
Hybrid Analysis of Automated Manufacturing

Systems Using Discrete Linear Inclusions∗

†Fabio Balduzzi, ‡Alessandro Giua, †Giuseppe Menga
† Dipartimento di Automatica ed Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24 , 10129 Torino, Italy

(balduzzi, menga)@polito.it

‡ Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari

Piazza d’Armi, 09123 Cagliari

giua@diee.unica.it

Abstract

In this paper we present an hybrid formulation for the modeling and control of automated man-
ufacturing systems. This original approach leads to a linear time–varying discrete–time state
variable model which allows fast and direct design of the system configuration. The problem is
addressed by splitting the discrete event dynamic process into two hierarchical layers and defining
what we call macro–events and macro–states. Then the stability of the system is considered in
terms of the stability of discrete linear inclusions which evolution in time is described by lan-
guage theory and finite automaton methods. We derive structural properties of such model and
we make evidence of an intriguing relationship existing between idempotent matrices and this
hybrid formulation of the discrete event dynamic processes.

1 Introduction

In this paper we develop an hybrid model of discrete event dynamic processes that combines as-
pects of automata and linear systems theory, thus exploring potential interconnections between
those classes of systems. We considered automated manufacturing systems with unreliable ma-
chines, buffers of finite capacity, arbitrary service time distributions and routing policies, where
several parts of a single class of products are circulated and processed. The main contribution
of this work is to develop a mathematical descriptions of the process which specifies a mecha-
nism for determining when a limited number of events do occur. Precisely we adopt the fluid
approximation theory to derive a discrete-time linear state variable model which can be used to
evaluate performance measures and make gradient estimation. This is achieved by splitting the
discrete event process into two hierarchical layers and defining what we call macro–events and

∗Published as: F. Balduzzi, G. Menga, A. Giua, ”Hybrid Analysis of Automated Manufacturing Systems

Using Discrete Linear Inclusions,” Proc. IEEE 37th Int. Conf. on Decision and Control (Tampa, Florida), pp.

1710-1715, December, 1998.

macro–states.

The evolution in time of an automated manufacturing systems is discussed within a framework
that distinguishes two levels of aggregation. At the lower level, the microscopic behavior of
arrivals and departures of parts to(from) each machine is modeled using first order fluid ap-
proximations. At the higher level a discrete event model will represent the transitions through
a sequence of macro–states at the occurrence of a limited number of events, the macro–events.
Both levels of the process are represented by a discrete–time linear state variable model which
describes the temporal behavior of a timed event graph that represents the evolution of a discrete
linear inclusion (DLI) through a sequence of admissible macro–states.

Specifically the stability of the system is considered in terms of the stability of the associated DLI
and we show that steady regimes are defined by sets of idempotent matrices all infinite product
of which do converge. This result highlights an intriguing new relationships that have emerged
with automata theory, discrete event systems and idempotent analysis as recently mentioned
in [6]. This original formulation also has implications for efficient simulations of discrete event
dynamic systems (DEDS) as the macro–event simulators can take into account the underlying
algebraic structure for performance modeling and evaluation.

1.1 Previous Work

A substantial body of literature about DEDS is concerned with the analysis of automated
manufacturing systems. Even so analytic results are available only for simple systems. Then
discrete event simulation models have been extensively used for analysis and design issues.
Combining simulation and elementary queueing analysis Phillis and Kouikoglou [10] proposed
a discrete event continuous flow model more efficient than conventional simulators, to predict
the system evolution. Continuous flow models for transfer lines have also been studied by Suri
in [5]. In a recent work Balduzzi and Menga [1] developed a discrete–time linear stochastic
state variable model for the fluid approximation of flexible manufacturing systems. Then, by
using perturbation analysis techniques [8] they obtained average values and variances of both
performance measures and of their gradients with respect to the system parameters to perform
optimal design of the system configuration.

2 Description of the Model

The queueing network considered in this work consists of a set of n single-server stations, denoted
by Mi, for i = 1, . . . , n, serving a single class of product. Parts move generically from machine Mi

to Mj according to the their production cycle and are queued in buffers, one for each machine,
of finite capacity Ci. Since machines are unreliable we consider failures as operation–dependent
failures and we define for each machine the production volume before breaking, denoted by wi, and
the repairing time, denoted by di, both assumed as independent identically distributed random
variables. Machine service times are also assumed independent random variables with identical
distribution with mean τi. The maximum average machine production rates are indicated with
vMAX,i, i.e. vMAX,i = 1

τi
, and we denote by w̃i and d̃i the samples of the random variables wi

and di drawn during a simulation run.

2

2.1 The microscopic level: Fluid Approximations

We consider fluid approximations to model the microscopic behavior of an automated manufac-
turing systems under conditions of balanced heavy loading which involves smoothing of discrete
processes [3]. We denote with ∆k = [tk, tk+1] the interval of time between the occurrence of
consecutive macro–events at times tk, for k = 0, 1, 2, . . ., called macro–periods. We assume
that within each macro–period the stochastic processes which describe the queueing system are
stationary. Then the global behavior of the system will be piecewise stationary.

We now derive a first order fluid approximation of the stochastic counting processes accounting
for the number of departures of parts from machine Mi to Mj . These processes are assumed
independent among different sources and destinations and are approximated by continuous pro-
cesses denoted with {Ni,j(t), t ≥ 0}. The average values E[Ni,j(t)] correspond to the first order
fluid quantities, the flow rates vi,j(t), which are piecewise constant over the entire time horizon.
We find that [3], [9]

Nout,i(tk+1) = Nout,i(tk) + vout,i(tk) · (tk+1 − tk)
Nin,i(tk+1) = Nin,i(tk) + vin,i(tk) · (tk+1 − tk)

where
Nin,i(tk) =

∑

h

Nh,i(tk), Nout,i(tk) =
∑

j

Ni,j(tk)

are the input and output fluid processes at the beginning of each macro–period,

vin,i(tk) =
∑

h

vh,i(tk), vout,i(tk) =
∑

j

vi,j(tk)

are the inflow and outflow rates of parts which are constant values within the macro–periods.
Then the buffer levels, denoted by xi(t), are simply obtained as

xi(tk+1) = xi(tk) + [vin,i(tk)− vout,i(tk)](tk+1 − tk)

2.2 The macroscopic level: Macro–States and Macro–Events

The system evolves through a sequence of macro–states, characterized by the functional status
of the physical components of all services: the machines, operational or down and the buffers, full,
not full–not empty, empty. We denote the set of macro–event types by E = {Fi, Ri, BEi, BFi, RCi}
which elements are defined as follows:

• Fi (Failure of machine Mi). After a machine is repaired, failures will occur after the
production volume w̃i.

• Ri (Repair of machine Mi). When a machine fails, it will be repaired after d̃i time units.

• BFi (Buffer Full at machine Mi). The buffer level reaches its capacity Ci while vin,i(t) ≥
vout,i(t).

• BEi (Buffer Empty at machine Mi). The buffer level reaches 0 while vin,i(t) ≤ vout,i(t).

3

• RCi (outflow Rate Changed at machine Mi). When the machine is operational, upon the
occurrence of exogenous macro–events, changes do occur in the inflow and outflow rates
of parts of machine Mi.

Let M = {Mo
i ,Mb

i } and B = {Bf
i ,B

e
i ,B

n
i } be the machine status and the buffer status set

types respectively. The set of admissible macro–states is denoted by Q = {(m1, b1, . . . , mn, bn) |
mi ∈ M, bi ∈ B}. Therefore the macro–states of the system, qi ∈ Q, combining the functional
status of all services, may only change due to the occurrence of the macro–events.

The machine status mi ∈M may take the following symbolic values: Mo
i (Machine Operational)

and Mb
i (Machine Broken). Note that when a machine breaks down then its production rate

is vout,i(tk) = 0. The buffer status bi ∈ B may take the following symbolic values: Bf
i (Buffer

Full), Be
i (Buffer Empty) and Bn

i (Buffer not Full–not Empty).

These specifications allow us to describe the dynamics of the system in a form that enables
GSMP representation. Each macro–event is associated with a clock representing its residual
lifetime and each clock has a rate (the clock speed) at which it runs down. When the clock
associated with a macro–event goes to 0, then that macro–event does occur. Note that upon
the occurrence of a macro–event changes may occur to the clock speeds and the macro–state of
the system.

3 A Discrete Time Linear State Variable Model

In this section we develop a discrete–time linear state variable model which represents both
layers of the discrete event process. We adopt a dynamic control policy to myopically generate
an optimal solution for the average machine production rates, that is obtained by solving a
sequence of linear programming problems, one for each macro–period. Each solution represents
the average flow rates vi,j(tk) to be expected for the macro–period ∆k. Precisely when the
system enters a new macro–state those rates, as reference values for the next macro–period, are
determined as the solution of the following LP problem:

J = max
∑

i

vout,i(tk), subject to:





0 ≤ ∑
h vi,h(tk) ≤ vMAX,i∑

j vj,i(tk) ≤
∑

h vi,h(tk), ∀Mi | bi = Bf
i∑

h vi,h(tk) ≤
∑

j vi,j(tk), ∀Mi | bi = Be
i∑

j vi,j(tk) = 0, ∀Mi |mi = Mb
i

where the objective function J has been conceived in order to maximize machines utilization.

We now describe a discrete–time linear state variable model which samples are the occurrence of
macro–events at time tk, for k = 0, 1, 2, Let us define the input signal u(k) as tk+1 = tk+u(k)
and for each machine we arrange the following set of equations:

xi(tk+1) = xi(tk) + [vin,i(tk)− vout,i(tk)]u(k) (1)

χi(tk+1) = αi(k)χi(tk) + vout,i(tk)u(k) (2)

si(tk+1) = βi(k)si(tk) + βi(k)u(k) (3)

4

where αi(k), βi(k) ∈ {0, 1}. For simplicity of presentation we consider in this work production
systems with a single class of part flowing through and in what follows we do not take into account
fluctuations in the average values of state variables xi, χi and si due to the approximations
introduced by the fluid model. The complete stochastic state variable model can be found
in [1]. At the occurrence of the macro–events equation (1) accounts for the current buffer
levels. Equations (2) and (3) represent the partial production volume currently processed by
the machine next to fail since the last repair, and the time spent by the machine under repairing
since the last failure, respectively. Indicators αi and βi are switched from 0 to 1 at the occurrence
of the proper macro–events. That is when a machine breaks down, say machine Mi, its current
production rate will be vout,i(t) = 0, then αi = 0 and βi = 1. When Mi is repaired then
vout,i(t) = vMAX,i, then αi = 1 and βi = 0.

The state of the system is represented by the vector x(k) defined as:

x(k) = [tk, x1(tk), χ1(tk), s1(tk), . . .

. . . , xn(tk), χn(tk), sn(tk), xn+1(tk)]T

which dimension is m = dim[x(k)] = 3n + 2. In fact there are 3n equations as defined through
Eq. (1)–(3) plus the two extra equations:

tk+1 = tk + u(k) (4)

xn+1(tk+1) = xn+1(tk) + vout,n(tk)u(k) (5)

where state variables tk and xn+1(tk) occupy the first and the last position within the state
vector x(k), respectively. These equations are accounting for the current time of the occurring
macro–event and for the final storage area (total production).

We can now formally describe the behavior of this hybrid system with a linear time–varying
discrete–time state variable model which can be expressed in matrix notation as:

x(k + 1) = D(k)x(k) + b(k)u(k) (6)

Precisely Eq. (6) describes the temporal behavior of a timed event graph that represents the
evolution of an hybrid systems through the sequence of admissible macro–states. That is, if
x(k) denotes the macro–state variable vector at the kth occurrence times of the different macro–
events, then there exist a finite set of matrices ΣD = {D1, · · · ,Dp} , Di ∈ Rm×m, for i = 1, . . . , p

such that

x(k) = Φ(k, 0)x(0) +
k−1∑

i=0

Φ(k, i + 1)b(i)u(i)

is the solution for the macro–state Equation (6) in terms of the initial state x(0) and the input
signal u(k) at step 0 and beyond, and where Φ(k, h), k > h, is the state transition matrix

Φ(k, h) = D(k − 1)D(k − 2) · · ·D(h− 1)D(h)

where each macro–state coupling matrix is in the finite set ΣD. Particularly each D(k) ∈ ΣD

is diagonal with entries 0 and 1 and each vector b(k) has elements that depend on the average
machine outflow rates.

With the GSMP formulation any macro–event does occur when its associated clock runs down
to 0; with this model any macro–event happens when a certain state variable reaches a specified

5

value. Precisely when a machine breaks down or gets repaired then it must result χi(tk+1) =
w̃i or si(tk+1) = d̃i. When a buffer gets full or empty then the condition xi(tk+1) = Ci or
xi(tk+1) = 0 will be satisfied. We indicate with r(k +1) these values reached by the appropriate
state variables at the occurrence of the macro–events. Then

r(k + 1) = eT
j (k)x(k + 1) = h(k)x(k) + b(k)u(k) (7)

u(k) = K(k)[r(k + 1)− h(k)x(k)] (8)

where eT
j (k) is a vector with entries 0 and 1 which selects the state variable within vector x(k)

that is leading to the new transition, and

h(k) = eT
j (k)D(k), b(k) = eT

j (k)b(k), K(k) =
1

b(k)

Equation (6) can be straightforward rewritten as a closed-loop system:

x(k + 1) = A(k)x(k) + K(k)b(k)r(k + 1) (9)

where
A(k) = D(k)−K(k)b(k)h(k) (10)

represents the closed–loop system matrix.

3.1 The Macro–Behavior of the System

At the macroscopic level the evolution in time of the system can be represented by a finite
automata (FA) with the output associated with the transitions through the macro–states. It
is a six–tuple Z = (Q,E,Σ, δ, λ, q0) where Q is the finite set of admissible macro–states as
defined in Section 2.2, E is the input alphabet, E = {. . . , Fi, Ri, BEi, BFi, RCi, . . .}, δ is the
transition function, δ : Q × E → Q, q0 ∈ Q is the initial state, Σ is the output alphabet,
Σ = {A1, . . . ,Ar}, Ai ∈ Rm×m for i = 1, . . . , r and λ is the map λ : Q × E → Σ. That is
λ(q, a) gives the output associated with the transition from state q on input a. The output of Z
in response to input a1, a2, . . . , an is λ(q0, a1)λ(q1, a2) · · ·λ(qn−1, an), where q0, q1, . . . , qn is the
sequence of macro–states such that δ(qi−1, ai) = qi for i ≤ i ≤ n.

As already pointed out, we know that this hybrid system evolves through admissible macro–
state sequences. Therefore, given a system configuration, the number of different macro–states
is finite, hence the number of different transitions through the macro-states must be finite. This
observation simply states that the transition matrices Φ(k, h) = A(k − 1) · · ·A(h), for k > h,
associated with the closed–loop system (9), are generated by the underlying finite automaton
transition structure which evolution in time is governed by the stochastic sequence of the macro–
events.

Furthermore the input sequence a1, a2, . . . , ai, . . ., ai ∈ E, which corresponds to the sequence of
the occurring macro–events, depends on the dynamics of the discrete event process. Particularly
this sequence is not completely stochastic, that is, if all machines are down, then the next
macro–event must be a repair event on a certain machine. Finally we can recursively derive
an equivalent regular expression R from the finite automata Z, such that Z = LΣ(R), where
LΣ(R) is the language described by the regular expression R made of symbols Ai ∈ Σ. Then
the transition matrix Φ can be fully characterize by the associated regular expression R.

6

Let qi ∈ Q be the any admissible macro–state. We define an elementary cycle as the minimum
path p(qi) from qi to qi, with | p(qi) |≥ 2. Then given the finite automata Z it is possible to
show that there exists a finite number of elementary cycles by deriving the equivalent regular
expression R denoting the language LΣ(Z) that is accepted by Z. Our main goal is to derive
structural properties of Φ which are related to the stability of this hybrid system, by means of
language theory and automaton methods. This approach lends naturally itself to the analysis
of discrete linear inclusion (DLI).

4 Structural Properties of the Closed–Loop Matrices

We now present some relevant structural properties of the closed–loop matrices Ai ∈ Σ. To give
evidence of the situations we are dealing with, we introduce an example.
Example 4.1. Let us consider a simple transfer line with two machines M1 and M2 coupled
with an intermediate buffer B2 of finite capacity C2. Let vMAX,1 and vMAX,2 be the maximum
machine production rates and assume, without loss of generality, vMAX,1 > vMAX,2. We build
matrices D(k) and b(k) assuming the system in the macro–state qk = (Mo

1,M
o
2,B

n
2} at time tk.

Let v1(tk) = vMAX,1 and v2(tk) = vMAX,2, then

D(k) = diag(1, 1, α1, β1, 1, α2, β2, 1)

b(k) = [1,−v1, v1, β1, v1 − v2, v2, β2, v2]T

where α1 = 1, α2 = 1, β1 = 0 and β2 = 0. Now suppose that at time tk+1 the macro–event BF2

does occur. Then
A(k + 1) = D(k)−K(k)b(k)h(k)

where
K(k) =

1
v1 − v2

, h(k) = [0, 0, 0, 0, 1, 0, 0, 0]

In general each Ai ∈ Σ = {A1, . . . ,Ar} is block triangular of the form

Ai =

[
U N
0 L

]

where U is diagonal, L and N are lower triangular matrices of appropriate dimensions, which
diagonal entries are 0 and 1. Hence Ai has repeated eigenvalues 0 and 1, then it is not asymp-
totically stable. Nevertheless this does not necessarily means that Ai does not have a full
complement of eigenvectors as we shall prove that each Ai is idempotent, i.e., it is stable.

Let us first observe the following.
Fact 4.2. Each Ai ∈ Σ can be written as Ai = Di −Ci, where:

1. Di is a diagonal matrix of 0’s and 1’s.

2. Ci = [0, · · ·0, cj(i),0, · · ·0], i.e., each Ci has only a column of index j(i) different from
zero. Index j(i) corresponds to the index of the element xj(k) within the state vector
which is causing the transition to the new macro–state.

3. Di(l, l) = 1 if Ci(l, j(i)) 6= 0.

7

4. Di(j(i), j(i)) = Ci(j(i), j(i)) = 1

We can now prove the following proposition.
Proposition 4.3. All matrices Ai ∈ Σ are idempotent, i.e., A2

i = Ai.

Proof: It is enough to show that Ai(Ai−I) = 0. By Fact 4.2 Ai = Di−Ci, hence Ai(Ai−I) =
D2

i −DiCi −Di −CiDi + C2
i + Ci. Now: D2

i = Di (by Fact 4.2.1). Also Fact 4.2 implies that
DiCi = CiDi = C2

i = Ci. This completes the proof. ¥
Let Ai ∈ Σ be the closed-loop matrix of the linear time invariant discrete time system x(k+1) =
Aix(k) + b(k)u(k). Then Proposition 4.3 guarantees the stability of the system. Nevertheless
such property do not hold for time-varying systems. In this case it is required that all infinite
cycles, even those not elementary, obtained as

∏
i Ai for any qi ∈ Q, are idempotent. We

conjecture that this statement holds for the system expressed by Eq. (9) and in the next section
we provide an algorithm to determine the finiteness of the set of all cycles. First we show that
the elementary cycles Fail/Repair on machine Mi are idempotent.

Suppose that at time tk the macro–state of the system is qk = (. . . ,Mo
i ,B

n
i , . . .) and the sequence

of macro–events denoted by C = {Fi,Ri} does occur on machine Mi. Obviously after C the
macro–state of the system will not change. Let AFi and ARi be the transition matrices associated
with the macro–events Fi and Ri respectively. Now let us partitioned matrix Di as De =
diag(DU ,DV,e,DL), where e ∈ C and the two diagonal elements in DV,e ∈ R2×2 are the only
entries in De which are affected by the sequence C, that is

DV,Fi(1, 1) = αi = 1
DV,Fi(2, 2) = βi = 0

,
DV,Ri(1, 1) = αi = 0
DV,Ri(2, 2) = βi = 1

Vectors bi can also be partitioned as be = [bT
U ,bT

V,e(k),bT
L]T where

bV,Fi(1, 1) = vout,i > 0
bV,Fi(2, 1) = βi = 0

,
bV,Ri(1, 1) = 0
bV,Ri(2, 1) = βi = 1

Proposition 4.4. Let qk = (. . . ,Mo
i ,B

n
i , . . .) be the macro–state of the system at time tk and

let C = {Fi,Ri} be the sequence of macro–events occurring on machine Mi. Then Π = AFiARi

is idempotent and Π = AFiARi = ARi. Moreover if the macro–state of the system is q̄k =
(. . . ,Mb

i ,B
n
i , . . .) and the sequence of the occurring macro–events is C̄ = {Ri, Fi}, then Π =

ARiAFi = AFi.

Proof. By direct computation we obtain Π = AFiARi = DFiARi = ARi , since hFiDRi = 0 and
hFibRi = 0. Therefore it must result

Ae =



DU • 0
0 0 0
0 • DL




for e ∈ C, where (•) represent vertical band matrices of appropriate dimensions. Hence recalling
that De = diag(DU ,DV,e,DL) we can easily state that DFiARi = ARi . This observation
complete the proof. ¥
Based on the previous propositions we make the following conjecture.
Conjecture 4.5. The set {Φk = A(k − 1) · · ·A(0) | k > 0} is finite.

8

Conjecture (4.5), that can be proved, allows us to infer the stability of our model in the sense
that the state x(k) is always bounded. In the next section we introduce the concept of discrete
linear inclusion (DLI) for the analysis of the stability of the system and show how this conjecture
can be proved.

5 Discrete Linear Inclusions

Let Σ = {Ai : 1 ≤ i ≤ r} be a finite set of constant matrices in Rm×m and consider a system
whose dynamical evolution is given by:

x(k + 1) ∈ {A(k)x(k) | A(k) ∈ Σ} (11)

Thus, Eq. (11) can be seen as the equivalent of a differential inclusion for a linear discrete time
system. Let x(0) be the initial state. Then for all k > 0 it holds x(k) ∈ {Φkx(0) | Φk ∈ Σk}
where Φk = A(k − 1)A(k − 2) · · ·A(0), for k > 0 and Φ0 = I. With a notation from language
theory, we have written

Φk ∈ Σk ≡ Σ ◦ . . . ◦ Σ︸ ︷︷ ︸
k

where we have considered the concatenation of two symbols Ai ◦ Aj as the matrix product
Aj ·Ai. Let Σ∗ be the set of all possible Φk, for k ≥ 0. Assume that not all Φk ∈ Σ∗ correspond
to possible evolutions. Then we consider the case in which the set of all possible Φk is a language
over Σ, denoted as L ⊆ Σ∗. Hence we can write that:

x(k) ∈ {Φkx(0) | Φk ∈ L ⊆ Σ∗}

The set L is called a discrete linear inclusion (DLI). In particular Σ∗ is called a free monoid DLI.
Note that we are slightly extending the usual definition of DLI as proposed in [7] where only
free monoid DLI are considered. Since a DLI is a language we can use any language generator
to represent it. In particular if L is a regular language then it can be represented as a finite
automata where each edge is labelled by a matrix Ai ∈ Σ.
Example 5.1. The DLI corresponding to the discrete time state variable model of the two
machines-one buffer system discussed in Example (4.1) may be represented as a finite automata
Z. Each state is represented by a triple qtk = (m1,m2, b2) with the notation introduced in
section 2.2 and each arc is labelled by a matrix Ae, i where e ∈ E and i = 1, 2, . . . indexes the
different matrices associated to the same macro–event. Note that due to the particular choice of
the system parameters (i.e., V1 > V2) certain states may result “vanishing” because as soon as
the system enters one of these states then it leaves immediately. For instance a repair event from
state (Mb

1,M
o
2,B

e
2) causes the system to enter the state (Mo

1,M
o
2,B

e
2) and to jump immediately

to the state (Mb
1,M

o
2,B

n
2) since V1 > V2. Thus we will have some dotted edges that we assume to

be labelled with the identity matrix (that takes the place of the null string for the matrix product
operator). ¥
Definition 5.2. A DLI L is stable if and only if for all Φ ∈ L, Φ is element–wise bounded,
i.e., there exists a constant matrix B such that for all Φ ∈ L −B ≤ Φ ≤ B. A DLI L is
asymptotically stable if for all Φk ∈ Σk ∩ L

lim
k→∞

Φk = 0.

9

The basic issue for any control system concerns its stability. Stability analysis of DLIs is a
complex issue (readers are referred to [7], [4] and [2]). In general the DLI considered in the
literature are of the form of a free monoid Σ∗. We make the following trivial observation: if
L′ ⊂ L and L is (asymptotically) stable then L′ is (asymptotically) stable, i.e. we may be able
to apply some results taken from the literature to study DLIs that are not free monoids (norm
conditions, spectral analysis). We consider a simple condition for stability that consists in the
finiteness of L.
Remark 5.3. A DLI L is called finite if L is a finite subset of Rm×m. If L is finite then it is
clearly stable.

In the case of (non-commutative) languages Σk ∩ Σj = ∅ for k 6= j, since strings of different
length are necessarily different. In the case of DLIs, however, Σk ⊆ Rm×m for all k, and it may
well be the case that L is finite even if it contains infinite products of unbounded length.
Example 5.4. Let A be an idempotent matrix. Then A∗ = ∪k≥0Ak = {I,A}.
In the case of regular DLIs, the procedure below may be used to check whether L is finite.
Algorithm 5.5. Let Σ be a finite set of matrices in Rm×m and L ⊆ Σ∗ a regular DLI. Let the
finite state machine associated to L be M = (Q,Σ, δ, q0), where Q is the set of all states, δ is
the transition relation, and q0 is the initial state.

begin
n0 := (q0, I);
NEW := n0;
OLD := ∅;
while NEW 6= ∅ do

begin
choose n = (q,Φ) ∈ NEW ;
forall qi ∈ Q such that qi = δ(q,Ai) do

begin
ni := (qi,Ai ·Φ);
if ni 6∈ (NEW ∪ OLD) then

NEW := NEW ∪ {ni};
end;

NEW := NEW \ {n};
OLD := OLD ∪ {n};
end;

end.

We now prove that this procedure computes all elements of a finite L.
Proposition 5.6. Let L ⊆ Σ∗ be a regular DLI. Algorithm 5.5 terminates if and only if L is
finite. Furthermore, when it terminates L = {Φ | (q,Φ) ∈ OLD }. Proof: Let the index a pair
(q,Φ) ∈ Q×L be the smallest i such that q = δ(q0,AαiAαi−1 · · ·Aα1) and Φ =

∏1
k=i Aαk

; if such
an i does not exist the index of a pair is undefined. Let imax = max{index(q,Φ) | (q,Φ) ∈ Q×L}.
Clearly L is finite⇐⇒ the set Q×L is finite⇐⇒ imax < ∞. (If) Each time the while instruction
is executed, one new element is added to the set OLD ⊆ Q × L, hence if this set if finite the
while loop can only be repeated a finite number of times and the algorithm terminates. (Only
if) Assume that the algorithm terminates. We will prove by induction that for all i > 0, all
pairs (q,Φ) of index i are contained in OLD, hence imax < ∞.

• Base step When the algorithm terminates, all pairs of index 1 are contained in OLD. In

10

fact all these pairs are added to NEW the first time the while loop is executed and will
all be added to OLD before termination.

• Induction Assume that when the algorithm terminates all pairs of index i are contained in
OLD. Clearly, for any pair (q,Φ) of index i + 1 there exist a pair (q′,Φ′) of index i such
that q = δ(q′,A), Φ = A ·Φ′. During the same while loop in which (q′,Φ′) is added to
OLD, (q,Φ) is added to NEW and will all be added to OLD before termination.

This also proves that when the algorithm terminates L = {Φ | (q,Φ) ∈ OLD }. ¥

6 Conclusion

The main contribution of our work has been to represent the dynamic behavior of an automated
manufacturing system with a discrete-time linear state variable model that can be used to
evaluate performance measures and make gradient estimation [1]. The proposed formulation
leads to a hybrid model that allows a neat representation of the process in terms of discrete
linear inclusions. In particular we have presented an intriguing relationship that have emerged
between idempotent matrices and the stability of DLI. Our main future goal will be to explore
potential application fields of this hybrid model for the optimal design and control of discrete
event processes.

References

[1] F. Balduzzi, G. Menga, “A State Variable Model for the Fluid Approximation of Flexi-
ble Manufacturing Systems” IEEE International Conference on Robotics and Automation
(Leuven, Belgium), May 1998, to appear.

[2] V.D. Blondel, J.N. Tsitsiklis, “The Lyapunov exponent and joint spectral radius of pairs
of matrices are hard - when not impossible - to compute and to approximate”, IEEE
Conference on Decision and Control, (S.Diego, USA), December 1997.

[3] H. Chen, A. Mandelbaum, “Discrete Flow Networks: Bottleneck Analysis and Fluid Ap-
proximations” Math. Opns. Res., Vol. 16, pp. 408–446, 1991.

[4] I. Daubechies, J.C. Lagarias, “Sets of Matrices All Infinite Products of Which Converge”,
Linear Algebra and its Applications, No. 161, pp. 227–263, 1992.

[5] B.R. Fu, R. Suri, “On Using Continuous Flow Lines to Model Discrete Production Lines”,
Discrete Event Dynamic Systems, No. 4, pp. 129–169, 1994.

[6] J. Gunawardena, Idempotency, Publications of the Isaac Newton Institute, Cambridge Uni-
versity Press, 1997.

[7] L. Gurvits, “Stability of Discrete Linear Inclusion”, Linear Algebra and its Applications,
No. 161, pp. 47–85, 1995.

11

[8] Y.C. Ho, “Performance Evaluation and Perturbation Analysis of Discrete Event Dynamic
Systems”, IEEE Trans. Automatic Control, Vol. 32, No. 7, pp. 563–572, 1987.

[9] L. Kleinrock, Queueing System Volume II: Computer Applications, John Wiley and Sons,
1976.

[10] V.S. Kouikoglou, Y.A. Phillis, “Discrete Event Modeling and Optimization of Unreliable
Production Lines with Random Rates”, IEEE Trans. Robotics and Automation, Vol. 10,
No. 2, pp. 153–159, 1994.

12

