin = 2m, Lyax = 10m. In nominal operating condi-
tions |L| < Im/s. These values have been taken from
[5].

The p; and g; coefficients are derived choosing as desired
elgenvalues for A, {—0.640.02i, —0.5+0.014}, and for

E; {-1.2+0.04, -140.024}.

To show the good performance of the designed con-
troller and observer, we present two numerical simulations
in which we have been taken into account the complete
nonlinear model of the crane given in [3]. We considered
two different extreme situations: in the first one we as-
sumed that the crane is lifting a heavy load; in the second
one that the crane is lowering the hook wih no load. The
sets of eigenvalues selected for controller and observer are
valid in all the operating conditions,

6.1 Simulation 1

In the first simulation, we considered a load mass mp =
42500kg. The simulation has been performed for a lifting
movement from Lo = 10m to Ly = 2m with L = —1m/s.
The initial state of the crane was #,(0) = 1.5m, z¢(0) =
—bm, £,(0) = 2¢(0) = Om/s. The initial state estimate
was £,(0) = 1m, &¢(0) = —4.5m, £,(0) = £¢(0) = Om/s.
In Figure 2 we show the plots of the variables of interest,
where e, () = 2,(t) — 2,(t) and ec(t) = zc(t) — 2c(t).

6.2 Simulation 2

In the second simulation, we considered the case of no
load and we assumed the presence of the only hook, so
my = 20kg. The simulation has been performed for a
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Figure 2: Results of simulation 1: lifting movement with mp, = 42500kg. (a) Load and trolley positions z7(¢) and zf(t).

(b) State variables z1(t) = 2,(t) and z3(t) = zc(t). (
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Figure 3: Results of simulation 2: lowering movement with m; = 20kg. (a) Load and trolley positions 2 (t) and 2 (t).
(b) State variables x1(t) = ,(t) and z2(t) = z¢(t). (c) Control force u(t). (d) Estimate errors e, (t) and ec(t).

B apon B oa

Lm ]10

(d)

8

Lim ] 10

Figure 4: Stability analysis. (a) Plot of Ayin {Q— P} with my = 42500kg. (b) Plot of Anin{Q°— P“} with mp = 42500kg.
(c) Plot of Amin{@ — P} with my = 20kg. (d) Plot of Anin{Q° — P°} with my = 20kg.



lowering movement from Lo = 2m to Ly = 10m with
L = 0.5m/s. The initial state of the crane was z,(0) =
0.3m, z¢(0) = —6m, 2,(0) = &¢c(0) = Om/s; while the
initial state estimation was &,(0) = Om, £¢(0) = 27(0) =
—4.9990m, z,(0) = £¢(0) = Om/s. In such a case (no
load) it is not difficult to have a good initial estimation
of the position of the centre of gravity: we can suppose
that it is coincident with the trolley position that is a
measurable variable. In Figure 3 we show the plots of the
variables of interest.

6.3 Stability analysis

The stability analysis presented in Section 5 requires the
computation of Ayin{@ — P} (as a function of L) for dif-
ferent values of L. ,

Figure 4.a shows the plot of Amin{Q — P} versus L for
different values of L and for my = 42500kg. According
to Theorem 1, the upper bound on |L| is the value corre-
sponding to the first curve that, as |L| is increased, goes to
negative values. As can be seen from Figure 4.a, relative
to lifting operations, this happens for |L| > 1.5m/s. The
same conclusion can be derived in the case of a lowering
movement (the corresponding figures are not reported).
Hence it can be concluded that the time-varying system
with system matrix A is stable if |L| < 1.5m/s, that is to
say it is always stable in nominal conditions.

The same discussion has been done for the error closed
loop system with matrix £;. In Figure 4.b we reported the
curves corresponding to those in Figure 4.a where Q°(t)
and P°(t) are determined in the same manner as P(t)
and @Q(¢f). The same conclusion can be derived in the
case of a lowering movement (the corresponding figures
are not reported). Note that stability of the observer is
guaranteed for any velocity of practical interest. This is
due to our choice for the set of observer eigenvalues, that
are much more stable than those of the controller.

The analogous curves with m; = 20kg and relative to a
lowering operation are shown in Figure 4.c and Figure 4.d.
Similar curves can be drawn in the case of a lifting move-
ment. Here it is evident that stability is guaranteed for
smaller values of the rope velocity. We can repeat the
same discussion for every intermediate value of my and
it is possible to observe that stability is guaranteed for
values of || that decrease with the load. This is not a
surprising fact.

In reality what is plotted in the previous figures is not
Amin but its estimate Amin computed with a numerical
procedure. Even if all computed values Ani, are close to
zero, Proposition 2 can be used to ensure that all Api, are
positive. In fact, in all cases the estimated eigenvector
associated to the estimated eigenvalue _E\ was such that
the values of the norms || {Q@ — P}w — Aw ||2 and || {Q, —
Po}fﬁ— Ao ||2 are ~ 10~**, while all estimated eigenvalues
are spaced much further apart.

7. Conclusions

In this paper we presented a general metodology for con-
trolling mechanical cranes. It is a generalization of the
procedure applied to the same model in [3] in which a time
scaling has been used to reduce the original time-varying
system to a stationary one. In that case we supposed a
measurable state. This is not always the case, so we ex-
tended the procedure to construct also a state observer.
Furthermore in this paper we derived the time-varying
laws for controller and observer design, by imposing the
desired eigenvalues to the stationary closed loop system
and to the error estimation system respectively. We also
studied the stability of the time-varying systems with gain
scheduling. Using a Lyapunov-like theorem it was possible
to find upper bounds for the rate of change of the varying
parameter (the lenght of the suspending rope) that ensure
the stability of a given crane in all its possible operating
conditions: maximum load and no load, lifting and low-
ering movements. The gain matrices for controller and
observer are given in a parametrized form. The chosen
sets of eigenvalues are valid in every condition with cau-
tion to use a quite smaller rope velocity when the load is
light or even null.
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